
Using XML in
Visual Basic 2005

In this chapter, we’ll look at how you can generate and manipulate Extensible Markup Language
(XML) using Visual Basic 2005. However, using XML in Visual Basic is a vast area to cover (more
than possibly could be covered in this chapter). The .NET Framework exposes five XML-specific
namespaces that contain over a hundred different classes. In addition, there are dozens of other
classes that support and implement XML-related technologies, such as ADO.NET, SQL Server, and
BizTalk. Consequently, we’ll concentrate on the general concepts and the most important classes.

Visual Basic relies on the classes exposed in the following XML-related namespaces to transform,
manipulate, and stream XML documents:

❑ System.Xml provides core support for a variety of XML standards (including DTD,
namespace, DOM, XDR, XPath, XSLT, and SOAP).

❑ System.Xml.Serialization provides the objects used to transform objects to and from
XML documents or streams using serialization.

❑ System.Xml.Schema provides a set of objects that allow schemas to be loaded, created,
and streamed. This support is achieved using a suite of objects that support the in-
memory manipulation of the entities that compose an XML schema.

❑ System.Xml.XPath provides a parser and evaluation engine for the XML Path Language
(XPath).

❑ System.Xml.Xsl provides the objects necessary when working with Extensible
Stylesheet Language (XSL) and XSL Transformations (XSLT).

15_575368 ch12.qxd 10/7/05 11:06 PM Page 389

The XML-related technologies utilized by Visual Basic include other technologies that generate XML
documents and allow XML documents to be managed as a data source:

❑ ADO — The legacy COM objects provided by ADO have the ability to generate XML documents
in stream or file form. ADO can also retrieve a previously persisted XML document and
manipulate it. (Although ADO will not be used in this chapter, ADO and other legacy COM
APIs can be accessed seamlessly from Visual Basic.)

❑ ADO.NET — This uses XML as its underlying data representation: the in-memory data
representation of the ADO.NET DataSet object is XML; the results of data queries are repre-
sented as XML documents; XML can be imported into a DataSet and exported from a DataSet.
(ADO.NET is covered in Chapter 11.)

❑ SQL Server 2000 — XML-specific features were added to SQL Server 2000 (FOR XML queries to
retrieve XML documents and OPENXML to represent an XML document as a rowset). Visual Basic
can use ADO.NET to access SQL Server’s XML-specific features (the documents generated
and consumed by SQL Server can then be manipulated programmatically). Recently, Microsoft
also released SQLXML, which provides an SQL Server 2000 database with some excellent XML
capabilities, such as the ability to query a database using XQuery, get back XML result sets from
a database, work with data just as if it was XML, take huge XML files and have SQLXML
convert them to relational data, and much more. SQLXML allows you to perform these
functions and more via a set of managed .NET classes. You can download SQLXML for free
from the Microsoft SQLXML Web site at http://msdn.microsoft.com/sqlxml.

❑ SQL Server 2005 — SQL Server has now been modified with XML in mind. SQL Server 2005 can
natively understand XML because it is now built into the underlying foundation of the
database. The ability to query and understand XML documents is a valuable addition to this
database server. SQL Server 2005 also comes in a lightweight (and free) version called SQL
Server Express Edition.

In this chapter, we’ll make sense of this range of technologies by introducing some basic XML concepts
and demonstrating how Visual Basic, in conjunction with the .NET Framework, can make use of XML.
Specifically, you will:

❑ Learn the rationale behind XML.

❑ Look at the namespaces within the .NET Framework class library that deal with XML and XML-
related technologies.

❑ Take a closer look at some of the classes contained within these namespaces.

❑ Gain an overview of some of the other Microsoft technologies that utilize XML, particularly
SQL Server and ADO.NET.

At the end of this chapter, you will be able to generate, manipulate, and transform XML using Visual Basic.

390

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 390

An Introduction to XML
XML is a tagged markup language similar to HTML. In fact, XML and HTML are distant cousins and
have their roots in the Standard Generalized Markup Language (SGML). This means that XML leverages
one of the most useful features of HTML — readability. However, XML differs from HTML in that XML
represents data, while HTML is a mechanism for displaying data. The tags in XML describe the data, for
example:

<?xml version=”1.0” encoding=”utf-8”?>
<Movies>

<FilmOrder name=”Grease” filmId=”1” quantity=”21”></FilmOrder>
<FilmOrder name=”Lawrence of Arabia” filmId=”2” quantity=”10”></FilmOrder>
<FilmOrder name=”Star Wars” filmId=”3” quantity=”12”></FilmOrder>
<FilmOrder name=”Shrek” filmId=”4” quantity=”14”></FilmOrder>

</Movies>

This XML document is used to represent a store order for a collection of movies. The standard used
to represent an order of films would be useful to movie rental firms, collectors, and others. This
information can be shared using XML because:

❑ The data tags in XML are self-describing.

❑ XML is an open standard and supported on most platforms today.

XML supports the parsing of data by applications not familiar with the contents of the XML document.
XML documents can also be associated with a description (a schema) that informs an application as to
the structure of the data within the XML document.

At this stage, XML looks simple — it’s just a human-readable way to exchange data in a universally
accepted way. The essential points that you should understand about XML are

❑ XML data can be stored in a plain text file.

❑ A document is said to be well formed if it adheres to the XML standard.

❑ Tags are used to specify the contents of a document, for example, <FilmOrder>.

❑ XML elements (also called nodes) can be thought of as the objects within a document.

❑ Elements are the basic building blocks of the document. Each element contains a start tag and
end tag. A tag can be both a start and an end tag, for example, <FilmOrder/>. Such a tag is said
to be empty.

❑ Data can be contained in the element (the element content) or within attributes contained in the
element.

❑ XML is hierarchical. One document can contain multiple elements, which can themselves contain
child elements, and so on. However, an XML document can only have one root element.

This last point means that the XML document hierarchy can be thought of as a tree containing nodes:

❑ The example document has a root node, <Movies>.

❑ The branches of the root node are elements of type <FilmOrder>.

❑ The leaves of the XML element, <FilmOrder>, are its attributes: name, quantity, and filmId.

391

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 391

Of course, we’re interested in the practical use of XML by Visual Basic. A practical manipulation of the
example XML is to display for the staff of the movie supplier firm a particular movie order in some
application so that this supplier could fill the order, and then save the information to a database. In this
chapter, you’ll look at how you can perform such tasks using the functionality provided by the .NET
Framework class library.

XML Serialization
The simplest way to demonstrate Visual Basic’s support for XML is not with a complicated technology,
such as SQL Server or ADO.NET. Instead, we will demonstrate a practical use of XML by serializing a class.

The serialization of an object means that it is written out to a stream, such as a file or a socket (this is also
known as dehydrating an object). The reverse process can also be performed: An object can be deserialized
(or rehydrated) by reading it from a stream.

The type of serialization you are discussing in this chapter is XML serialization, where XML is used to
represent a class in serialized form.

To help you understand XML serialization, let’s examine a class named FilmOrder (which can be found
in the code download from www.wrox.com). This class is implemented in Visual Basic and is used by the
company for processing an order for movies. This class could be instantiated on a firm’s PDA, laptop, or
even mobile phone (so long as the .NET Framework was installed).

An instance of FilmOrder corresponding to each order could be serialized to XML and sent over a
socket using the PDA’s cellular modem. (If the person making the order had a PDA which did not have a
cellular modem, the instance of FilmOrder could be serialized to a file.) The order could then be pro-
cessed when the PDA was dropped into a docking cradle and synced. What we are talking about here is
data in a propriety form, an instance of FilmOrder being converted into a generic form — XML — that
can be universally understood.

The System.Xml.Serialization namespace contains classes and interfaces that support the serialization
of objects to XML and the deserialization of objects from XML. Objects are serialized to documents or
streams using the XmlSerializer class. Let’s look at how you can use XmlSerializer. First, you need to
define an object that implements a default constructor, such as FilmOrder:

Public Class FilmOrder

‘ These are Public because we have yet to implement
‘ properties to provide program access.

Public name As String
Public filmId As Integer
Public quantity As Integer

Public Sub New()
End Sub

Public Sub New(ByVal name As String, _
ByVal filmId As Integer, _

392

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 392

ByVal quantity As Integer)
Me.name = name
Me.filmId = filmId
Me.quantity = quantity

End Sub
End Class

This class should be created in a console application. From there, let’s move onto the module. Within the
module’s Sub Main, create an instance of XmlSerializer, specifying the object to serialize and its type
in the constructor:

Dim serialize As XmlSerializer = _
New XmlSerializer(GetType(FilmOrder))

Create an instance of the same type as was passed as parameter to the constructor of XmlSerializer:

Dim MyFilmOrder As FilmOrder = _
New FilmOrder(“Grease”, 101, 10)

Call the Serialize method of the XmlSerializer instance, and specify the stream to which the
serialized object is written (parameter one, Console.Out) and the object to be serialized (parameter two,
prescription):

serialize.Serialize(Console.Out, MyFilmOrder)
Console. WriteLine()

To make reference to the XmlSerializer object, you are going to have to make reference to the
System.Xml.Serialization namespace:

Imports System.Xml
Imports System.Xml.Serialization

Running the module, the following output is generated by the preceding code:

<?xml version=”1.0” encoding=”IBM437”?>
<FilmOrder xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>

This output demonstrates the default way that the Serialize method serializes an object:

❑ Each object serialized is represented as an element with the same name as the class, in this case
FilmOrder.

❑ The individual data members of the class serialized are contained in elements named for each
data member, in this case name, filmId, and quantity.

393

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 393

Also generated are

❑ The specific version of XML generated, in this case 1.0

❑ The encoding used, in this case IBM437

❑ The schemas used to describe the serialized object, in this case www.w3.org/2001/
XMLSchema-instance and www.w3.org/2001/XMLSchema

A schema can be associated with an XML document and describe the data it contains (name, type, scale,
precision, length, and so on). Either the actual schema or a reference to where the schema resides can be
contained in the XML document. In either case, an XML schema is a standard representation that can be
used by all applications that consume XML. This means that applications can use the supplied schema to
validate the contents of an XML document generated by the Serialize method of XmlSerializer.

The code snippet that demonstrated the Serialize method of XmlSerializer displayed the XML
generated to Console.Out. Clearly, we do not expect an application to use Console.Out when it would
like to access a FilmOrder object in XML form. The basic idea shown was how serialization can be
performed in just two lines of code (one call to a constructor and one call to method). The entire section of
code responsible for serializing the instance of FilmOrder is

Try
Dim serialize As XmlSerializer = _

New XmlSerializer(GetType(FilmOrder))
Dim MyMovieOrder As FilmOrder = _

New FilmOrder(“Grease”, 101, 10)
serialize.Serialize(Console.Out, MyMovieOrder)
Console.Out.WriteLine()
Console.Readline()

Catch ex As Exception
Console.Error.WriteLine(ex.ToString())

End Try

The Serialize method’s first parameter is overridden so that it can serialize XML to a file (the file
name is given as type String), a Stream, a TextWriter, or an XmlWriter. When serializing to Stream,
TextWriter, or XmlWriter, adding a third parameter to the Serialize method is permissible. This third
parameter is of type XmlSerializerNamespaces and is used to specify a list of namespaces that qualify
the names in the XML-generated document. The permissible overrides of the Serialize method are:

Public Sub Serialize(Stream, Object)
Public Sub Serialize(TextWriter, Object)
Public Sub Serialize(XmlWriter, Object)
Public Sub Serialize(Stream, Object, XmlSerializerNamespaces)
Public Sub Serialize(TextWriter, Object, XmlSerializerNamespaces)
Public Sub Serialize(XmlWriter, Object, XmlSerializerNamespaces)

An object is reconstituted using the Deserialize method of XmlSerializer. This method is overrid-
den and can deserialize XML presented as a Stream, a TextReader, or an XmlReader. The overloads
for Deserialize are:

Public Function Deserialize(Stream) As Object
Public Function Deserialize(TextReader) As Object
Public Function Deserialize(XmlReader) As Object

394

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 394

Before demonstrating the Deserialize method, we will introduce a new class,
WXClientMultiPrescription. This class contains an array of prescriptions (an array of
WXClientPrescription objects). WXClientMultiPrescription is defined as follows:

Public Class FilmOrder_Multiple

Public multiFilmOrders() As FilmOrder

Public Sub New()
End Sub

Public Sub New(ByVal multiFilmOrders() As FilmOrder)
Me.multiFilmOrders = multiFilmOrders

End Sub
End Class

The FilmOrder_Multiple class contains a fairly complicated object, an array of FilmOrder objects.
The underlying serialization and deserialization of this class is more complicated than that of a single
instance of a class that contains several simple types. However, the programming effort involved on
your part is just as simple as before. This is one of the great ways in which the .NET Framework makes it
easy for you to work with XML data, no matter how it is formed.

To work through an example of the deserialization process, let’s start by first creating a sample order
stored as an XML file called Filmorama.xml.

<?xml version=”1.0” encoding=”utf-8” ?>
<FilmOrder_Multiple xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<multiFilmOrders>
<FilmOrder>

<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Lawrence of Arabia</name>
<filmId>102</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Star Wars</name>
<filmId>103</filmId>
<quantity>10</quantity>

</FilmOrder>
</multiFilmOrders>

</FilmOrder_Multiple>

Once the XML file is in place, the next step is to change your console application so it will take this XML
file and deserialize its contents.

395

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 395

From there, it is important to make sure that your console application has made the proper namespace
references:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

Then, the following code demonstrates an object of type FilmOrder_Multiple being deserialized (or
rehydrated) from a file, Filmorama.xml. This object is deserialized using this file in conjunction with
the Deserialize method of XmlSerializer:

‘ Open file, ..\Filmorama.xml
Dim dehydrated As FileStream = _

New FileStream(“..\Filmorama.xml”, FileMode.Open)

‘ Create an XmlSerializer instance to handle deserializing, ‘ FilmOrder_Multiple
Dim serialize As XmlSerializer = _

New XmlSerializer(GetType(FilmOrder_Multiple))

‘ Create an object to contain the deserialized instance of the object.
Dim myFilmOrder As FilmOrder_Multiple = _

New FilmOrder_Multiple

‘ Deserialize object
myFilmOrder = serialize.Deserialize(dehydrated)

Once deserialized, the array of prescriptions can be displayed:

Dim SingleFilmOrder As FilmOrder

For Each SingleFilmOrder In myFilmOrder.multiFilmOrders
Console.Out.WriteLine(“{0}, {1}, {2}”, _

SingleFilmOrder.name, _
SingleFilmOrder.filmId, _
SingleFilmOrder.quantity)

Next

Console.ReadLine()

This example is just code that serializes an instance of type, FilmOrder_Multiple. The output generated
by displaying the deserialized object containing an array of film orders is:

Grease, 101, 10
Lawrence of Arabia, 102, 10
Star Wars, 103, 10

XmlSerializer also implements a CanDeserialize method. The prototype for this method is:

Public Overridable Function CanDeserialize(ByVal xmlReader As XmlReader) _
As Boolean

396

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 396

If CanDeserialize returns True, then the XML document specified by the xmlReader parameter can
be deserialized. If the return value of this method is False, then the specified XML document cannot be
deserialized.

The FromTypes method of XmlSerializer facilitates the creation of arrays that contain
XmlSerializer objects. This array of XmlSerializer objects can be used in turn to process arrays of
the type to be serialized. The prototype for FromTypes is:

Public Shared Function FromTypes(ByVal types() As Type) As XmlSerializer()

Before we further explore the System.Xml.Serialization namespace, we need to take a moment to
consider the various uses of the term “attribute.”

Source Code Style Attributes
Thus far you have seen attributes applied to a specific portion of an XML document. Visual Basic has
its own flavor of attributes, as do C# and each of the other .NET languages. These attributes refer
to annotations to the source code that specify information (or metadata) that can be used by other
applications without the need for the original source code. We will call such attributes Source Code Style
attributes.

In the context of the System.Xml.Serialization namespace, Source Code Style attributes can be
used to change the names of the elements generated for the data members of a class or to generate XML
attributes instead of XML elements for the data members of a class. To demonstrate this, we will use a
class called ElokuvaTilaus, which contains data members named name, filmId, and quantity. It just
so happens that the default XML generated when serializing this class is not in a form that can be readily
consumed by an external application. As an example of this, assume that a Finnish development team
has written this external application, and hence the XML element and attribute names are in Finnish
(minus the umlauts) rather than in English.

To rename the XML generated for a data member, name, a Source Code Style attribute will be used.
This Source Code Style attribute would specify that when ElokuvaTilaus is serialized, the name data
member would be represented as an XML element, <Nimi>. The actual Source Code Style attribute that
specifies this is:

<XmlElementAttribute(“Nimi”)> Public name As String

ElokuvaTilaus also contains other Source Code Style attributes:

❑ <XmlAttributeAttribute(“ElokuvaId”)> — Specifies that filmId is to be serialized as an
XML attribute named ElokuvaId

❑ <XmlAttributeAttribute(“Maara”)> — Specifies that quantity is to be serialized as an
XML attribute named Maara

397

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 397

ElokuvaTilaus is defined as follows:

Imports System.Xml.Serialization

Public Class ElokuvaTilaus

‘ These are Public because we have yet to implement
‘ properties to provide program access.

<XmlElementAttribute(“Nimi”)> Public name As String
<XmlAttributeAttribute(“ElokuvaId”)> Public filmId As Integer
<XmlAttributeAttribute(“Maara”)> Public quantity As Integer

Public Sub New()
End Sub

Public Sub New(ByVal name As String, _
ByVal filmId As Integer, _
ByVal quantity As Integer)

Me.name = name
Me.filmId = filmId
Me.quantity = quantity

End Sub

End Class

ElokuvaTilaus can be serialized as follows:

Dim serialize As XmlSerializer = _
New XmlSerializer(GetType(ElokuvaTilaus))

Dim MyMovieOrder As ElokuvaTilaus = _
New ElokuvaTilaus(“Grease”, 101, 10)

serialize.Serialize(Console.Out, MyMovieOrder)

The output generated by this code reflects the Source Code Style attributes associated with class
ElokuvaTilaus:

<?xml version=”1.0” encoding=”IBM437”?>
<ElokuvaTilaus xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
ElokuvaId=”101” Maara=”10”>

<Nimi>Grease</Nimi>
</ElokuvaTilaus>

The value of filmId is contained in an XML attribute, ElokuvaId, and the value of quantity is contained
in an XML attribute, Maara. The value of name is contained in an XML element, Nimi.

The example has only demonstrated the Source Code Style attributes exposed by the
XmlAttributeAttribute and XmlElementAttribute classes in the System.Xml .Serialization
namespace. A variety of other Source Code Style attributes exist in this namespace that also control the

398

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 398

form of XML generated by serialization. The classes associated with such Source Code Style attributes
include XmlTypeAttribute, XmlTextAttribute, XmlRootAttribute, XmlIncludeAttribute,
XmlIgnoreAttribute, and XmlEnumAttribute.

System.Xml Document Support
The System.Xml namespace implements a variety of objects that support standards-based XML process-
ing. The XML-specific standards facilitated by this namespace include XML 1.0, Document Type
Definition (DTD) support, XML namespaces, XML schemas, XPath, XQuery, XSLT, DOM Level 1 and
DOM Level 2 (Core implementations), as well as SOAP 1.1, SOAP 1.2, SOAP Contract Language, and
SOAP Discovery. The System.Xml namespace exposes over 30 separate classes in order to facilitate this
level of XML standard’s compliance.

With respect to generating and navigating XML documents, there are two styles of access:

❑ Stream-based — System.Xml exposes a variety of classes that read XML from and write XML
to a stream. This approach tends to be a fast way to consume or generate an XML document
because it represents a set of serial reads or writes. The limitation of this approach is that it does
not view the XML data as a document composed of tangible entities, such as nodes, elements,
and attributes. An example of where a stream could be used is when receiving XML documents
from a socket or a file.

❑ Document Object Model (DOM)–based — System.Xml exposes a set of objects that access
XML documents as data. The data is accessed using entities from the XML document tree
(nodes, elements, and attributes). This style of XML generation and navigation is flexible but
may not yield the same performance as stream-based XML generation and navigation. DOM is
an excellent technology for editing and manipulating documents. For example, the functionality
exposed by DOM might make merging your checking, savings, and brokerage accounts simpler.

XML Stream-Style Parsers
When demonstrating XML serialization, you alluded to XML stream-style parsers. After all, when
an instance of an object was serialized to XML, it had to be written to a stream, and when it was
deserialized, it was read from a stream. When an XML document is parsed using a stream parser, the
parser always points to the current node in the document. The basic architecture of stream parsers is
shown in Figure 12-1.

The classes that access a stream of XML (read XML) and generate a stream of XML (write XML) are
contained in the System.Xml namespace and are

❑ XmlWriter — This abstract class specifies a noncached, forward-only stream that writes an
XML document (data and schema).

❑ XmlReader — This abstract class specifies a noncached, forward-only stream that reads an XML
document (data and schema).

399

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 399

Figure 12-1

Your diagram of the classes associated with the XML stream-style parser referred to one other class,
XslTransform. This class is found in the System.Xml.Xsl namespace and is not an XML stream-style
parser. Rather, it is used in conjunction with XmlWriter and XmlReader. This class will be reviewed in
detail later.

The System.Xml namespace exposes a plethora of additional XML manipulation classes in addition to
those shown in the architecture diagram. The classes shown in the diagram include

❑ XmlResolver — This abstract class resolves an external XML resource using a Uniform
Resource Identifier (URI). XmlUrlResolver is an implementation of an XmlResolver.

❑ XmlNameTable — This abstract class provides a fast means by which an XML parser can access
element or attribute names.

Writing an XML Stream
An XML document can be created programmatically in .NET. One way to perform this task is by writing
the individual components of an XML document (schema, attributes, elements, and so on) to an XML
stream. Using a unidirectional write-stream means that each element and its attributes must be written in
order — the idea is that data is always written at the head of the stream. To accomplish this, you use a
writable XML stream class (a class derived from XmlWriter). Such a class ensures that the XML document
you generate correctly implements the W3C Extensible Markup Language (XML) 1.0 specification and the
Namespaces in XML specification.

But why would this be necessary since you have XML serialization? You need to be very careful here to
separate interface from implementation. XML serialization worked for a specific class, ElokuvaTilaus.
The class is a proprietary implementation and not the format in which data is exchanged. For this one
specific case, the XML document generated when ElokuvaTilaus is serialized just so happens to be the
XML format used when placing an order for some movies. ElokuvaTilaus was given a little help from
Source Code Style attributes so that it would conform to a standard XML representation of a film order
summary.

Document
Object

Model [DOM]

StreamingXML

XmlDocument

XmlReader

XmlWriter

XsITransform

XSL/T

other classes

XmlDocument

XmlDocument

400

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 400

In a different application, if the software used to manage an entire movie distribution business wants to
generate movie orders, it will have to generate a document of the appropriate form. The movie distribution
management software will achieve this by using the XmlWriter object.

Before reviewing the subtleties of XmlWriter, it is important to note that this class exposes over 40
methods and properties. The example presented in this section will provide an overview that touches on
a subset of these methods and properties. This subset will allow an XML document that corresponds to a
movie order to be generated.

For this example, let’s build a module that generates an XML document corresponding to a movie order.
You will use an instance of XmlWriter, FilmOrdersWriter, which will actually be a file on disk. This
means that the XML document generated is streamed to this file. Since the FilmOrdersWriter variable
represents a file, it must be

❑ Created — The instance of XmlWriter FilmOrdersWriter is created using the Create method
as well as by assigning all the properties of this object with the XmlWriterSettings object.

❑ Opened — The file the XML is streamed to, FilmOrdersProgrammatic.xml, is opened by
passing the file name to the constructor associated with XmlWriter.

❑ Generated — The process of generating the XML document is described in detail at the end of
this section.

❑ Closed — The file (the XML stream) is closed using the Close method of XmlWriter or by
simply using the Using keyword.

Before you go about creating the XmlWriter object, you will first need to customize how the object will
operate by using the XmlWriterSettings object. This object, which is new to .NET 2.0, allows you to
configure the behavior of the XmlWriter object before you instantiate it.

Dim myXmlSettings As New XmlWriterSettings
myXmlSettings.Indent = True
myXmlSettings.NewLineOnAttributes = True

The XmlWriterSettings object allows for a few settings on how the XML creation will be handled by
the XmlWriter object. The following table details the properties of the XmlWriterSettings class.

Property Initial Value Description

CheckCharacters True This property, if set to True, will
perform a character check upon the
contents of the XmlWriter object. Legal
characters can be found at www.w3.org/
TR/REC-xml#charsets.

CloseOutput False This property will get or set a value
indicating whether the XmlWriter should
also close the underlying stream or
System.IO.TextWriter when the
XmlWriter.Close method is called.

Table continued on following page

401

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 401

Property Initial Value Description

ConformanceLevel ConformanceLevel Allows the XML to be checked to make
Document sure that it follows certain specified rules.

Possible conformance level settings
include Document, Fragment, and
Default.

Encoding Encoding.UTF8 Defines the encoding of the XML
generated.

Indent False Defines whether the XML generated
should be indented or not. Setting this
value to True will properly indent child
nodes from parent nodes.

IndentChars Two spaces Specifies the number of spaces by which
child nodes will be indented from parent
nodes. This setting only works when the
Indent property is set to True.

NewLineChars \r\n Assigns the characters that are used to
define line breaks.

NewLineHandling System.Xml This property gets or sets a value
.NewLineHandling indicating whether to normalize line
.Replace breaks in the output.

NewLineOnAttributes False Defines whether a node’s attributes
should be written to a new line in the
construction. This will occur if set to
True.

OmitXmlDeclaration False Defines whether an XML declaration
should be generated in the output. This
omission only occurs if set to True.

OutputMethod System.Xml This property gets the method used to
.XmlOutputMethod serialize the System.Xml.XmlWriter
.Xml output.

Once the XmlWriterSettings object has been instantiated and assigned the values you deem necessary,
the next steps are to invoke the XmlWriter object as well as make the association between the
XmlWriterSettings object and the XmlWriter object.

The basic infrastructure for managing the file (the XML text stream) and applying the settings class is:

Dim FilmOrdersWriter As XmlWriter = _
XmlWriter.Create(“..\FilmOrdersProgrammatic.xml”, myXmlSettings)

FilmOrdersWriter.Close()

402

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 402

or the following, if you are utilizing the Using keyword, which is new to the .NET Framework 2.0 and
highly recommended:

Using FilmOrdersWriter As XmlTextWriter = _
XmlWriter.Create(“..\FilmOrdersProgrammatic.xml”, myXmlSettings)

End Using

With the preliminaries completed (file created and formatting configured), the process of writing the
actual attributes and elements of your XML document can begin. The sequence of steps used to generate
your XML document is:

❑ Write an XML comment using the WriteComment method. This comment describes from
whence the concept for this XML document originated and generates the following code:

<!-- Same as generated by serializing, ElokuvaTilaus -->

❑ Begin writing the XML element, <ElokuvaTilaus>, by calling the WriteStartElement
method. You can only begin writing this element because its attributes and child elements must
be written before the element can be ended with a corresponding </ElokuvaTilaus>. The
XML generated by the WriteStartElement method is:

<ElokuvaTilaus>

❑ Write the attributes associated with <ElokuvaTilaus> by calling the WriteAttributeString
method twice. The XML generated by calling the WriteAttributeString method twice adds
to the ElokuvaTilausXML element that is currently being written to:

<ElokuvaTilaus ElokuvaId=”101” Maara=”10”>

❑ Using the WriteElementString method, write the child XML element <Nimi> contained in the
XML element, <ElokuvaTilaus>. The XML generated by calling this method is:

<Nimi>Grease</Nimi>

❑ Complete writing the <ElokuvaTilaus> parent XML element by calling the WriteEndElement
method. The XML generated by calling this method is:

</ElokuvaTilaus>

Let’s now put all this together in the Module1.vb file shown here:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

Module Module1

Sub Main()

Dim myXmlSettings As New XmlWriterSettings

403

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 403

myXmlSettings.Indent = True
myXmlSettings.NewLineOnAttributes = True

Using FilmOrdersWriter As XmlWriter = _
XmlWriter.Create(“..\FilmOrdersProgrammatic.xml”, myXmlSettings)

FilmOrdersWriter.WriteComment(“ Same as generated “ & _
“by serializing, ElokuvaTilaus “)

FilmOrdersWriter.WriteStartElement(“ElokuvaTilaus”)
FilmOrdersWriter.WriteAttributeString(“ElokuvaId”, “101”)
FilmOrdersWriter.WriteAttributeString(“Maara”, “10”)
FilmOrdersWriter.WriteElementString(“Nimi”, “Grease”)
FilmOrdersWriter.WriteEndElement() ‘ End ElokuvaTilaus

End Using

End Sub

End Module

Once this is run, you will then find the XML file FilmOrdersProgrammatic.xml created in the same
folder as the Module1.vb file. The content of this file is:

<?xml version=”1.0” encoding=”utf-8”?>
<!-- Same as generated by serializing, ElokuvaTilaus -->
<ElokuvaTilaus

ElokuvaId=”101”
Maara=”10”>
<Nimi>Grease</Nimi>

</ElokuvaTilaus>

The previous XML document is the same in form as the XML document generated by serializing the
ElokuvaTilaus class. Notice how in the previous XML document the <Nimi> element is indented two
characters and that each attribute is on a different line in the document? This was achieved using the
XmlWriterSettings class.

The sample application covered only a small portion of the methods and properties exposed by the XML
stream-writing class, XmlWriter. Other methods implemented by this class include methods that
manipulate the underlying file, such as the Flush method, and methods that allow XML text to be
written directly to the stream, such as the WriteRaw method.

The XmlWriter class also exposes a variety of methods that write a specific type of XML data to the
stream. These methods include WriteBinHex, WriteCData, WriteString, and WriteWhiteSpace.

You can now generate the same XML document in two different ways. You have used two different
applications that took two different approaches to generating a document that represents a standardized
movie order. However, there are even more ways to generate XML, depending on the circumstances. For
example, you could receive a movie order from a store, and this order would have to be transformed
from the XML format used by the supplier to your own order format.

404

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 404

Reading an XML Stream
In .NET, XML documents can be read from a stream as well. The way a readable stream works is that data
is traversed in the stream in order (first XML element, second XML element, and so on). This traversal is
very quick because the data is processed in one direction, and features, such as write and move backward
in the traversal, are not supported. At any given instance, only data at the current position in the stream
can be accessed.

Before exploring how an XML stream can be read, you need to understand why it should be read in
the first place. To answer this question, let’s return to your movie supplier example. Imagine that the
application that manages the movie orders can generate a variety of XML documents corresponding to
current orders, preorders, and returns. All the documents (current orders, preorders, and returns) can be
extracted in stream form and processed by a report-generating application. This application prints up the
orders for a given day, the preorders that are going to be due, and the returns that are coming down back
to the supplier. The report-generating application processes the data by reading in and parsing a stream
of XML.

One class that can be used to read and parse such an XML stream is XmlReader. Other classes in the .NET
Framework are derived from XmlReader, such as XmlTextReader, which can read XML from a file
(specified by a string corresponding to the file’s name), a Stream, or an XmlReader. For demonstration
purposes, you will use an XmlReader to read an XML document contained in a file. Reading XML from a
file and writing it to a file is not the norm when it comes to XML processing, but a file is the simplest way
to access XML data. This simplified access allows you to focus more on XML-specific issues.

In creating a sample, the fist step is to make the proper imports into the Module1.vb file:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

From there, the next step in accessing a stream of XML data is to create an instance of the object that will
open the stream (the readMovieInfo variable of type XmlReader) and then to open the stream itself. Your
application performs this as follows (where MovieManage.xml will be the name of the file containing the
XML document):

Dim myXmlSettings As New XmlReaderSettings()
Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)

You will notice that like the XmlWriter has a settings class, the XmlReader also has a settings class.
Though you can make assignments to the XmlReaderSettings object, in this case you do not. Later,
this chapter will detail the XmlReaderSettings object.

The basic mechanism for traversing each stream is to traverse from node to node using the Read
method. Node types in XML include element and white space. Numerous other node types are defined,
but for the sake of this example you will focus on traversing XML elements and the white space that is
used to make the elements more readable (carriage returns, linefeeds, and indentation spaces). Once the
stream is positioned at a node, the MoveToNextAttribute method can be called to read each attribute
contained in an element. The MoveToNextAttribute method will only traverse attributes for nodes
that contain attributes (nodes of type element). An example of an XmlReader traversing each node and
then traversing the attributes of each node follows:

405

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 405

While readMovieInfo.Read()
‘ Process node here.
While readMovieInfo.MoveToNextAttribute()

‘ Process attribute here.
End While

End While

This code, which reads the contents of the XML stream, does not utilize any knowledge of the stream’s
contents. However, a great many applications know exactly how the stream they are going to traverse is
structured. Such applications can use XmlReader in a more deliberate manner and not simply traverse
the stream without foreknowledge.

Once the example stream has been read, it can be cleaned up using the End Using call:

End Using

This ReadMovieXml subroutine takes the file name containing the XML to read as a parameter. The code
for the subroutine is as follows and is basically the code just outlined:

Private Sub ReadMovieXml(ByVal fileName As String)
Dim myXmlSettings As New XmlReaderSettings()
Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)

While readMovieInfo.Read()
ShowXmlNode(readMovieInfo)
While readMovieInfo.MoveToNextAttribute()

ShowXmlNode(readMovieInfo)
End While

End While
End Using

Console.ReadLine()
End Sub

For each node encountered after a call to the Read method, ReadMovieXml calls the ShowXmlNode sub-
routine. Similarly, for each attribute traversed, the ShowXmlNode subroutine is called. This subroutine
breaks down each node into its subentities.

❑ Depth — The Depth property of XmlReader determines the level at which a node resides in the
XML document tree. To understand depth, consider the following XML document composed
solely of elements: <A><C><D></D></C>. Element <A> is the root element and
when parsed would return a Depth of 0. Elements and <C> are contained in <A> and are
hence a Depth value of 1. Element <D> is contained in <C>. The Depth property value associ-
ated with <D> (depth of 2) should, therefore, be one more than the Depth property associated
with <C> (depth of 1).

❑ Type — The type of each node is determined using the NodeType property of XmlReader. The
node returned is of enumeration type, XmlNodeType. Permissible node types include
Attribute, Element, and Whitespace. (Numerous other node types can also be returned
including CDATA, Comment, Document, Entity, and DocumentType.)

❑ Name — The type of each node is retrieved using the Name property of XmlReader. The name
of the node could be an element name, such as <ElokuvaTilaus>, or an attribute name, such as
ElokuvaId.

406

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 406

❑ Attribute Count — The number of attributes associated with a node is retrieved using the
AttributeCount property of XmlReader’s NodeType.

❑ Value — The value of a node is retrieved using the Value property of XmlReader. For example,
the element node <Nimi> contains a value of Grease.

Subroutine ShowXmlNode is implemented as follows:

Private Sub ShowXmlNode(ByVal reader As XmlReader)

If reader.Depth > 0 Then
For depthCount As Integer = 1 To reader.Depth

Console.Write(“ “)
Next

End If

If reader.NodeType = XmlNodeType.Whitespace Then

Console.Out.WriteLine(“Type: {0} “, reader.NodeType)

ElseIf reader.NodeType = XmlNodeType.Text Then

Console.Out.WriteLine(“Type: {0}, Value: {1} “, _
reader.NodeType, _
reader.Value)

Else

Console.Out.WriteLine(“Name: {0}, Type: {1}, “ & _
“AttributeCount: {2}, Value: {3} “, _
reader.Name, _
reader.NodeType, _
reader.AttributeCount, _
reader.Value)

End If

End Sub

Within the ShowXmlNode subroutine, each level of node depth adds two spaces to the output generated:

If reader.Depth > 0 Then
For depthCount As Integer = 1 To reader.Depth

Console.Write(“ “)
Next

End If

You add these spaces in order to make the output generated human-readable (so you can easily deter-
mine the depth of each node displayed). For each type of node, ShowXmlNode displays the value of the
NodeType property. The ShowXmlNode subroutine makes a distinction between nodes of type
Whitespace and other types of nodes. The reason for this is simple: A node of type Whitespace does
not contain a name or attribute count. The value of such a node is any combination of white-space char-
acters (space, tab, carriage return, and so on). Therefore, it does not make sense to display the properties
if the NodeType is XmlNodeType.WhiteSpace. Nodes of type Text have no name associated with them

407

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 407

and so for this type, subroutine ShowXmlNode only displays the properties NodeType and Value. For all
other node types, the Name, AttributeCount, Value, and NodeType properties are displayed.

For the finalization of this module, add a Sub Main as follows:

Sub Main(ByVal args() As String)
ReadMovieXml(“..\MovieManage.xml”)

End Sub

An example construction of the MovieManage.xml file is:

<?xml version=”1.0” encoding=”utf-8” ?>
<MovieOrderDump>

<FilmOrder_Multiple>
<multiFilmOrders>

<FilmOrder>
<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Lawrence of Arabia</name>
<filmId>102</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Star Wars</name>
<filmId>103</filmId>
<quantity>10</quantity>

</FilmOrder>
</multiFilmOrders>

</FilmOrder_Multiple>

<PreOrder>
<FilmOrder>

<name>Shrek III – Shrek Becomes a Programmer</name>
<filmId>104</filmId>
<quantity>10</quantity>

</FilmOrder>
</PreOrder>

<Returns>
<FilmOrder>

<name>Star Wars</name>
<filmId>103</filmId>
<quantity>2</quantity>

</FilmOrder>
</Returns>

</MovieOrderDump>

408

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 408

Running this module produces the following output (a partial display since it would be rather lengthy):

Name: xml, Type: XmlDeclaration, AttributeCount: 2, Value: version=”1.0”
encoding=”utf-8”
Name: version, Type: Attribute, AttributeCount: 2, Value: 1.0
Name: encoding, Type: Attribute, AttributeCount: 2, Value: utf-8
Type: Whitespace
Name: MovieOrderDump, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: FilmOrder_Multiple, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: multiFilmOrders, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: FilmOrder, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: name, Type: Element, AttributeCount: 0, Value:
Type: Text, Value: Grease

This example managed to use three methods and five properties of XmlReader. The output generated
was informative but far from practical. XmlReader exposes over 50 methods and properties, which means
that you have only scratched the surface of this highly versatile class. The remainder of this section will
look at the XmlReaderSettings class, introduce a more realistic use of XmlReader, and demonstrate
how the classes of System.Xml handle errors.

The XmlReaderSettings Class
Just like the XmlWriter object, the XmlReader object requires settings to be applied for instantiation of
the object. This means that you can apply settings for how the XmlReader object behaves for when it is
reading whatever XML that you might have for it. This includes settings for how to deal with white
space, schemas, and more. The following table details these settings.

Property Initial Value Description

CheckCharacters True This property, if set to True, will
perform a character check upon the
contents of the retrieved object. Legal
characters can be found at www.w3.org/
TR/REC-xml#charsets.

CloseInput False This property gets or sets a value indicat-
ing whether the underlying stream or
System.IO.TextReader should be
closed when the reader is closed.

ConformanceLevel ConformanceLevel Allows for the XML to be checked to
.Document make sure that it follows certain specified

rules. Possible conformance level settings
include Document, Fragment, and
Default.

DtdValidate False Defines whether the XmlReader should
perform a DTD validation.

Table continued on following page

409

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 409

Property Initial Value Description

IgnoreComments False Defines whether comments should be
ignored or not.

IgnoreInlineSchema True Defines whether any inline schemas
should be ignored or not.

IgnoreProcessing False Defines whether processing instructions
Instructions contained within the XML should be

ignored.

IgnoreSchema True Defines whether the xsi:
Location schemaLocation or xsi:

noNamespaceSchemaLocation
attributes should be ignored or not.

IgnoreValidation True Defines whether the XmlReader object
Warnings should ignore all validation warnings.

IgnoreWhitespace False Defines whether the XmlReader object
should ignore all insignificant white
space.

LineNumberOffset 0 Defines the line number which the
LineNumber property starts counting
within the XML file.

LinePositionOffset 0 Defines the line number which the
LineNumber property starts counting
with the XML file.

NameTable An empty Allows the XmlReader to work with a
XmlNameTable specific XmlNameTable object that is used
object for atomized string comparisons.

ProhibitDtd True This property gets or sets a value indi-
cating whether to prohibit document
type definition (DTD) processing.

Schemas An empty Allows the XmlReader to work
XmlSchemaSet with an instance of the XmlSchemaSet
object class.

ValidationFlags This property gets or sets a value
indicating the schema validation settings.

ValidationType ValidationType This property gets or sets a value
.None indicating whether the System.Xml

.XmlReader will perform validation or
type assignment when reading.

XmlResolver A new XmlResolver This property sets the XmlResolver to
with no credentials access external documents.

410

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 410

An example of using this setting class to modify the behavior of the XmlReader class is:

Dim myXmlSettings As New XmlReaderSettings()
myXmlSettings.IgnoreWhitespace = True
myXmlSettings.IgnoreComments = True

Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
‘ Use XmlReader object here.

End Using

In this case, the XmlReader object that is created will behave in that it will ignore the white space that it
encounters as well as ignoring any of the XML comments. These settings, once established with the
XmlReaderSettings object are then associated to the XmlReader object through its Create method.

Traversing XML Using XmlTextReader
An application can easily use XmlReader to traverse a document that is received in a known format. The
document can thus be traversed in a deliberate manner. You implemented a class that serialized arrays
of movie orders. The next example will take an XML document containing multiple XML documents of
that type and traverse them. Each movie order will be forwarded to the movie supplier by sending a fax.
The document will be traversed as follows:

Read root element: <MovieOrderDump>
Process each <FilmOrder_Multiple> element

Read <multiFilmOrders> element
Process each <FilmOrder>

Send fax for each movie order here

The basic outline for the program’s implementation is to open a file containing the XML document to
parse and to traverse it from element to element.

Dim myXmlSettings As New XmlReaderSettings()

Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
readMovieInfo.Read()
readMovieInfo.ReadStartElement(“MovieOrderDump”)

Do While (True)

‘**
‘* Process FilmOrder elements here *
‘**

Loop

readMovieInfo.ReadEndElement() ‘ </MovieOrderDump>

End Using

The previous code opened the file using the constructor of XmlReader, and the End Using statement
takes care of shutting everything down for you. The previous code also introduced two methods of the
XmlReader class:

411

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 411

❑ ReadStartElement(String) — This verifies that the current in the stream is an element
and that the element’s name matches the string passed to method ReadStartElement. If the
verification is successful, the stream is advanced to the next element.

❑ ReadEndElement() — This verifies that the current element is an end tab, and if the verification
is successful the stream is advanced to the next element.

The application knows that an element, <MovieOrderDump>, will be found at a specific point in the
document. The ReadStartElement method verifies this foreknowledge of the document format. Once
all the elements contained in element <MovieOrderDump> have been traversed, the stream should point
to the end tag </MovieOrderDump>. The ReadEndElement method verifies this.

The code that traverses each element of type <FilmOrder> similarly uses the ReadStartElement and
ReadEndElement methods to indicate the start and end of the <FilmOrder> and <multiFilmOrders>
elements. The code that ultimately parses the list of prescription and faxes the movie supplier (using the
FranticallyFaxTheMovieSupplier subroutine) is:

Dim myXmlSettings As New XmlReaderSettings()

Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
readMovieInfo.Read()
readMovieInfo.ReadStartElement(“MovieOrderDump”)

Do While (True)
readMovieInfo.ReadStartElement(“FilmOrder_Multiple”)
readMovieInfo.ReadStartElement(“multiFilmOrders”)

Do While (True)
readMovieInfo.ReadStartElement(“FilmOrder”)
movieName = readMovieInfo.ReadElementString()
movieId = readMovieInfo.ReadElementString()
quantity = readMovieInfo.ReadElementString()
readMovieInfo.ReadEndElement() ‘ clear </FilmOrder>

FranticallyFaxTheMovieSupplier(movieName, movieId, quantity)

‘ Should read next FilmOrder node
‘ else quits
readMovieInfo.Read()

If (“FilmOrder” <> readMovieInfo.Name) Then
Exit Do

End If
Loop

readMovieInfo.ReadEndElement() ‘ clear </multiFilmOrders>
readMovieInfo.ReadEndElement() ‘ clear </FilmOrder_Multiple>

‘ Should read next FilmOrder_Multiple node
‘ else you quit
readMovieInfo.Read() ‘ clear </MovieOrderDump>

If (“FilmOrder_Multiple” <> readMovieInfo.Name) Then
Exit Do

End If

412

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 412

Loop

readMovieInfo.ReadEndElement() ‘ </MovieOrderDump>

End Using

Three lines within the previous code contain a call to the ReadElementString method:

movieName = readMovieInfo.ReadElementString()
movieId = readMovieInfo.ReadElementString()
quantity = readMovieInfo.ReadElementString()

While parsing the stream, it was known that an element named <name> existed and that this element
contained the name of the movie. Rather than parsing the start tag, getting the value, and parsing
the end tag, it was easier just to get the data using the ReadElementString method. This method
retrieves the data string associated with an element and advances the stream to the next element. The
ReadElementString method was also used to retrieve the data associated with the XML elements
<filmId> and <quantity>.

The output of this example was a fax, which we won’t show because the emphasis of this example is on
showing that it is simpler to traverse a document when its form is known. The format of the document is
still verified by XmlReader as it is parsed.

The XmlReader class also exposes properties that give more insight into the data contained in the XML
document and the state of parsing: IsEmptyElement, EOF, and IsStartElement. This class also allows
data in a variety of forms to be retrieved using methods such as ReadBase64, ReadHex, and ReadChars.
The raw XML associated with the document can also be retrieved, using ReadInnerXml and
ReadOuterXml. Once again, you have only scratched the surface of the XmlReader class. You will find
this class to be quite rich in functionality.

Handling Exceptions
XML is text and could easily be read using mundane methods such as Read and ReadLine. A key
feature of each class that reads and traverses XML is inherent support for error detection and handling.
To demonstrate this, consider the following malformed XML document found in the file named
malformed.XML:

<?xml version=”1.0” encoding=”IBM437” ?>
<ElokuvaTilaus ElokuvaId=”101”, Maara=”10”>

<Nimi>Grease</Nimi>
<ElokuvaTilaus>

This document may not immediately appear to be malformed. By wrapping a call to the method you
developed (movieReadXML), you can see what type of exception is raised when XmlReader detects the
malformed XML within this document:

Try
movieReadXML(“..\Malformed.xml”)

Catch xmlEx As XmlException
Console.Error.WriteLine(“XML Error: “ + xmlEx.ToString())

Catch ex As Exception
Console.Error.WriteLine(“Some other error: “ + ex.ToString())

End Try

413

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 413

The methods and properties exposed by the XmlReader class raise exceptions of type System
.Xml.XmlException. In fact, every class in the System.Xml namespace raises exceptions of type
XmlException. Although this is a discussion of errors using an instance of type XmlReader, the con-
cepts reviewed apply to all errors generated by classes found in the System.Xml namespace.

The properties exposed by XmlException include

❑ LineNumber — The number of the line within an XML document where the error occurred.

❑ LinePosition — The position within the line specified by LineNumber where the error
occurred.

❑ Message — The error message that corresponds to the error that occurred. This error took place
at the line in the XML document specified by LineNumber and within the line at the position
specified by LinePostion.

❑ SourceUri — Provides the URI of the element or document in which the error occurred.

The error displayed when subroutine movieReadXML processes malformed.xml is:

XML Error: System.Xml.XmlException: The ‘,’ character, hexadecimal value 0x2C,
cannot begin a name. Line 2, position 49.

Looking closely at the document, there is a comma separating the attributes in element, <FilmOrder>
(ElokuvaTilaus=”101”, Maara=”10”). This comma is invalid. Removing the comma and running the
code again gives the following output:

XML Error: System.Xml.XmlException: This is an unexpected token. Expected
‘EndElement’. Line 5, position 27.

Once again, you can recognize the precise error. In this case, you do not have an end element,
</ElokuvaTilaus>, but you do have an opening element, <ElokuvaTilaus>.

The properties provided by the XmlException class (LineNumber, LinePosition, and Message)
provide a useful level of precision when tracking down errors. The XmlReader class also exposes a level
of precision with respect to the parsing of the XML document. This precision is exposed by the
XmlReader through properties such as LineNumber and LinePosition.

Using the MemoryStream Object
A very useful class that can greatly help you when working with XML is System.IO.MemoryStream.
Rather than needing a network or disk resource backing the stream (as in System.Net.Sockets
.NetworkStream and System.IO.FileStream), MemoryStream backs itself onto a block of memory.
Imagine that you want to generate an XML document and email it. The built-in classes for sending email
rely on having a System.String containing a block of text for the message body. But, if you want to
generate an XML document, you need a stream.

If the document is reasonably sized, you should write the document directly to memory and copy that
block of memory to the email. This is good from a performance and reliability perspective because you
don’t have to open a file, write it, rewind it, and read the data back in again. However, you must con-
sider scalability in this situation because if the file is very large, or you have a great number of smaller
files, you could run out of memory (in which case you’ll have to go the “file” route).

414

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 414

In this section, you’ll see how to generate an XML document to a MemoryStream object. You’ll read the
document back out again as a System.String value and email it. What you’ll do is create a new class
called EmailStream that extends MemoryStream. This new class will contain an extra method called
CloseAndSend that, as its name implies, will close the stream and send the email message.

First, you’ll create a new console application project called EmailStream. The first job is to create a basic
Customer object that contains a few basic members and that can be automatically serialized by .NET
through use of the SerializableAttribute attribute:

<Serializable()> Public Class Customer

‘ members...
Public Id As Integer
Public FirstName As String
Public LastName As String
Public Email As String

End Class

The fun part now is the EmailStream class itself. This needs access to the System.Web.Mail namespace,
so you’ll need to add a reference to the System.Web assembly. The new class should also extend
System.IO.MemoryStream, as shown here:

Imports System.IO
Imports System.Web.Mail

Public Class EmailStream
Inherits MemoryStream

The first job of CloseAndSend is to start putting together the mail message. This is done by creating a
new System.Web.Mail.MailMessage object and configuring the sender, recipient, and subject.

‘ CloseAndSend - close the stream and send the email...
Public Sub CloseAndSend(ByVal fromAddress As String, _

ByVal toAddress As String, _
ByVal subject As String)

‘ Create the new message...
Dim message As New MailMessage
message.From = fromAddress
message.To = toAddress
message.Subject = subject

This method will be called once the XML document has been written to the stream, so you can assume at
this point that the stream contains a block of data. To read the data back out again, you have to rewind the
stream and use a System.IO.StreamReader. Before you do this, the first thing you should do is call
Flush. Traditionally, streams have always been buffered, that is, the data is not sent to the final destination
(the memory block in this case, but a file in the case of a FileStream and so on) each and every time the
stream is written. Instead, the data is written in (pretty much) a nondeterministic way. Because you need all
the data to be written, you call Flush to ensure that all the data has been sent to the destination and that
the buffer is empty.

415

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 415

In a way, EmailStream is a great example of buffering. All of the data is held in a memory “buffer” until
you finally send the data on to its destination in a response to an explicit call to this method:

‘ Flush and rewind the stream...

Flush()
Seek(0, SeekOrigin.Begin)

Once you’ve flushed and rewound the stream, you can create a StreamReader and dredge all the data
out into the Body property of the MailMessage object:

‘ Read out the data...

Dim reader As New StreamReader(Me)
message.Body = reader.ReadToEnd()

After you’ve done that, you close the stream by calling the base class method:

‘ Close the stream...

Close()

Finally, you send the message:

‘ Send the message...

SmtpMail.Send(message)

End Sub

To call this method, you need to add some code to the Main method. First, you create a new Customer
object and populate it with some test data:

Imports System.Xml.Serialization

Module Module1

Sub Main()

‘ Create a new customer...
Dim customer As New Customer
customer.Id = 27
customer.FirstName = “Bill”
customer.LastName = “Gates”
customer.Email = “bill.gates@microsoft.com”

After you’ve done that, you can create a new EmailStream object. You then use XmlSerializer to
write an XML document representing the newly created Customer instance to the block of memory that
EmailStream is backing to:

416

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 416

‘ Create a new email stream...
Dim stream As New EmailStream

‘ Serialize...
Dim serializer As New XmlSerializer(customer.GetType())
serializer.Serialize(stream, customer)

At this point, the stream will be filled with data, and after all the data has been flushed, the block
of memory that EmailStream backs on to will contain the complete document. Now, you can call
CloseAndSend to email the document.

‘ Send the email...
stream.CloseAndSend(“evjen@yahoo.com”, _

“evjen@yahoo.com”, “XML Customer Document”)

End Sub

End Module

You probably already have Microsoft SMTP Service properly configured — this service is necessary
to send email. You also need to make sure that the email addresses used in your code goes to your
email address! Run the project, check your email, and you should see something, as shown in Figure 12-2.

Figure 12-2

417

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 417

Document Object Model (DOM)
The classes of the System.Xml namespace that support the Document Object Model (DOM) interact as
illustrated in Figure 12-3.

Figure 12-3

Within this diagram, an XML document is contained in a class named XmlDocument. Each node within
this document is accessible and managed using XmlNode. Nodes can also be accessed and managed
using a class specifically designed to process a specific node’s type (XmlElement, XmlAttribute, and
so on). XML documents are extracted from XmlDocument using a variety of mechanisms exposed
through such classes as XmlWriter, TextWriter, Stream, and a file (specified by file name of type
String). XML documents are consumed by an XmlDocument using a variety of load mechanisms
exposed through the same classes.

Where a DOM-style parser differs from a stream-style parser is with respect to movement. Using DOM,
the nodes can be traversed forward and backward. Nodes can be added to the document, removed from
the document, and updated. However, this flexibility comes at a performance cost. It is faster to read or
write XML using a stream-style parser.

The DOM-specific classes exposed by System.Xml include

❑ XmlDocument — Corresponds to an entire XML document. A document is loaded using the
Load method. XML documents are loaded from a file (the file name specified as type String),
TextReader, or XmlReader. A document can be loaded using LoadXml in conjunction with a
string containing the XML document. The Save method is used to save XML documents. The
methods exposed by XmlDocument reflect the intricate manipulation of an XML document.
For example, the following self-documenting creation methods are implemented by this class:
CreateAttribute, CreateDataSection, CreateComment, CreateDocumentFragment,
CreateDocumentType, CreateElement, CreateEntityReference, CreateNode,
CreateProcessingInstruction, CreateSignificantWhitespace, CreateTextNode,
CreateWhitespace, and CreateXmlDeclaration. The elements contained in the document
can be retrieved. Other methods support the retrieving, importing, cloning, loading, and
writing of nodes.

❑ XmlNode — Corresponds to a node within the DOM tree. This class supports datatypes,
namespaces, and DTDs. A robust set of methods and properties are provided to create, delete,
and replace nodes: AppendChild, CloneNode, InsertAfter, InsertBefore, PrependChild,

XmlMode XmlElement XmlAttribute

XmlDocument

XML DocumentObjectModel [DOM]

XmlWriter, TextWriter
file, Stream

XmlReader, TextReader
file, Stream

418

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 418

RemoveAll, RemoveChild, and ReplaceChild. The contents of a node can similarly be
traversed in a variety of ways: FirstChild, LastChild, NextSibling, ParentNode, and
PreviousSibling.

❑ XmlElement — Corresponds to an element within the DOM tree. The functionality
exposed by this class contains a variety of methods used to manipulate an element’s attributes:
GetAttribute, GetAttributeNode, RemoveAllAttributes, RemoveAttributeAt,
RemoveAttributeNode, SetAttribute, and SetAttributeNode.

❑ XmlAttribute— Corresponds to an attribute of an element (XmlElement) within the DOM tree.
An attribute contains data and lists of subordinate data. For this reason, it is a less complicated
object than an XmlNode or an XmlElement. An XmlAttribute can retrieve its owner document
(property, OwnerDocument), retrieve its owner element (property, OwnerElement), retrieve its
parent node (property, ParentNode), and retrieve its name (property, Name). The value of an
XmlAttribute is available via a read-write property named Value.

Given the diverse number of methods and properties (and there are many more than those listed here)
exposed by XmlDocument, XmlNode, XmlElement, and XmlAttribute, it should be clear that any XML
1.0–compliant document can be generated and manipulated using these classes. In comparison to their
XML stream counterparts, these classes afford more flexible movement within and editing of XML
documents.

A similar comparison could be made between DOM and data serialized and deserialized using XML.
Using serialization, the type of node (for example, attribute or element) and the node name are specified
at compile time. There is no on-the-fly modification of the XML generated by the serialization process.

Other technologies that generate and consume XML are not as flexible as DOM. This includes ADO.NET
and ADO, which generate XML of a particular form. Out of the box, SQL Server 2000 does expose a
certain amount of flexibility when it comes to the generation (FOR XML queries) and consumption of XML
(OPENXML) . SQL Server 2005 has more support from XML and even supports an XML datatype. SQL
Server 2005 also expands upon the FOR XML query with FOR XML TYPE. The choice between using classes
within DOM and a version of SQL Server is a choice between using a language, such as Visual Basic, to
manipulate objects or installing SQL Server and performing most of the XML manipulation in SQL.

DOM Traversing Raw XML Elements
The first DOM example will load an XML document into an XmlDocument object using a string that
contains the actual XML document. This scenario is typical of an application that uses ADO.NET to
generate XML but then uses the objects of DOM to traverse and manipulate this XML. ADO.NET’s
DataSet object contains the results of ADO.NET data access operations. The DataSet class exposes a
GetXml method. This method retrieves the underlying XML associated with the DataSet. The following
code demonstrates how the contents of the DataSet are loaded into the XmlDocument:

Dim xmlDoc As New XmlDocument
Dim ds As New DataSet

‘ Set up ADO.NET DataSet() here
xmlDoc.LoadXml(ds.GetXml())

419

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 419

This example will simply traverse each XML element (XmlNode) in the document (XmlDocument) and
display the data accordingly. The data associated with this example will not be retrieved from a DataSet
but will instead be contained in a string, rawData. This string is initialized as follows:

Dim rawData As String = _
“<multiFilmOrders>” & _
“ <FilmOrder>” & _
“ <name>Grease</name>” & _
“ <filmId>101</filmId>” & _
“ <quantity>10</quantity>” & _
“ </FilmOrder>” & _
“ <FilmOrder>” & _
“ <name>Lawrence of Arabia</name>” & _
“ <filmId>102</filmId>” & _
“ <quantity>10</quantity>” & _
“ </FilmOrder>” & _
“</multiFilmOrders>”

The XML document in rawData is a portion of the XML hierarchy associated with a prescription
written at your dental office. The basic idea in processing this data is to traverse each <FilmOrder>
element in order to display the data it contains. Each node corresponding to a <FilmOrder> element
can be retrieved from your XmlDocument using the GetElementsByTagName method (specifying a tag
name of FilmOrder). The GetElementsByTagName method returns a list of XmlNode objects in the form
of a collection of type XmlNodeList. Using the For Each statement to construct this list, the XmlNodeList
(movieOrderNodes) can be traversed as individual XmlNode elements (movieOrderNode). The code for
handling this is as follows:

Dim xmlDoc As New XmlDocument
Dim movieOrderNodes As XmlNodeList
Dim movieOrderNode As XmlNode

xmlDoc.LoadXml(rawData)

‘ Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName(“FilmOrder”)

For Each movieOrderNode In movieOrderNodes

‘**
‘ Process <name>, <filmId> and <quantity> here
‘**

Next

Each XmlNode can then have its contents displayed by traversing the children of this node using the
ChildNodes method. This method returns an XmlNodeList (baseDataNodes) that can be traversed one
XmlNode list element at a time:

Dim baseDataNodes As XmlNodeList
Dim bFirstInRow As Boolean

baseDataNodes = movieOrderNode.ChildNodes
bFirstInRow = True
For Each baseDataNode As XmlNode In baseDataNodes

420

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 420

If (bFirstInRow) Then
bFirstInRow = False

Else
Console.Out.Write(“, “)

End If
Console.Out.Write(baseDataNode.Name & “: “ & baseDataNode.InnerText)

Next
Console.Out.WriteLine()

The bulk of the previous code retrieves the name of the node using the Name property and the InnerText
property of the node. The InnerText property of each XmlNode retrieved contains the data associated
with the XML elements (nodes) <name>, <filmId>, and <quantity>. The example displays the contents
of the XML elements using Console.Out. The XML document is displayed as follows:

name: Grease, filmId: 101, quantity: 10
name: Lawrence of Arabia, filmId: 102, quantity: 10

Other, more practical, methods for using this data could have been implemented, including:

❑ The contents could have been directed to an ASP.NET Response object. The data retrieved
could have been used to create an HTML table (<table> table, <tr> row, and <td> data) that
would be written to the Response object.

❑ The data traversed could have been directed to a ListBox or ComboBox Windows Forms control.
This would allow the data returned to be selected as part of a GUI application.

❑ The data could have been edited as part of your application’s business rules. For example, you
could have used the traversal to verify that the <filmId> matched the <name>. For example, if
you really wanted to validate the data entered into the XML document in any manner.

The example in its entirety is:

Dim rawData As String = _
“<multiFilmOrders>” & _
“ <FilmOrder>” & _
“ <name>Grease</name>” & _
“ <filmId>101</filmId>” & _
“ <quantity>10</quantity>” & _
“ </FilmOrder>” & _
“ <FilmOrder>” & _
“ <name>Lawrence of Arabia</name>” & _
“ <filmId>102</filmId>” & _
“ <quantity>10</quantity>” & _
“ </FilmOrder>” & _
“</multiFilmOrders>”

Dim xmlDoc As New XmlDocument
Dim movieOrderNodes As XmlNodeList
Dim movieOrderNode As XmlNode
Dim baseDataNodes As XmlNodeList
Dim bFirstInRow As Boolean

xmlDoc.LoadXml(rawData)
‘ Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName(“FilmOrder”)

421

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 421

For Each movieOrderNode In movieOrderNodes
baseDataNodes = movieOrderNode.ChildNodes
bFirstInRow = True
For Each baseDataNode As XmlNode In baseDataNodes

If (bFirstInRow) Then
bFirstInRow = False

Else
Console.Out.Write(“, “)

End If
Console.Out.Write(baseDataNode.Name & “: “ & baseDataNode.InnerText)

Next
Console.Out.WriteLine()

Next

DOM Traversing XML Attributes
This next example will demonstrate how to traverse data contained in attributes and how to update the
attributes based on a set of business rules. In this example, the XmlDocument object is populated by
retrieving an XML document from a file. After the business rules edit the object, the data will be persisted
back to the file.

Dim xmlDoc As New XmlDocument

xmlDoc.Load(“..\MovieSupplierShippingListV2.xml”)

‘***
‘ Business rules process document here

‘***
xmlDoc.Save(“..\MovieSupplierShippingListV2.xml”)

The data contained in the file, MovieSupplierShippingListV2.xml, is a variation of the dental
prescription. You have altered your rigid standard (for the sake of example) so that the data associated
with individual movie orders is contained in XML attributes instead of XML elements. An example of
this movie order data is:

<FilmOrder name=”Grease” filmId=”101” quantity=”10” />

You have already seen how to traverse the XML elements associated with a document, so let’s assume
that you have successfully retrieved the XmlNode associated with the <FilmOrder> element.

Dim attributes As XmlAttributeCollection
Dim filmId As Integer
Dim quantity As Integer

attributes = node.Attributes()
For Each attribute As XmlAttribute In attributes

If 0 = String.Compare(attribute.Name, “filmId”) Then
filmId = attribute.InnerXml

ElseIf 0 = String.Compare(attribute.Name, “quantity”) Then
quantity = attribute.InnerXml

End If
Next

422

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 422

The previous code traverses the attributes of an XmlNode by retrieving a list of attributes using the
Attributes method. The value of this method is used to set the attributes object (datatype,
XmlAttributeCollection). The individual XmlAttribute objects (variable, attribute) contained in
attributes are traversed using a For Each loop. Within the loop, the contents of the filmId and the
quantity attribute are saved for processing by your business rules.

Your business rules execute an algorithm that ensures that the movies in the company’s order are
provided in the correct quantity. This rule is that the movie associated with filmId=101 must be sent to
the customer in batches of six at a time due to packaging. In the event of an invalid quantity, the code for
enforcing this business rule keeps removing a single order from the quantity value until the number is
divisible by six. Then this number is assigned to the quantity attribute. The Value property of the
XmlAttribute object is used to set the correct value of the order’s quantity. The code performing this
business rule is:

If filmId = 101 Then
‘ This film comes packaged in batches of six.
Do Until (quantity / 6) = True

quantity -= 1
Loop

Attributes.ItemOf(“quantity”).Value = quantity
End If

What is elegant about this example is that the list of attributes was traversed using For Each. Then
ItemOf was used to look up a specific attribute that had already been traversed. This would not have
been possible by reading an XML stream with an object derived from the XML stream reader class,
XmlReader.

You can use this code as follows:

Sub TraverseAttributes(ByRef node As XmlNode)
Dim attributes As XmlAttributeCollection
Dim filmId As Integer
Dim quantity As Integer

attributes = node.Attributes()
For Each attribute As XmlAttribute In attributes

If 0 = String.Compare(attribute.Name, “filmId”) Then
filmId = attribute.InnerXml

ElseIf 0 = String.Compare(attribute.Name, “quantity”) Then
quantity = attribute.InnerXml

End If
Next

If filmId = 101 Then
‘ This film comes packaged in batches of six
Do Until (quantity / 6) = True

quantity -= 1
Loop

Attributes.ItemOf(“quantity”).Value = quantity

423

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 423

End If

End Sub

Sub WXReadMovieDOM()

Dim xmlDoc As New XmlDocument
Dim movieOrderNodes As XmlNodeList
xmlDoc.Load(“..\MovieSupplierShippingListV2.xml”)

‘ Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName(“FilmOrder”)

For Each movieOrderNode As XmlNode In movieOrderNodes
TraverseAttributes(movieOrderNode)

Next

xmlDoc.Save(“..\MovieSupplierShippingListV2.xml”)

End Sub

XSLT Transforms
XSLT is a language that is used to transform XML documents so that they can be presented visually.
You have performed a similar task before. When working with XML serialization, you rewrote the
FilmOrder class. This class was used to serialize a movie order object to XML using nodes that
contained English-language names. The rewritten version of this class, ElokuvaTilaus, serialized
XML nodes containing Finnish names. Source Code Style attributes were used in conjunction with the
XmlSerializer class to accomplish this transformation. Two words in this paragraph send chills down
the spine of any experienced developer: rewrote and rewritten. The point of an XSL Transform is to
use an alternate language (XSLT) to transform the XML rather than rewriting the source code, SQL
commands, or some other mechanism used to generate XML.

Conceptually, XSLT is straightforward. A file with an .xslt extension describes the changes
(transformations) that will be applied to a particular XML file. Once this is completed, an XSLT
processor is provided with the source XML file and the XSLT file, and performs the transformation. The
System.Xml.Xsl.XslTransform class is such an XSLT processor. A new processor in .NET 2.0 is the
XslCompiledTransform object found at System.Xml.XslCompiledTransform. You will take a look at
using both of these processors.

The XSLT file is itself an XML document, although certain elements within this document are XSLT-
specific commands. There are dozens of XSLT commands that can be used in writing an XSLT file. In the
first example, you will explore the following XSLT elements (commands):

❑ stylesheet — This element indicates the start of the style sheet (XSL) in the XSLT file.

❑ template — This element denotes a reusable template for producing specific output. This
output is generated using a specific node type within the source document under a specific
context. For example, the text <xsl: template match=”/”> selects all root notes (“/”) for the
specific transform template.

424

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 424

❑ for-each — This element applies the same template to each node in the specified set. Recall that
you demonstrated a class (FilmOrder_Multiple) that could be serialized. This class contained
an array of prescriptions. Given the XML document generated when a FilmOrder_Multiple is
serialized, each prescription serialized could be processed using <xsl:for-each select =
“FilmOrder_Multiple/multiFilmOrders/FilmOrder”>.

❑ value-of — This element retrieves the value of the specified node and inserts it into the
document in text form. For example, <xsl:value-of select=”name” /> would take the value
of XML element, <name>, and insert it into the transformed document.

The FilmOrder_Multiple class when serialized generates XML such as the following (where ...
indicates where additional <FilmOrder> elements may reside):

<?xml version=”1.0” encoding=”you-ascii” ?>
<FilmOrder_Multiple>

<multiFilmOrders>
<FilmOrder>

<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
...

</multiFilmOrders>
</FilmOrder_Multiple>

The previous XML document is used to generate a report that is viewed by the manager of the movie
supplier. This report is in HTML form, so that it can be viewed via the Web. The XSLT elements you
previously reviewed (stylesheet, template, and for-each) are all the XSLT elements required to
transform the XML document (in which data is stored) into an HTML file (show that the data can be
displayed). An XSLT file DisplayThatPuppy.xslt contains the following text that is used to transform
a serialized version, FilmOrder_Multiple:

<?xml version=”1.0” encoding=”UTF-8” ?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>
<xsl:template match=”/”>

<HTML>
<TITLE>What people are ordering</TITLE>
<BODY>

<TABLE BORDER=”1”>
<TR>

<TD>Film Name</TD>
<TD>Film ID</TD>
<TD>Quantity</TD>

</TR>
<xsl:for-each select=
“FilmOrder_Multiple/multiFilmOrders/FilmOrder”>

<TR>
<TD><xsl:value-of select=”name” /></TD>
<TD><xsl:value-of select=”filmId” /></TD>
<TD><xsl:value-of select=”quantity” /></TD>

</TR>
</xsl:for-each>

425

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 425

</TABLE>
</BODY>

</HTML>
</xsl:template>

</xsl:stylesheet>

In the previous XSLT file, the XSLT elements are marked in boldface. These elements perform operations
on the source XML file containing a serialized FilmOrder_Multiple object and generate the appropriate
HTML file. Your file contains a table (marked by the table tag, <TABLE>) that contains a set of rows (each
row marked by a table row tag, <TR>). The columns of the table are contained in table data tags, <TD>. The
previous XSLT file contains the header row for the table:

<TR>
<TD>Film Name</TD>
<TD>Film ID</TD>
<TD>Quantity</TD>

</TR>

Each row containing data (an individual prescription from the serialized object, FilmOrder_Multiple)
is generated using the XSLT element, for-each, to traverse each <FilmOrder> element within the
source XML document:

<xsl:for-each select=
“FilmOrder_Multiple/multiFilmOrders/FilmOrder”>

The individual columns of data are generated using the value-of XSLT element, in order to query the
elements contained within each <FilmOrder> element (<name>, <filmId>, and <quantity>):

<TR>
<TD><xsl:value-of select=”name” /></TD>
<TD><xsl:value-of select=”filmId” /></TD>
<TD><xsl:value-of select=”quantity” /></TD>

</TR>

The code to create a displayable XML file using the XslTransform object is:

Dim myXslTransform As XslTransform = New XslTransform

Dim destFileName As String = “..\ShowIt.html”

myXslTransform.Load(“..\DisplayThatPuppy.xslt”)
myXslTransform.Transform(“..\FilmOrders.xml”, destFileName)

System.Diagnostics.Process.Start(destFileName)

This consists of only seven lines of code with the bulk of the coding taking place in the XSLT file. Your
previous code snippet created an instance of a System.Xml.Xsl.XslTransform object named
myXslTransform. The Load method of this class is used to load the XSLT file you previously reviewed,
DisplayThatPuppy.xslt. The Transform method takes a source XML file as the first parameter, which
in this case was a file containing a serialized FilmOrder_Multiple object. The second parameter is the

426

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 426

destination file that will be created by the transform (file name ShowIt.html). The Start method of the
Process class is used to display the HTML file. The Start method launches a process that is most
suitable for displaying the file provided. Basically, the extension of the file dictates which application
will be used to display the file. On a typical Windows machine, the program used to display this file is
Internet Explorer, as shown in Figure 12-4.

Figure 12-4

Do not confuse displaying this HTML file with ASP.NET. Displaying an HTML file in this manner
takes place on a single machine without the involvement of a Web server. Using ASP.NET is more
complex than displaying an HTML page in the default browser.

As was demonstrated, the backbone of the System.Xml.Xsl namespace is the XslTransform class.
This class uses XSLT files to transform XML documents. XslTransform exposes the following methods
and properties:

❑ XmlResolver— This get/set property is used to specify a class (abstract base class, XmlResolver)
that is used to handle external references (import and include elements within the style sheet).
These external references are encountered when a document is transformed (method, Transform,
is executed). The System.Xml namespace contains a class, XmlUrlResolver, which is derived
from XmlResolver. The XmlUrlResolver class resolves the external resource based on a URI.

❑ Load— This overloaded method loads an XSLT style sheet to be used in transforming XML
documents. It is permissible to specify the XSLT style sheet as a parameter of type
XPathNavigator, file name of XSLT file (specified as parameter type, String), XmlReader,
or IXPathNavigable. For each of type of XSLT supported, an overloaded member is
provided that allows an XmlResolver to also be specified. For example, it is possible to call
Load(String, XmlResolver) where String corresponds to a file name and XmlResolver is
an object that handles references in the style sheet of type xsl:import and xsl:include. It
would also be permissible to pass in a value of Nothing for the second parameter of the Load
method (so that no XmlResolver would be specified). Note that there have been considerable
changes to the parameters that the Load method takes between versions 1.0 and 1.1 of the .NET
Framework. Look at the SDK documentation for details on the breaking changes that you might
encounter when working with the XslTransform class.

427

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 427

❑ Transform— This overloaded method transforms a specified XML document using the
previously specified XSLT style sheet and an XmlResolver. The location where the transformed
XML is to be output is specified as a parameter to this method. The first parameter of each
overloaded method is the XML document to be transformed. This parameter can be
represented as an IXPathNavigable, XML file name (specified as parameter type, String), or
XPathNavigator. Note that there have been considerable changes to the parameters that the
Transform method takes between versions 1.0 and 1.1 of the .NET Framework. Look at the SDK
documentation for details on the breaking changes that you might encounter when working with
the XslTransform class.

The most straightforward variant of the Transform method is Transform(String, String,
XmlResolver). In this case, a file containing an XML document is specified as the first parameter,
and a file name that receives the transformed XML document is specified as the second parameter, and
the XmlResolver used as the third parameter. This is exactly how the first XSLT example utilized the
Transform method:

myXslTransform.Transform(“..\FilmOrders.xml”, destFileName)

The first parameter to the Transform method can also be specified as IXPathNavigable or
XPathNavigator. Either of these parameter types allows the XML output to be sent to an object of
type Stream, TextWriter, or XmlWriter. When these two flavors of input are specified, a parameter
containing an object of type XsltArgumentList can be specified. An XsltArgumentList object
contains a list of arguments that are used as input to the transform.

When working with a .NET 2.0 project, it is preferable to use the XslCompiledTransform object instead
of the XslTransform object, because the XslTransform object is considered obsolete. When using the
new XslCompiledTransform object, you construct the file using the following code:

Dim myXsltCommand As New XslCompiledTransform()
Dim destFileName As String = “..\ShowIt.html”
myXsltCommand.Load(“..\DisplayThatPuppy.xslt”)
myXsltCommand.Transform(“..\FilmOrders.xml”, destFileName)
System.Diagnostics.Process.Start(destFileName)

Just like the XslTransform object, the XslCompiledTransform object uses the Load and Transform
methods. The Load method provides the following signatures:

XslCompiledTransform.Load (IXPathNavigable)
XslCompiledTransform.Load (String)
XslCompiledTransform.Load (XmlReader)
XslCompiledTransform.Load (IXPathNavigable, XsltSettings, XmlResolver)
XslCompiledTransform.Load (String, XsltSettings, XmlResolver)
XslCompiledTransform.Load (XmlReader, XsltSettings, XmlResolver)

In this case, String is a representation of the .xslt file that should be used in the transformation.
XmlResolver has already been explained and XsltSettings is an object that allows you to define
which XSLT additional options to permit. The previous example used a single parameter, String, which
showed the location of the style sheet:

myXsltCommand.Load(“..\DisplayThatPuppy.xslt”)

428

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 428

The XslCompiledTransform object’s Transform method provides the following signatures:

XslCompiledTransform.Transform (IXPathNavigable, XmlWriter)
XslCompiledTransform.Transform (String, String)
XslCompiledTransform.Transform (String, XmlWriter)
XslCompiledTransform.Transform (XmlReader, XmlWriter)
XslCompiledTransform.Transform (IXPathNavigable, XsltArgumentList, Stream)
XslCompiledTransform.Transform (IXPathNavigable, XsltArgumentList, TextWriter)
XslCompiledTransform.Transform (IXPathNavigable, XsltArgumentList, XmlWriter)
XslCompiledTransform.Transform (String, XsltArgumentList, Stream)
XslCompiledTransform.Transform (String, XsltArgumentList, TextWriter)
XslCompiledTransform.Transform (String, XsltArgumentList, XmlWriter)
XslCompiledTransform.Transform (XmlReader, XsltArgumentList, Stream)
XslCompiledTransform.Transform (XmlReader, XsltArgumentList, TextWriter)
XslCompiledTransform.Transform (XmlReader, XsltArgumentList, XmlWriter)
XslCompiledTransform.Transform (XmlReader, XsltArgumentList, XmlWriter, XmlResolver)

In this case, String represents the location of specific files (whether it is source files or output files).
Some of the signatures also allow for output to XmlWriter objects, streams, and TextWriter objects.
These can be done by also providing additional arguments using the XsltArgumentList object. In the
previous example, you used the second signature XslCompiledTransform.Transform(String,
String), which asked for the source file and the destination file (both string representations of the
location of said files).

myXsltCommand.Transform(“..\FilmOrders.xml”, destFileName)

The XslCompiledTransform object example will produce the same table as was generated using the
XslTransform object.

XSLT Transforming between XML Standards
The first example used four XSLT elements to transform an XML file into an HTML file. Such an example
has merit, but it does not demonstrate an important use of XSLT. Another major application of XSLT is to
transform XML from one standard into another standard. This may involve renaming elements/attributes,
excluding elements/attributes, changing datatypes, altering the node hierarchy, and representing elements
as attributes and vice versa.

A case of differing XML standards could easily happen to your software that automates movie orders
coming into a supplier. Imagine that the software, including its XML representation of a movie order, is
so successful that you sell 100,000 copies. However, just as you’re celebrating, a consortium of the largest
movie supplier chains announces that they will no longer be accepting faxed orders and that they are
introducing their own standard for the exchange of movie orders between movie sellers and buyers.

Rather than panic, you simply ship an upgrade that comes complete with an XSLT file. This upgrade (a
bit of extra code plus the XSLT file) transforms your XML representation of a movie order into the XML
representation dictated by the consortium of movie suppliers. Using an XSLT file allows you to ship the
upgrade immediately. If the consortium of movie suppliers revises their XML representation, you are not
obliged to change your source code. Instead, you can simply ship the upgraded XSLT file that will
ensure that each movie order document is compliant.

429

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 429

Using XML in Visual Basic 2005
The specific source code that executes the transform is:

Dim myXsltCommand As New XslCompiledTransform()
myXsltCommand.Load(“..\ConvertLegacyToNewStandard.xslt”)
myXsltCommand.Transform(“..\MovieOrdersOriginal.xml”, “..\MovieOrdersModified.xml”)

The three lines of code are

1. Create an XslCompiledTransform object.

2. Use the Load method to load an XSLT file (ConvertLegacyToNewStandard.xslt).

3. Use the Transform method to transform a source XML file (MovieOrdersOriginal.xml) into
a destination XML file (MovieOrdersModified.xml).

Recall that the input XML document (MovieOrdersOriginal.xml) does not match the format required
by your consortium of movie supplier chains. The content of this source XML file is:

<?xml version=”1.0” encoding=”you-ascii” ?>
<FilmOrder_Multiple>

<multiFilmOrders>
<FilmOrder>

<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
...

</multiFilmOrders>
</FilmOrder_Multiple>

The format exhibited in the previous XML document does not match the format of the consortium of
movie supplier chains. To be accepted by the collective of suppliers, you must transform the document
as follows:

❑ Rename element <FilmOrder_Multiple> to <Root>.

❑ Remove element <multiFilmOrders>.

❑ Rename element <FilmOrder> to <DvdOrder>.

❑ Remove element <name> (the film’s name is not to be contained in the document).

❑ Rename element <quantity> to HowMuch and make HowMuch an attribute of <DvdOrder>.

❑ Rename element <filmId> to FilmOrderNumber and make FilmOrderNumber an attribute of
<DvdOrder>.

❑ Display attribute HowMuch before attribute FilmOrderNumber.

A great many of the steps performed by the transform could have been achieved using an alternative
technology. For example, you could have used Source Code Style attributes with your serialization to
generate the correct XML attribute and XML element name. If you had known in advance that a
consortium of suppliers was going to develop a standard, you could have written your classes to be

430

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 430

serialized based on the standard. The point was that you didn’t know and now one standard (your
legacy standard) has to be converted into a newly adopted standard of the movie suppliers’ consortium.
The worst thing you could do would be to change your working code and then force all users working
with the application to upgrade. It is vastly simpler to add an extra transformation step to address the
new standard.

The XSLT file that facilitates the transform is named ConvertLegacyToNewStandard.xslt. A portion
of this file is implemented as follows:

<xsl:template match=”FilmOrder”>
<!-- rename <FilmOrder> to <DvdOrder> -->
<xsl:element name=”DvdOrder”>

<!-- Make element ‘quantity’ attribute HowMuch
Notice attribute HowMuch comes before attribute FilmOrderNumber -->

<xsl:attribute name=”HowMuch”>
<xsl:value-of select=’quantity’></xsl:value-of>

</xsl:attribute>
<!-- Make element filmId attribute FilmOrderNumber -->
<xsl:attribute name=”FilmOrderNumber”>

<xsl:value-of select=’filmId’></xsl:value-of>
</xsl:attribute>

</xsl:element>
<!-- end of DvdOrder element -->

</xsl:template>

In the previous snippet of XSLT, the following XSLT elements are used to facilitate the transformation:

❑ <xsl:template match=”FilmOrder”>— All operations in this template XSLT element will
take place on the original document’s FilmOrder node.

❑ <xsl:element name=”DvdOrder”>— The element corresponding to the source document’s
FilmOrder element will be called DvdOrder in the destination document.

❑ <xsl:attribute name=”HowMuch”>— An attribute named HowMuch will be contained in the
previously specified element. The previously specified element is <DvdOrder>. This attribute
XSLT element for HowMuch comes before the attribute XSLT element for FilmOrderNumber.
This order was specified as part of your transform to adhere to the new standard.

❑ <xsl:value-of select=’quantity’>— Retrieve the value of the source document’s
<quantity> element and place it in the destination document. This instance of XSLT element,
value-of, provides the value associated with attribute HowMuch.

Two new XSLT elements have crept into your vocabulary: element and attribute. Both of these XSLT
elements live up to their names. Specifying the XSLT element named element places an element in the
destination XML document. Specifying the XSLT element named attribute places an attribute in the
destination XML document. The XSLT transform found in ConvertLegacyToNewStandard.xslt is too
long to review completely. When reading this file in its entirety, you should remember that this XSLT file
contains inline documentation to specify precisely what aspect of the transformation is being performed
at which location in the XSLT document. For example, the following XML code comments inform you
about what the XSLT element attribute is about to do:

<!-- Make element ‘quantity’ attribute HowMuch
Notice attribute HowMuch comes before attribute FilmOrderNumber -->

<xsl:attribute name=”HowMuch”>

431

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 431

<xsl:value-of select=’quantity’></xsl:value-of>
</xsl:attribute>

The previous example spanned several pages but contained just three lines of code. This demonstrates
that there is more to XML than learning how to use it in Visual Basic and the .NET Framework. Among
other things, you also need a good understanding of XSLT, XPath, and XQuery.

Other Classes and Interfaces in System.Xml.Xsl
We just took a good look at XSLT and the System.Xml.Xsl namespace, but there is a lot more to it than
that. The other classes and interfaces exposed by System.Xml.Xsl namespace include

❑ IXsltContextFunction— This interface accesses at runtime a given function defined in the
XSLT style sheet.

❑ IXsltContextVariable— This interface accesses at runtime a given variable defined in the
XSLT style sheet.

❑ XsltArgumentList— This class contains a list of arguments. These arguments are XSLT
parameters or XSLT extension objects. The XsltArgumentList object is used in conjunction
with the Transform method of XslTransform and XslCompiledTransform.

❑ XsltContext— This class contains the state of the XSLT processor. This context information
allows XPath expressions to have their various components resolved (functions, parameters,
and namespaces).

❑ XsltException, XsltCompileException— These classes contain the information pertaining
to an exception raised while transforming data. XsltCompileException is derived from
XsltException.

ADO.NET
ADO.NET allows Visual Basic applications to generate XML documents and to use such documents to
update persisted data. ADO.NET natively represents its DataSet’s underlying datastore in XML.
ADO.NET also allows SQL Server — specific XML support to be accessed. In this chapter, your focus is
on those features of ADO.NET that allow the XML generated and consumed to be customized.
ADO.NET is covered in detail in Chapter 11.

The DataSet properties and methods that are pertinent to XML include Namespace, Prefix, GetXml,
GetXmlSchema, InferXmlSchema, ReadXml, ReadXmlSchema, WriteXml, and WriteXmlSchema. An
example of code that uses the GetXml method is:

Dim adapter As New _
SqlDataAdapter(“SELECT ShipperID, CompanyName, Phone “ & _

“FROM Shippers”, _
“SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;”)

Dim ds As New DataSet

adapter.Fill(ds)
Console.Out.WriteLine(ds.GetXml())

432

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 432

The previous code uses the sample Northwind database (which comes with SQL Server and MSDE) and
retrieves all rows from the Shippers table. This table was selected because it contains only three rows
of data. The XML returned by GetXml is as follows (where ... signifies that <Table> elements were
removed for the sake of brevity):

<NewDataSet>
<Table>

<ShipperID>1</ShipperID>
<CompanyName>Speedy Express</CompanyName>
<Phone>(503) 555-9831</Phone>

</Table>
...

</NewDataSet>

What you are trying to determine from the previous XML document is how to customize the XML gen-
erated. The more customization you can perform at the ADO.NET level, the less need there will be later.
With this in mind, you notice that the root element is <NewDataSet> and that each row of the DataSet
is returned as an XML element, <Table>. The data returned is contained in an XML element named for
the column in which the data resides (<ShipperID>, <CompanyName>, and <Phone>, respectively).

The root element, <NewDataSet>, is just the default name of the DataSet. This name could have been
changed when the DataSet was constructed by specifying the name as a parameter to the constructor:

Dim ds As New DataSet(“WeNameTheDataSet”)

If the previous version of the constructor was executed, then the <NewDataSet> element would be
renamed <WeNameTheDataSet>. After the DataSet has been constructed, you can still set the property
DataSetName, thus changing <NewDataSet> to a name such as <WeNameTheDataSetAgain>:

ds.DataSetName = “WeNameTheDataSetAgain”

The <Table> element is actually the name of a table in the DataSet’s Tables property. Programmatically,
you can change <Table> to <WeNameTheTable>.

ds.Tables(“Table”).TableName = “WeNameTheTable”

You can customize the names of the data columns returned by modifying the SQL to use alias names. For
example, you could retrieve the same data but generate different elements using the following SQL code:

SELECT ShipperID As TheID, CompanyName As CName, Phone As TelephoneNumber FROM
Shippers

Using the previous SQL statement, the <ShipperID> element would become the <TheID> element. The
<CompanyName> element would become <CName> and <Phone> would become <TelephoneNumber>.
The column names can also be changed programmatically by using the Columns property associated
with the table in which the column resides. An example of this follows, where the XML element
<TheID> is changed to <AnotherNewName>.

ds.Tables(“WeNameTheTable”).Columns(“TheID”).ColumnName = “AnotherNewName”

433

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 433

This XML could be transformed using System.Xml.Xsl. This XML could be read as a stream
(XmlTextReader) or written as a stream (XmlTextWriter). The XML returned by ADO.NET could even
be deserialized and used to create an object or objects using XmlSerializer. What is important is to
recognize what ADO.NET-generated XML looks like. If you know its format, then you can transform it
into whatever you like.

ADO.NET and SQL Server 2000’s Built-In XML Features
Those interested in fully exploring the XML-specific features of SQL Server should take a look at
Professional SQL Server 2000 Programming (Wrox Press, ISBN 0764543792). However, since the content of
that book is not .NET-specific, the next example will form a bridge between Professional SQL Server 2000
Programming and the .NET Framework.

Two of the major XML-related features exposed by SQL Server are

❑ FOR XML— The FOR XML clause of an SQL SELECT statement allows a rowset to be returned as an
XML document. The XML document generated by a FOR XML clause is highly customizable with
respect to the document hierarchy generated, per-column data transforms, representation of
binary data, XML schema generated, and a variety of other XML nuances.

❑ OPENXML— The OPENXML extension to Transact-SQL allows a stored procedure call to manipulate
an XML document as a rowset. Subsequently, this rowset can be used to perform a variety of tasks,
such as SELECT, INSERT INTO, DELETE, and UPDATE.

SQL Server’s support for OPENXML is a matter of calling a stored procedure call. A developer who can
execute a stored procedure call using Visual Basic in conjunction with ADO.NET can take full advantage
of SQL Server’s support for OPENXML. FOR XML queries have a certain caveat when it comes to ADO.NET.
To understand this caveat, consider the following FOR XML query:

SELECT ShipperID, CompanyName, Phone FROM Shippers FOR XML RAW

Using SQL Server’s Query Analyzer, this FOR XML RAW query generated the following XML:

<row ShipperID=”1” CompanyName=”Speedy Express” Phone=”(503) 555-9831”/>
<row ShipperID=”2” CompanyName=”United Package” Phone=”(503) 555-3199”/>
<row ShipperID=”3” CompanyName=”Federal Shipping” Phone=”(503) 555-9931”/>

The same FOR XML RAW query can be executed from ADO.NET as follows:

Dim adapter As New _
SqlDataAdapter(“SELECT ShipperID, CompanyName, Phone “ & _

“FROM Shippers FOR XML RAW”, _
“SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;”)

Dim ds As New DataSet

adapter.Fill(ds)
Console.Out.WriteLine(ds.GetXml())

The caveat with respect to a FOR XML query is that all data (the XML text) must be returned via a result set
containing a single row and a single column named XML_F52E2B61-18A1-11d1-B105- 00805F49916B.

434

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 434

The output from the previous code snippet demonstrates this caveat (where ... represents similar data
not shown for reasons of brevity):

<NewDataSet>
<Table>

<XML_F52E2B61-18A1-11d1-B105-00805F49916B>
<row ShipperID=”1” CompanyName= “Speedy Express” Phone=”(503)
555-9831”/>

...
</XML_F52E2B61-18A1-11d1-B105-00805F49916B>

</Table>
</NewDataSet>

The value of the single row and single column returned contains what looks like XML, but it contains
/< instead of the less-than character, and /> instead of the greater-than character. The symbols <
and > cannot appear inside XML data. For this reason, they must be entity-encoded (that is, represented
as /> and /<). The data returned in element <XML_F52E2B61-18A1-11d1-B105- 00805F49916B>
is not XML but is data contained in an XML document.

To fully utilize FOR XML queries, the data must be accessible as XML. The solution to this quandary is the
ExecuteXmlReader method of the SQLCommand class. When this method is called, an SQLCommand
object assumes that it is executed as a FOR XML query and returns the results of this query as an
XmlReader object. An example of this follows (again found in VBNetXML05):

Dim connection As New _
SqlConnection(“SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;”)

Dim command As New _
SqlCommand(“SELECT ShipperID, CompanyName, Phone “ & _

“FROM Shippers FOR XML RAW”)
Dim memStream As MemoryStream = New MemoryStream
Dim xmlReader As New XmlTextReader(memStream)

connection.Open()
command.Connection = connection
xmlReader = command.ExecuteXmlReader()
‘ Extract results from XMLReader

The XmlReader created in this code is of type XmlTextReader, which derives from XmlReader. The
XmlTextReader is backed by a MemoryStream, hence it is an in-memory stream of XML that can be
traversed using the methods and properties exposed by XmlTextReader. Streaming XML generation
and retrieval has been discussed earlier.

Using the ExecuteXmlReader method of the SQLCommand class, it is possible to retrieve the result of
FOR XML queries. What makes FOR XML style of queries so powerful is that it can configure the data
retrieved. The three types of FOR XML queries support the following forms of XML customization:

❑ FOR XML RAW— This type of query returns each row of a result set inside an XML element
named <row>. The data retrieved is contained as attributes of the <row> element. The attributes
are named for the column name or column alias in the FOR XML RAW query.

❑ FOR XML AUTO— By default, this type of query returns each row of a result set inside an XML
element named for the table or table alias contained in the FOR XML AUTO query. The data

435

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 435

retrieved is contained as attributes of this element. The attributes are named for the column
name or column alias in the FOR XML AUTO query. By specifying FOR XML AUTO, ELEMENTS it is
possible to retrieve all data inside elements rather than inside attributes. All data retrieved must
be in attribute or element form. There is no mix-and-match capability.

❑ FOR XML EXPLICIT— This form of the FOR XML query allows the precise XML type of each
column returned to be specified. The data associated with a column can be returned as an
attribute or an element. Specific XML types, such as CDATA and ID, can be associated with a
column returned. Even the level in the XML hierarchy in which data resides can be specified
using a FOR XML EXPLICIT query. This style of query is fairly complicated to implement.

FOR XML queries are flexible. Using FOR XML EXPLICIT and the dental database, it would be possible to
generate any form of XML medical prescription standard. The decision that needs to be made is where
XML configuration takes place. Using Visual Basic, a developer could use XmlTextReader and
XmlTextWriter to create any style of XML document. Using the XSLT language and an XSLT file, the
same level of configuration can be achieved. SQL Server and, in particular, FOR XML EXPLICIT allow
the same level of XML customization, but this customization takes place at the SQL level and may even
be configured to stored procedure calls.

XML and SQL Server 2005
As a representation for data, XML is ideal in that it is a self-describing data format that allows you to
provide your datasets as complex datatypes as well as providing order to your data. SQL Server 2005
embraces this direction.

More and more developers are turning to XML as a means of data storage. For instance, Microsoft
Office allows documents to be saved and stored as XML documents. As more and more products and
solutions are turning toward XML as a means of storage, this allows for a separation between the
underlying data and the presentation aspect of what is being viewed. XML is also being used as a
means of communicating datasets across platforms and across the enterprise. The entire XML Web
services story is a result of this new capability. Simply said, XML is a powerful alternative to your data
storage solutions.

Just remember that the power of using XML isn’t only about storing data as XML somewhere (whether
that is XML files or not), but is also about the ability to quickly get at this XML data and to be able to
query the data that is retrieved.

SQL Server 2005 makes a big leap toward XML in adding an XML datatype. This allows you to unify the
relational data aspects of the database and the new desires to work with XML data.

FOR XML has also been expanded from within this latest edition of SQL Server. This includes a new TYPE
directive which returns an XML datatype instance. Also, from the Framework, .NET 2.0 adds a new
namespace —System.Data.SqlXml— which allows you to easily work with the XML data that comes
from SQL Server 2005. The SqlXml object is an XmlReader-derived type. Another addition is the use of
the SqlDataReader object’s GetXml method.

436

Chapter 12

15_575368 ch12.qxd 10/7/05 11:06 PM Page 436

Summary
Ultimately, XML could be the underpinnings of electronic commerce, banking transactions, and data
exchange of almost every conceivable kind. The beauty of XML is that it isolates data representation
from data display. Technologies, such as HTML, contain data that is tightly bound to its display format.
XML does not suffer this limitation, yet at the same time has the readability of HTML. Accordingly,
the XML facilities available to a Visual Basic application are vast, and there are a large number of
XML-related features, classes, and interfaces exposed by the .NET Framework.

In this chapter, you saw how to use System.Xml.Serialization.XmlSerializer to serialize classes.
Source Code Style attributes were introduced in conjunction with serialization. This style of attributes
allows the customization of the XML serialized to be extended to the source code associated with a
class. What is important to remember about the direct of serialization classes is that a required change
in the XML format becomes a change in the underlying source code. Developers should resist the
temptation to rewrite the serialized classes in order to conform to some new XML data standard (such
as the prescription format endorsed by your consortium of pharmacies). Technologies, such as XSLT,
exposed via the System.Xml.Query namespace should be examined first as alternatives. You saw how to
use XSLT style sheets to transform XML data using the classes found in the System.Xml.Xsl namespace.

The most useful classes and interfaces in the System.Xml namespace were reviewed, including those
that support document-style XML access: XmlDocument, XmlNode, XmlElement, and XmlAttribute.
The System.Xml namespace also contains classes and interfaces that support stream-style XML access:
XmlReader and XmlWriter.

Finally, you looked at using XML with Microsoft’s SQL Server.

437

Using XML in Visual Basic 2005

15_575368 ch12.qxd 10/7/05 11:06 PM Page 437

15_575368 ch12.qxd 10/7/05 11:06 PM Page 438

