
Generic Classes

Many developers will view themselves primarily as consumers of generics. However, as you get
more comfortable with generics, you’re likely to find yourself introducing your own generic classes
and frameworks. Before you can make that leap, though, you’ll need to get comfortable with all the
syntactic mutations that come along with creating your own generic classes. The goal of this chap-
ter, then, is to dig into all of the details associated with building generic classes, explaining how
generics extend the existing rules for defining and consuming classes. Fortunately, as you move
through this chapter, you’ll notice that the syntax rules for defining generic classes follow many of
the same patterns you’ve already grown accustomed to with non-generic types. So, although there
are certainly plenty of new generic concepts you’ll need to absorb, you’re likely to find it quite easy
to make the transition to writing your own generic types.

Parameterizing Types
In a very general sense, a generic class is really just a class that accepts parameters. As such, a
generic class really ends up representing more of an abstract blueprint for a type that will, ulti-
mately, be used in the construction of one or more specific types at run-time. This is one area
where, I believe, the C++ term templates actually provides developers with a better conceptual
model. This term conjures up a clearer metaphor for how the type parameters of a generic class
serve as placeholders that get replaced by actual data types when a generic class is constructed.
Of course, as you might expect, this same term also brings with it some conceptual inaccuracies
that don’t precisely match generics.

The idea of parameterizing your classes shouldn’t seem all that foreign. In reality, the mindset
behind parameterizing a class is not all that different than the rationale you would use for parame-
terizing a method in one of your existing classes. The goals in both scenarios are conceptually very
similar. For example, suppose you had the following method in one of your classes that was used
to locate all retired employees that had an age that was greater than or equal to the passed-in
parameter (minAge):

07_559885 ch04.qxd 9/8/05 11:01 PM Page 47

[VB code]
Public Function LookupRetiredEmployees(ByVal minAge As Integer) As IList

Dim retVal As New ArrayList
For Each emp As Employee In masterEmployeeCollection

If ((emp.Age >= minAge) And (emp.Status = EmpStatus.Retired)) Then
retVal.Add(emp)

End If
Next
Return retVal

End Function

[C# code]
public IList LookupRetiredEmployees(int minAge) {

IList retVal = new ArrayList();
foreach (Employee emp in masterEmployeeCollection) {

if ((emp.Age >= minAge) && (emp.Status == EmpStatus.Retired))
retVal.Add(emp);

}
return retVal;

}
}

Now, at some point, you happen to identify a handful of additional methods that are providing similar
functionality. Each of these methods only varies based on the status (Retired, Active, and so on) of the
employees being processed. This represents an obvious opportunity to refactor through parameteriza-
tion. By adding status as a parameter to this method, you can make it much more versatile and eliminate
the need for all the separate implementations. This is something you’ve likely done. It’s a simple, com-
mon flavor of refactoring that happens every day.

So, with this example in mind, you can imagine applying this same mentality to your classes. Classes, like
methods, can now be viewed as being further generalized through the use of type parameters. To better grasp
this concept, let’s go ahead and build a non-generic class that will be your candidate for further generalization:

[VB code]
Public Class CustomerStack

Private _items() As Customer
Private _count As Integer

Public Sub Push(item as Customer)
...

End Sub

Public Function Pop() As Customer
...

End Function
End Class

[C# code]
public class CustomerStack {

private Customer[] _items;
private int _count;

public void Push(Customer item) {...}
public Customer Pop() {...}

}

48

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 48

This is the classic implementation of a type-safe stack that has been created to contain collections of
Customers. There’s nothing spectacular about it. But, as should be apparent by now, this class is the
perfect candidate to be refactored with generics. To make your stack generic, you simply need to add a
type parameter (T in this example) to your type and replace all of your references to the Customer with
the name of your generic type parameter. The result would appear as follows:

[VB code]
Public Class Stack(Of T)

Private _items() As T
Private _count As Integer

Public Sub Push(item As T)
...

End Sub

Public Function Pop() As T
...

End Function
End Class

[C# code]
public class Stack<T> {

private T[] _items;
private int _count;

public void Push(T item) {...}
public T Pop() {...}

}

Pretty simple. It’s really not all that different than adding a parameter to a method. It’s as if generics
have just allowed you to widen the scope of what your classes can parameterize.

Type Parameters
By now, you should be comfortable with the idea of type parameters and how they serve as a type place-
holder for the type arguments that will be supplied when your generic class is constructed. Now let’s
look at what, precisely, can appear in a type parameter list for a generic class.

First, let’s start with the names that can be assigned to type parameters. The rules for naming a type
parameter are similar to the rules used when defining any identifier. That said, there are guidelines that
you should follow in the naming of your type parameters to improve the readability and maintainability
of your generic class. These guidelines, and others, are discussed in Chapter 10, “Generics Guidelines.”

A generic class may also accept multiple type parameters. These parameters are provided as a delimited
list of identifiers:

[VB code]
Public Class Stack(Of T, U, V)

[C# code]
public class Stack<T, U, V>

49

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 49

As you might suspect, each type parameter name must be unique within the parameter list as well as
within the scope of the class. You cannot, for example, have a type parameter T along with a field that
is also named T. You are also prevented from having a type parameter and the class that accepts that
parameter share the same name. Fortunately, the names you’re likely to use for type parameters and
classes will rarely cause collisions.

In terms of scope, a type parameter can only be referenced within the scope of the generic class that
declared it. So, if you have a child generic class B that descends from generic class A, class B will not be
able to reference any type parameters that were declared as part of class A.

The list of type parameters may also contain constraints that are used to further qualify what type argu-
ments can be supplied of a given type parameter. Chapter 7, “Generic Constraints,” will look into the
relevance and application of constraints in more detail.

Overloaded Types
The .NET implementation of generics allows programmers to create overloaded types. This means that
types, like methods, can be overloaded based on their type parameter signature. Consider the declara-
tions of the following types:

[VB code]
Public Class MyType

...
End Class

Public Class MyType(Of T)
...

End Class

Public Class MyType(Of T, U)
...

End Class

[C# Code]
public class MyType {
}

public class MyType<T> {
...

}

public class MyType<T, U> {
...

}

Three types are declared here and they all have the same name and different type parameter lists. At first
glance, this may seem invalid. However, if you look at it from an overloading perspective, you can see
how the compiler would treat each of these three types as being unique. This can introduce some level
of confusion for clients, and this is certainly something you’ll want to factor in as you consider building
your own generic types. That said, this is still a very powerful concept that, when leveraged correctly,
can enrich the power of your generic types.

50

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 50

Static Constructors
All classes support the idea of a static (shared) constructor. As you might expect, a static constructor is a
constructor that can be called without requiring clients to create an instance of a given class. These con-
structors provide a convenient mechanism for initializing classes that leverage static types.

Now, when it comes to generics, you have to also consider the accessibility of your class’s type parame-
ters within the scope of your static constructor. As it turns out, static constructors are granted full access
to any type parameters that are associated with your generic classes. Here’s an example of a static con-
structor in action:

[VB code]
Imports System.Collections.Generic

Class MySampleClass(Of T)
Private Shared _values As List(Of T)

Shared Sub New()
If (GetType(T).IsAbstract = False) Then

Throw New Exception(“T must not be abstract”)
Else

_values = New List(Of T)()
End If

End Sub
End Class

[C# code]
using System.Collections.Generic;

public class MySampleClass<T> {
private static List<T> _values;

static MySampleClass() {
if (typeof(T).IsAbstract == false)

throw new Exception(“T must not be abstract”);
else

_values = new List<T>();
}

}

This example creates a class that accepts a single type parameter, T. The class has a data member that is
used to hold a static collection of items of type T. However, you want to be sure, as part of initialization,
that T is never abstract. In order to enforce this constraint, this example includes a static constructor that
examines the type information about T and throws an exception if the type of T is abstract. If it’s not
abstract, the constructor proceeds with the initialization of its static collection.

This is just one application of static constructors and generic types. You should be able to see, from this
example, how static constructors can be used as a common mechanism for initializing any generic class
that has static data members.

51

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 51

Inheritance
Generic concepts, of course, are not constrained to a single class declaration. The type parameters that
are supplied with a generic class declaration can also be applied to all the objects that participate in an
object hierarchy. Here’s a simple example that creates a generic base class and subclasses it with another
generic class:

[VB code]
Public Class MyBaseClass(Of U)

Private _parentData As U

Public Sub New()
...

End Sub

Public Sub New(ByVal val As U)
Me._parentData = val

End Sub
End Class

Public Class MySubClass(Of T, U)
Inherits MyBaseClass(Of U)
Private _myData As T

Public Sub New()
...

End Sub

Public Sub New(ByVal val1 As T, ByVal val2 As U)
MyBase.New(val2)
Me._myData = val1

End Sub
End Class

[C# code]
public class MyBaseClass<U> {

private U _parentData;

public MyBaseClass() {}

public MyBaseClass(U val) {
this._parentData = val;

}
}

public class MySubClass<T, U> : MyBaseClass<U> {
private T _myData;

public MySubClass() {}

public MySubClass(T val1, U val2) : base(val2) {
this._myData = val1;

}
}

52

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 52

Notice here that you have MyBaseClass, which accepts a single type parameter. Then, you subclass
MyBaseClass with MySubClass, which accepts two type parameters. The key bit of syntax to notice
here is that one of the type parameters used in the declaration of MySubClass was also referenced in the
declaration of the parent class, MyBaseClass.

Although this example simply passed the type parameters from the subclass to the base class, you can
also use type arguments when inheriting from another class or implementing a generic interface. In this
case, your generic class declarations could appear as follows:

[VB code]
Public Class MyBaseClass(Of U)

...
End Class

Public Class MySubClass(Of T)
Inherits MyBaseClass(Of Integer)
...

End Class

[C# code]
public class MyBaseClass<U> {
}

public class MySubClass<T> : MyBaseClass<int> {
}

The subclass has been altered here and now only accepts a single type parameter. And, in place of the
type parameter U that was being passed to MyBaseClass, you now pass the type argument Integer.
After looking at these two examples, it should be clear that your classes can subclass another class using
both open and constructed types (and some variations in between). It’s probably obvious at this stage,
but I should point out that your generic classes can also subclass non-generic, closed base classes as well.

Now that you know what works, let’s take a quick look at some of the combinations of inheritance pat-
terns that will not work. Suppose you have a closed type that inherits from a generic class:

[VB code]
Public Class MyBaseClass(Of T, U)
End Class

Public Class MySubClass1
Inherits MyBaseClass(Of T, U)

End Class

Public Class MySubClass2
Inherits MyBaseClass(Of Int32, String)

End Class

[C# code]
public class MyBaseClass<T, U> { }

public class MySubClass1 : MyBaseClass<T, U> { }

public class MySubClass2 : MyBaseClass<int, string> { }

53

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 53

In this example, you have two closed types that inherit from a generic class. MySubClass1 attempts to
inherit using an open type and MySubClass2 inherits as a constructed type. When you attempt to com-
pile this code, you’re going to notice that MySubClass1 will generate an error. The compiler has no point
of reference that allows it to resolve the types of T and U. As a constructed type, MySubClass1 doesn’t
accept any type parameters and, therefore, has no parameters that can be used because it inherits from
MyBaseClass<T, U>. MySubClass2 doesn’t accept type parameters either, but it still compiles because it
uses type arguments and forms a constructed type as part of its inheritance declaration.

There’s one more inheritance scenario that’s worth discussing here. Let’s look at an example where you
use a constructed type as a type argument in the declaration of your inherited class:

[VB code]
Imports System.Collections.Generic

Public Class MyBaseClass(Of T, U)
End Class

Public Class MySubClass1(Of T)
Inherits MyBaseClass(Of List(Of T), T)

End Class

Public Class MySubClass2(Of T)
Inherits MyBaseClass(Of List(Of T), Stack(Of T))

End Class

[C# code]
using System.Collections.Generic;

public class MyBaseClass<T, U> { }

public class MySubClass1<T> : MyBaseClass<List<T>, T> { }

public class MySubClass2<T> : MyBaseClass<List<T>, Stack<T>> { }

If you look at this example closely, you’ll discover that it’s really just a variation on one of the earlier
examples of inheritance. The key difference here is that a mixture of constructed types and type parame-
ters are used where the constructed types end up leveraging the type parameter from the subclass. The
goal here is just to get you comfortable with the possibilities and to get you to view a constructed type
like any other type argument you might pass when inheriting from a generic class.

Finally, it’s worth noting that a generic class cannot use one of its type parameters as its inherited type. It
must descend from an existing closed or open type. For example, the following would not be legal:

[VB code]
Public Class MyType(Of T)

Inherits Of T
...

End Class

[C# code]
public class MyType<T> : T {

...
}

54

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 54

At this stage, after looking at all these examples, you should have a much better idea for how the
mechanics of generic inheritance work. The rules that govern inheritance are fairly logical and don’t
really fall outside what you might expect. The main idea to take away here is that you can use both
type parameters and type arguments as parameters when subclassing a generic class.

Protected Members
Any discussion of inheritance would be incomplete without also examining the accessibility of protected
members. First, I should make it clear that all the rules that govern access to protected members are
unchanged for closed types. Things get a bit more interesting when you look at protected members that
appear within a generic class. These members are accessible too. In fact, they are accessible in some ways
you might not expect.

Here’s an example that declares a base class with a protected, generic field that will then be referenced in
a descendant class:

[VB code]
Public Class MyBaseClass(Of T)

Protected _var1 As T

Public Sub New(ByVal var1 As T)
Me._var1 = var1

End Sub
End Class

Public Class MySubClass(Of T, U)
Inherits MyBaseClass(Of T)
Private _var2 As U

Public Sub New(ByVal var1 As T, ByVal var2 As U)
MyBase.New(var1)
Me._var2 = var2

End Sub

Private Sub Foo1()
Dim localVar as T = Me._var1

End Sub

Private Sub Foo2()
Dim sub1 As New MySubClass(Of Integer, String)(1, “12”)
Dim val1 As Integer = sub1._var1
Dim sub2 As New MySubClass(Of Double, Double)(1.0, 5.8)
Dim val2 As Double = sub2._var1
End Sub

End Class

[C# code]
using System;

public class MyBaseClass<T> {
protected T _var1;

public MyBaseClass(T var1) {

55

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 55

this._var1 = _var1;
}

}

public class MySubClass<T, U> : MyBaseClass<T> {
private U _var2;

public MySubClass(T var1, U var2) : base(var1) {
this._var2 = var2;

}

private void Foo1() {
T localVar = this._var1;

}

private void Foo2() {
MySubClass<int, String> sub1 = new MySubClass<int, String>(1, “12”);
int val1 = sub1._var1;
MySubClass<Double, Double> sub2 = new MySubClass<Double, Double>(1.0, 5.8);
Double val2 = sub2._var1;

}
}

This example actually ends up illustrating two key points. It includes a protected field in the base class,
var1, that is then accessed by the subclass. The method Foo1() accesses var1 successfully, much like it
would any other inherited, protected data member. The method Foo2() is the more interesting example.
It constructs two separate instances of MySubClass and, because it’s in the scope of the descendant
class, it is able to access the protected member var1 via these constructed types.

Fields
The fields of a generic class follow all the same syntax rules that are applied to non-generic fields. The
primary incremental change here is the ability to reference type parameters in the declaration of your
class’s fields. Here’s an example where this is applied:

[VB code]
Public Class MyType(Of T, U)

Private _myFirstDataMember As T
Private _mySecondDataMember As U
Public Sub New(ByVal val1 As T, ByVal val2 As U)

Me._myFirstDataMember = val1
Me._mySecondDataMember = val2

End Sub

Public Function GetFirstDataMember() As T
Return Me._myFirstDataMember

End Function

Public Function GetSecondDataMember() As U
Return Me._mySecondDataMember

56

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 56

End Function
End Class

Public Class MyApp
Shared Sub Main()

Dim testType As New MyType(Of String, String)(“val1”, “Val2”)
Console.WriteLine(testType.GetFirstDataMember())
Console.WriteLine(testType.GetSecondDataMember())

End Sub
End Class

[C# code]
using System;

class MyType<T, U> {
private T _myFirstDataMember;
private U _mySecondDataMember;

public MyType(T val1, U val2) {
this._myFirstDataMember = val1;
this._mySecondDataMember = val2;

}

public T GetFirstDataMember() {
return this._myFirstDataMember;

}

public U GetSecondDataMember() {
return this._mySecondDataMember;

}
}

class MyApp {
static void main(String[] args) {

MyType<string, string> testType =
new MyType<string, string>(“Val1”, “Val2”);

Console.WriteLine(testType.GetFirstDataMember());
Console.WriteLine(testType.GetSecondDataMember());

}
}

As you can see, the generic class is able to create a pair of fields that reference the type parameters that
are part of the class declaration. In fact, the type of any field declared in your generic class can reference
any type parameter that is passed into your class. You’ll also notice that the constructor initializes these
fields using the same syntax you would use for any non-generic field.

Static Fields
Although type parameters can be used in the place of most types in a class, they cannot be applied to
any static field. In fact, the behavior of static fields does not change within a generic class. Consider the
following implementation of an object cache:

57

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 57

[VB code]
Imports System.Collections.Generic

Public Class MyCache(Of K, V)
Private Shared _objectCache As New Dictionary(Of K, V)

Public Sub New()
End Sub

Public Function FindValueInDB(ByVal key As K) As V
‘findValue (not shown) would lookup the key in
‘a repository, add it to our cache, and return the value

End Function

Public Function LookupValue(ByVal key As K) As V
Dim retVal As V
If (_objectCache.ContainsKey(key) = True) Then

_objectCache.TryGetValue(key, retVal)
Else

retVal = FindValueInDB(key)
End If
Return retVal

End Function
End Class

Public Class MyApp
Public Shared Sub Main()

Dim cache1 As New MyCache(Of String, String)()
Dim val1 As String = cache1.LookupValue(“key1”)

Dim cache2 As New MyCache(Of String, String)()
Dim val2 As Integer = cache2.LookupValue(“key1”)

End Sub
End Class

[C# code]
using System.Collections.Generic;

class MyCache<K, V> {
private static Dictionary<K, V> _objectCache;

public MyCache() {
MyCache<K, V>._objectCache = new Dictionary<K, V>();

}

private V findValueInDB(K key) {
// findValue (not shown) would lookup the key in
// a repository, add it to our cache, and return the value
return default(V);

}

public V lookupValue(K key) {
V retVal;
if (_objectCache.ContainsKey(key) == true) {

_objectCache.TryGetValue(key, out retVal);
} else {

58

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 58

// findValue (not shown) would lookup the key in
// a repository, add it to our cache, and return the value
retVal = findValueInDB(key);

}
return retVal;

}
}

class MyApp {
public static void main(String[] args) {

MyCache<string, string> cache1 = new MyCache<string, string>();
string val1 = cache1.lookupValue(“key1”);

MyCache<string, int> cache2 = new MyCache<string, int>();
int val2 = cache2.lookupValue(“key1”);

}
}

This example defines a generic class, MyCache, that employs a static field to hold a set of keys and their
corresponding values. It represents a simple wrapper for the generic Dictionary class, adding a single
lookupValue method. Each time this method is called, it will determine if the provided key already
exists in the cache. If the key is found, the corresponding value will be returned. If the key is not found,
the code class will look it up in a database, place it in the cache, and return it to the client.

The goal here was to construct a simple cache that could make this added lookup capability available to
a wide variety for data types. You could, for example, leverage this class to hold a cache strings and turn
around and reuse it, as I did here, to manage a separate cache of integers. And, in that regard, it delivers
what I had intended. The problem comes in when two constructed types use the same type arguments.

In these instances, your constructed types actually end up sharing more than their implementation — they
also share their static fields. So, although it seemed as though your two constructed types represented
unique instances, they did not. They both shared a single instance from the static objectCache field.

You can only imagine what this does to your cache. If you declare two constructed types with matching
type arguments and you want them treated entirely separately, it won’t be possible. The static cache
being maintained by the class will end up being shared by these two instances.

In general, this aspect of static fields shouldn’t be viewed as a limitation. It’s mostly significant and
worth discussing because the behavior may not match what you’re expecting. It could also be the source
of a few difficult-to-locate bugs. If nothing else, this is at least something you’ll want to keep in mind
whenever you opt to include static data in one of your generic classes.

Constructed Fields
It should go without saying that constructed generic types can also be used throughout the implementa-
tion of your generic classes. Specifically, you are allowed to have fields that are open or closed constructed
types. Here’s a quick look at a simple example:

[VB code]
Imports System.Collections.Generic

Public Class MyType(Of T)

59

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 59

Private _myList As New List(Of T)
Private _myStrings As New List(Of String)

Public Function GetItem(ByVal param1 As List(Of Integer)) As T
Dim localVar As New List(Of T)
Return _myList(0)

End Function
End Class

[C# code]
using System.Collections.Generic;

class MyType<T> {
private List<T> _myList;
private List<string> _myStrings;

public T getItem(List<int> param1) {
List<T> localVar;
return _myList[0];

}
}

You’ll notice the class is littered with open and closed constructed types. After you’re familiar with
generics, these constructed types will start to look like any other data type you might reference in your
class. The syntax variations for generics seem to just fade into the background.

Methods
Methods represent your primary point of contact with clients. As such, their flexibility, expressiveness,
and general type safety should be of a great deal of importance to you. You want to make your client’s
life as simple as possible and, because you may likely be both the producer and the consumer of these
methods, you’re also likely to be especially motivated to build a good interface.

With generics, you actually have the opportunity to build a set of interfaces that are likely to last more
than a few days. If you think about it, generics allow you to be 100% vague about types that are sup-
ported by your interfaces. It’s as if every parameter and every return type is of the type object. All that,
and you still get a type-safe interface.

Okay, that may be a bit extreme. But, if you consider that your type parameters can essentially appear
anywhere within the signature of a method, it doesn’t seem like that big of a stretch. At the same time,
while you feel this extra degree of freedom in defining your interface, the consumers of your interface
get to work with specific types without dealing with casting or conversion.

For this chapter, my focus is exclusively on generic classes. And, for that reason, the dis-
cussion of methods is intentionally constrained to how type parameters influence the
methods of your class. Chapter 5, “Generic Methods,” looks at generic methods that can
exist entirely outside the scope of a generic class and have their own set of dynamics.

60

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 60

Let’s take a quick look at a sample class that illustrates a few variations on how you might go about
using type parameters in the interface of your generic class:

[VB code]
Class MyType(Of V)
End Class

MustInherit Class MyShape(Of T, U)
Public Sub New()
End Sub

MustOverride Sub Draw()
MustOverride Function GetIndexes() As T()

Overridable Function
AddValue(ByVal index As T, ByVal value As MyType(Of U)) As Boolean

...
End Function

Overridable Function GetValue(ByVal index As T) As MyType(Of U)
...

End Function
End Class

[C# code]
class MyType<V> {}

abstract class MyShape<T, U> {
public MyShape() {}

public abstract void draw();
public abstract T[] GetIndexes();

public virtual bool AddValue(T index, MyType<U> value) {

...
}

public virtual MyType<U> GetValue(T index) {
...

}
}

In this class you define a set of methods, both abstract and virtual, that leverage the type parameters
used in the declaration of your generic class. For both the abstract and virtual methods, you are free to
include type parameters and open types wherever you would place traditional types. As you can see,
very few limitations are imposed on the methods of your class. And, fortunately, most of the concepts
you’ve become accustomed to with non-generic methods will still apply to your methods.

Overloading Methods
Whenever you define a method — especially an overloaded method — you need to understand how the
compiler will evaluate the signature of that method. Specifically, you need to have a firm grasp on how

61

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 61

the compiler evaluates the uniqueness of a given generic method. For example, consider how the com-
piler will evaluate the following two methods:

[VB code]
Class MyType(Of T)

Public Function Foo() As Boolean
End Function

Public Function Foo() As T
End Function

End Class

[C# code]
class MyType<T> {

public bool Foo() { ... }
public T Foo() { ... }

}

While these two methods would seem to have different signatures, the compiler has no means by which
it can uniquely identify these two methods because they only differ by their return types — one of which
is a type parameter. This is not especially surprising because non-generic methods also fail when they
only differ by their return types. Here’s a less obvious example:

[VB code]
Class MyType(Of T)

Public Function Foo(ByVal myString As String) As Boolean
End Function

Public Function Foo(ByVal myValue As T) As Boolean
End Function

End Class

[C# code]
class MyType<T> {

public bool Foo(String myString) { }
public bool Foo(T myValue) { }

}

On the surface, it would seem as though the compiler would not be able to distinguish between these
two methods. However, this is one where C# and VB vary in their implementations. The C# generics
specification only requires a method’s signature to be unique prior to the class’s instantiation. So, given
these constraints, the C# compiler is able to view these two methods as being unique. VB, on the other
hand, isn’t so kind. It continues to throw an error and complain about the uniqueness of the method’s
signature.

Although the C# language may support this syntax, it still creates a situation that could cause some level
of confusion for clients of your method. As such, relying on this mechanism may not be a good idea —
especially given the overriding generic theme of providing clear, expressive interfaces for your types.

The name you assign to your type parameters can also create some confusion when you are trying to
evaluate the signature of a method. Typically, you look at the name of a type to determine if two types

62

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 62

match. For example, in the next snippet of code you have two Integer parameters in the signature of
two separate methods:

[VB code]
Class MyType(Of T)

Public Sub Foo(val1 As Integer, val2 As Integer)
End Sub

Public Sub Foo(va11 As Integer, val2 As Integer)
End Sub

End Class

[C# code]
class MyType<T> {

public void Foo(int val1, int val2) { ... };
public void Foo(int val1, int val2) { ... };

}

To most developers going to be, it’s clear that these two methods are going to collide and throw a com-
pile-time error. Now, let’s take that same concept and use type parameters instead of native types:

[VB code]
Class MyType(Of T, U, V)

Public Sub Foo(ByVal val1 As T, ByVal val2 As V)
End Sub

Public Sub Foo(ByVal val1 As U, ByVal val2 As V)
End Sub

End Class

[C# code]
class MyType<T, U, V> {

public void Foo(T val1, V val2) { ... }
public void Foo(U val1, V val2) { ... }

}

These two methods, based on type parameter names alone, would appear to have unique signatures.
There are certainly scenarios where, with different permutations of type arguments, these signatures
would be deemed unique. At the same time, it’s also true that there could be combinations of type argu-
ments that could create collisions.

It turns out the VB and C# take different approaches to verifying the uniqueness of these signatures.
VB says if there can be at least one combination of type arguments that could cause these methods to be
duplicates, then the compiler will throw an error. This will be true even if there are no constructed types
in your code that create a collision. C#, on the other hand, takes the more optimistic approach. It allows
this class to compile because there are combinations of type arguments that could be valid.

Overriding Methods
Now that you have a better idea of how type parameters influence the signature of methods, you need
to consider how type parameters are applied when you override methods in a generic class. First, it’s
important to point out that, if your generic class descends from a closed type, you can still override the
parent methods just as you would in any non-generic class.

63

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 63

Where this gets more interesting is when your base class is generic class (open or constructed type). For
this scenario, you can still override methods from your generic base class. However, there are some
nuances you must keep in mind. Let’s start by looking at the common, simple case:

[VB code]
Public Class MyBaseClass(Of T)

Overridable Sub Foo(ByVal val As T)
Console.WriteLine(“In BaseClass”)

End Sub
End Class

Public Class MySubClass1(Of T, U)
Inherits MyBaseClass(Of T)

Overrides Sub Foo(ByVal val As T)
Console.WriteLine(“In SubClass”)

End Sub
End Class

Public Class MySubClass2(Of T, U)
Inherits MyBaseClass(Of Integer)

Overrides Sub Foo(ByVal val As T)
Console.WriteLine(“In SubClass”)

End Sub
End Class

[C# code]
public class MyBaseClass<T> {

public virtual void Foo(T val) { }
}

public class MySubClass1<T, U> : MyBaseClass<T> {
public override void Foo(T val) { }

}

public class MySubClass2<T, U> : MyBaseClass<int> {
public override void Foo(T val) { }

}

This example declares a generic base class (MyBaseClass) that includes one overridable method, Foo. It
then implements two generic subclasses that both override the Foo method. On the surface, there doesn’t
appear to be any issues. Both of these classes provide identical signatures for the method. So, why does
MySubClass2 fail to compile? Well, if you look more closely, you’ll notice that MySubClass2 uses a
constructed type in its inheritance declaration. Meanwhile, MySubClass1 uses an open type for its
declaration. This one point of difference is crucial. With MySubClass1, the type parameter T used inher-
itance declaration and the overridden method can be guaranteed to match. That doesn’t hold true for
MySubClass2. The type of T can, and likely will, differ from the integer type, which is what is provided
to the parent’s T type parameter. As you might expect, the compiler is going to detect this and throw an
error during the compilation of MySubClass2.

64

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 64

The theme here is that the type parameters and type arguments supplied to an inherited generic class
play a significant role in defining what’s legal when overriding a method. As type parameters are refer-
enced in overridable methods of the parent class, those type parameters must be resolvable to the same
type of the overriding base class. Here’s one more example to solidify this point:

[VB code]
Public Class MyBaseClass(Of T, U)

Overridable Sub Foo(ByVal val1 As T, ByVal val2 As U)
Console.WriteLine(“In BaseClass”)

End Sub
End Class

Public Class MySubClass1(Of T, U, V)
Inherits MyBaseClass(Of T, V)

Overrides Sub Foo(ByVal val1 As T, ByVal val2 As U)
Console.WriteLine(“In SubClass”)

End Sub
End Class

[C# code]
public class MyBaseClass<T, U> {

public virtual void Foo(T val1, U val2) { }
}

public class MySubClass1<T, U, V> : MyBaseClass<T, V> {
public override void Foo(T val2, U val2) { }

}

Once again, the signatures of the methods seem to match. And, once again, the compiler isn’t happy. The
mismatch here is that the subclass supplies T and V as type arguments to the parent’s corresponding T
and U type parameters. This means that the U type parameter in the base class actually maps to the V
type parameter in the subclass. So, when you reference the T and U parameters in the overriding
method, the U parameter actually represents V and causes a compile error.

The rules for overriding in generic classes aren’t much more involved than that. You won’t find yourself
getting tripped up by this too often. And, when you do, the compiler does a reasonable job detecting and
reporting errors in this scenario.

Arrays of Type Parameters
The methods within your generic class may also include arrays of type parameters. This gives you the
ability to pass type-safe arrays to your methods. This syntax is as follows:

[VB code]
Class MyType(Of T)

Shared Sub Foo(ByVal params As T())
End Sub

End Class

Public Class MyTest
Public Shared Sub Test()

65

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 65

MyType(Of Integer).Foo(New Integer() {123, 321})
MyType(Of String).Foo(New String() {“TEST1”, “TEST2”, “TEST3”})

End Sub
End Class

[C# code]
public class MyType<T> {

public static void Foo(T[] parms) { }
}
public class MyTest {

public static void Test() {
MyType<int>.Foo(new int[] { 123, 321 });
MyType<string>.Foo(new string[] { “TEST1”, “TEST2”, “TEST3” });

}
}

This works exactly as you might expect. In fact, the syntax matches that of any other array you may pass
to a method.

Operator Overloading
For some reason, operator overloading seems particularly interesting when it comes to generics. Here
you have this new generic class and now you’re allowed to define operations on that class without any
awareness of the types it will be managing. Not sure why, but that’s just plain cool to me. It’s as if you
can define all these semantics of your generic types at an all new level of abstraction.

The other thing to be excited about here is the enhanced operator overloading support in Visual Studio
2005. Specifically, Visual Basic finally has real support for operator overloading that allows Visual Basic
to define operators that are more in line with the traditional model that has been historically provided as
part of other languages.

All that said, the important part here is to understand the syntax rules that govern the definition and
invocation of overloaded operators within generic classes.

[VB code]
Public Class MyType(Of T)

Public Shared Operator +(ByVal op As MyType(Of T)) As MyType(Of T)
Console.WriteLine(“In unary ++ operator”)
Return New MyType(Of T)()

End Sub
End Class

[C# code]
using System;

public class MyType<T> {
public static MyType<T> operator ++(MyType<T> op) {

Console.WriteLine(“In ++ operator”);
return new MyType<T>();

}
}

66

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 66

This example implements the + unary operator. You can see here that this example simply substitutes the
generic open type, MyType, in the appropriate locations in the signature of the operator method. This is a
requirement for your overloaded generic operators. In fact, all unary operations must take one parame-
ter of the instance type.

Any time there’s a discussion of operator overloading, it must also be accompanied by discussion of
type conversion. It makes sense. After all, operator overloading is what enables you to provide specific
conversion operators that determine how one type can be converted to another. For example, if you cast
MyType1 to MyType2, an overloaded operator could be used to define the behavior of this conversion
(assuming you want this to be a valid conversion).

In the world of generics, you can’t really define conversion from one concrete type to another. There’s
nothing concrete about your types at all. That’s the whole point. The syntax of generics, however, does
provide you with the mechanisms you’ll need to express these conversions in a generic fashion. Here’s a
quick example of an overloaded operator that provides type conversion:

[VB code]
Public Class MyType(Of T)

Public Shared Widening Operator CType(ByVal source As MyType(Of T)) _
As MyType(Of String)

Console.WriteLine(“In unary string conversion operator”)
Return New MyType(Of T)()

End Sub
End Class

[C# code]
public class MyType<T> {

public static implicit operator MyType<String>(MyType<T> source) {
Console.WriteLine(“In unary string conversion operator”);
return new MyType<String>();

}
}

This example provides an operator that will convert instances of MyType to constructed type of
MyType(Of String). This can be fairly handy and provides an excellent alternative to providing
operator overloads for every possible source type.

There are a few gotchas you’ll want to plant in your memory when providing conversion operators.
First, you cannot perform conversions if your source and target conversion types are in the same object
hierarchy. Also, it’s important to note that your conversion operators may end up overloading a conver-
sion operator that is already defined. If this turns out to be the case, your overloaded conversion operator
will never end up getting called.

Nested Classes
Generic classes do not fundamentally change the nature of nested classes. Of course, by definition, any
class that’s nested inside a generic class is also deemed “generic” in that the overall constructed type
cannot be created without someone providing type parameters.

67

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 67

That said, generics also extend the functionality of existing nested classes, allowing them to have full
access to the type parameters of their outer class. In addition, you also have the option of making your
nested classes be generic. Following is an example where a nested class references the type parameters
of its outer class:

[VB code]
Imports System.Collections.Generic

Public Class OuterClass(Of T, U)
Public var1 As New Dictionary(Of T, U)

Public Class InnerClass
Private var1 As T
Private var2 As New List(Of U)

End Class
End Class

[C# code]
using System.Collections.Generic;

public class OuterClass<T, U> {
public Dictionary<T, U> var1;

public class InnerClass {
private T var1;
private List<U> var2;

}
}

As you can see, the declaration of your inner class matches that of any other nested class. However,
within your inner class, you’ll notice that the example declares a few data members that use the type
parameters from your outer class. In fact, the example declares a number of different constructed types
from the pool of type parameters that were supplied to your generic class.

This gets a little more interesting when you make your inner class accept its own type parameters.
Here’s an example that does just that:

[VB code]
Imports System.Collections.Generic

Public Class OuterClass(Of T, U, V)

Public Class InnerClass(Of T, V)
Private var1 As New Dictionary(Of T, V)
Private var2 As U

End Class
End Class

[C# code]
using System.Collections.Generic;

public class OuterClass<T, U, V> {
public class InnerClass<T, V> {

private Dictionary<T, V> var1;

68

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 68

private U var2;
}

}

The outer class for this example accepts three type parameters: T, U, and V. Your inner class also accepts
type parameters named T and V. So, the question is, what will happen with the var1 data member that
you’ve declared in your inner class? Will it share the same types that are supplied to the outer class for
the T and V type parameters? Nope. Once you used these type parameter names for your inner class,
you effectively lost all ability to reference the type parameters from your outer class. They are inaccessi-
ble. Meanwhile, the other data member in your inner class, var2, is able to successfully reference the U
type parameter from the outer class. This is possible because U was not included in the type parameter
list of the inner class.

This problem would mostly be chalked up to bad habits. As a rule of thumb, the creator of an inner class
should never reuse the type parameter names of its outer class as part of its declaration. Otherwise, you
will be forever and unnecessarily prevented from accessing the type parameters of your outer class. You
don’t want to live with that kind of guilt.

Consuming Generic Classes
Okay, you’ve had a good long look at what goes into defining a generic class. Now, it’s time to explore
those rules that govern constructed types. First, it should be clear by now that a constructed type shares
all the freedoms as any other type and can be placed in any syntactical context that would be used for
non-generic types. Once you marry a type argument to the open type, they are conceptually “merged” to
form a specific concrete type. The sooner you’re comfortable with that notion, the sooner you’ll begin to
view constructed types on equal ground with Strings and Integers (actually, given my bias, I would
tend to view them as generally superior to these types on the sheer merit of their constitution).

A number of variations exist on how you might declare a constructed type. The simplest variety is what
is considered a closed constructed type. It’s simple because the type arguments supplied are of simple,
concrete types. Open constructed types use the type parameters from their surrounding generic class as
part of their declaration. These two types are likely familiar by now. However, Chapter 1, “Generics
101,” provides examples if you want a more detailed explanation.

In addition to accepting all the primitive types as type arguments, a constructed type can also be created
using other constructed types as type arguments. For example:

[VB code]
Dim myGenericType1 As New MyType(Of List(Of Integer))
Dim myGenericType2 As New MyType2(Of Dictionary(Of Integer, String), String)

[C# code]
MyType1<List<int>> myGenericType1;
MyType2<Dictionary<int, string>, string> myGenericType2;

This fits with the theme that a constructed type is just like any other type and, as such, can behave like
any other type argument. You also have the option of using type parameters in these declarations, which
would simply make your declaration an open constructed type (because its type will be determined at
run-time). It’s also worth noting that these types can also be passed as arrays by applying the array
modifier to these arguments.

69

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 69

Accessibility
Whenever you look at introducing new syntax for types, you must also look at the rules that govern
accessibility for these new types. Each time you declare a constructed type, the accessibility of that type’s
parameters must be taken into consideration. Here’s a basic example that highlights how accessibility
can influence a constructed type:

[VB code]
Public Class MyType(Of T)

End Class

Public Class AccessTest
Private Class PrivateClass
End Class

Public Function GetMyType() As MyType(Of PrivateClass)
End Function

End Class

[C# code]
public class MyType<T> {}

public class AccessTest {
private class PrivateClass {}
public MyType<PrivateClass> getMyType() { }

}

This example creates a closed class, AccessTest, which contains a nested class (PrivateClass) as well
as a public method. You’ll notice that this method actually returns a constructed type, MyType, which
was constructed using PrivateClass as a type argument.

The problem with this implementation is that PrivateClass, which has private accessibility, is being
used in the construction of the publicly accessible return type of the method getMyType(). As you
might suspect, the compiler catches and throws an error when you attempt to compile this example.
This same brand of error would also apply in situations where you attempt to use a protected type as a
parameter to a publicly accessible constructed type.

The rule of thumb here is that the accessibility of any class’s constructed types is constrained by the
accessibility of the type arguments passed to that constructed type. Let’s look at another example:

[VB code]
Public Class MyType(Of T)
End Class

Public Class AccessTest
Public class PublicClass
End Class
Protected class ProtectedClass
End Class
Private class PrivateClass
End Class

Public Function Foo1() As MyType(Of ProtectedClass)

70

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 70

End Function

Protected Function Foo2 As MyType(Of ProtectedClass)
End Function

Protected Function Foo3 As MyType(Of PublicClass)
End Function

Private Function Foo4 As MyType(Of PrivateClass)
End Function

End Class

[C# code]
class MyType<T> {}
class AccessTest {

public class PublicClass {}
protected class ProtectedClass {}
private class PrivateClass {}
public MyType<ProtectedClass> Foo1() { }
protected MyType<ProtectedClass> Foo2() { }
protected MyType<PublicClass> Foo3() { }
private MyType<PrivateClass> Foo4() { }

}

In this example, three classes are declared —PublicClass, ProtectedClass, and PrivateClass—
and they are passed as type arguments to construct return value types for four different methods. The
first method, Foo1(), passes a ProtectedClass to a constructed type with public accessibility, which,
as you might expect, yields a compile error. This publicly accessible method cannot return a constructed
type that has been constructed with a protected type. The remaining methods will all successfully com-
pile because the accessibility of their type arguments do not “exceed” the accessibility of each method.

These scenarios seem pretty straightforward. However, there’s one more variation that’s worth exploring.
What happens in the instances where you have multiple type arguments being passed to your constructed
type, each with varying levels of accessibility? Consider the following example:

[VB code]
Public Class AType(Of T, U)
End Class

Public Class MyType
Public Class PublicClass
End Class
Protected Class ProtectedClass
End Class
Protected Friend Class ProtectedFriendClass
End Class
Private Class PrivateClass
End Class

Public Function Foo1() As AType(Of PublicClass, PublicClass)
End Function
Protected Function Foo2() As AType(Of ProtectedClass, ProtectedFriendClass)
End Function
Protected Friend Function Foo3() As AType(Of PublicClass, ProtectedFriendClass)

71

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 71

End Function
Friend Function Foo4() As AType(Of PublicClass, PublicClass)
End Function
Private Function Foo5() As AType(Of PublicClass, PrivateClass)
End Function

Public Function Foo6() As AType(Of ProtectedClass, PublicClass)
End Function
Protected Function Foo7() As AType(Of ProtectedClass, PrivateClass)
End Function
Protected Friend Function Foo8() As AType(Of ProtectedClass, PublicClass)
End Function

End Class

[C# code]
class AType<T, U> {}
class MyType {

public class PublicClass {}
protected class ProtectedClass {}
protected internal class ProtectedInternalClass {}
private class PrivateClass {}

public AType<PublicClass, PublicClass> Foo1() {}
protected AType<ProtectedClass, ProtectedInternalClass> Foo2() {}
protected internal AType<PublicClass, ProtectedInternalClass> Foo3() {}
internal AType<PublicClass, PublicClass> Foo4() {}
private AType<PublicClass, PrivateClass> Foo5() {}

public AType<ProtectedClass, PublicClass> Foo6() {}
protected AType<ProtectedClass, PrivateClass> Foo7() {}
protected internal AType<ProtectedClass, PublicClass> Foo8() {}

}

For the most, there are no major surprises here. As you might expect, the “least” accessible type argu-
ment will determine the accessibility of each constructed type. Following this logic, you will find that
the first five methods will all successfully compile. Method Foo3(), for example, is valid because both
protected and protected internal type arguments conform to the accessibility of the method
(which is protected in this case). The final three methods will all generate errors at compile time
because each one violates these same accessibility rules. In reality, because private methods have no
outside accessibility, they can be constructed with arguments that support every flavor of accessibility.

The following table provides a more complete breakdown of the accessibility rules that cover all the per-
mutations of accessibility.

VB Accessibly C# Accessibility Valid Type Arguments

Public public public

Protected protected protected, protected friend/internal, public

protected friend protected internal protected internal, public

72

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 72

VB Accessibly C# Accessibility Valid Type Arguments

Friend internal internal, protected friend/internal, public

Private private public, protected, protected friend/internal,
friend/internal, private

This list covers all the cases for methods declared within a class. However, these rules change somewhat
if you declare your methods within the scope of an internal class. The following table calls out accessibil-
ity rules for an internal class.

VB Accessibly C# Accessibility Valid Type Arguments

Public public public, protected friend/internal, friend/internal

Protected protected protected, protected friend/internal, friend/
internal, public

protected friend protected internal public, protected, protected internal, internal

Friend internal friend/ internal, protected friend/internal, public

Private private public, protected, protected friend/internal,
friend/internal, private

The Default Keyword
When you’re dealing with the implementation of a generic class, you may come across situations where
you’d like to assign or access default values for your type parameters. However, because the actual type
of your type parameter is unknown at the point of implementation, you have no way of knowing what’s
a valid default value for any given type parameter. To address this need, the generics specification intro-
duced a new “default” keyword. This keyword was needed to allow you to determine the default value
for generic types.

The language specification identifies a set of rules for the default values that will be returned for specific
types of type parameters. These rules are as follows:

1. If a type parameter is s reference type, it will always return a default value of null.

2. If a type parameter is one of the built-in types, the default value will be assigned to whatever
default is already defined for that type.

3. If a type parameter is a struct type, the default value will be the predefined default value for
each of the fields defined in that struct.

This mechanism is essential in the implementation of some class types. Here’s a simple example that
demonstrates one application of the default keyword:

[C# code]
using System.Collections.Generic;

public class MyCache<K, V> {

73

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 73

private Dictionary<K, V> _cache;
public V LookupItem(K key) {

V retVal;
if (_cache.ContainsKey(key) == true)

_cache.TryGetValue(key, out retVal);
else

retVal = default(V);
return retVal;

}
}

This example provides the shell of the implementation of a cache. It includes a LookupItem() method
that looks for a specific key in the cache and returns a default value if it’s not found. This is a basic appli-
cation of the default mechanism. You could also use this feature to initialize the values of type parameters
in advance of using them.

System.Nullable<T>
With the introduction of version 2.0 of the .NET Framework, developers are finally provided with a
solution to the age-old problem of dealing with nullable types. The basic issue here is that not all data
types provide a mechanism for determining if they have a “null” value. Clearly, with objects, there’s a
well-defined means of making this determination. However, with an int data type, there’s no predefined
value that could be used to determine if that int has been assigned a value. To resolve this, Visual Studio
2005 is introducing a new Nullable type that provides a uniform way of determining if a value is null.

Although nullable types are not exactly a generics concept, they are implemented using generics. A type
is made nullable using the built-in Nullable generic class (which is in the System namespace). This
generic class will be used to keep track of when its underlying type is assigned a value. Consider this
example:

[VB code]
Public Class MyTest

Public Shared Sub NullableTest(ByVal intVal1 As Nullable(Of Int32), _
ByVal intVal2 As Int32)

If (intVal1.HasValue() = True) Then
Console.WriteLine(intVal1)

Else
Console.WriteLine(“Value1 is NULL”)

End If

If (intVal2 > 0) Then
Console.WriteLine(intVal2)

Else

You’ll notice that I did not provide an example of how to use the default keyword
with Visual Basic. That’s because Visual Basic does not currently support the default
keyword in this context. In VB, the closet equivalent to this concept would be to set
an instance of a type parameter equal to nothing.

74

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 74

Console.WriteLine(“Value2 is Null?”)
End If

End Sub
End Class

[C# code]
using System;

public class MyTest {
public static void NullableTest(Nullable<int> intVal1, int intVal2) {

if (intVal1.HasValue == true)
Console.WriteLine(intVal1);

else
Console.WriteLine(“Value1 is NULL”);

if (intVal2 > 0)
Console.WriteLine(intVal2);

else
Console.WriteLine(“Value2 is Null?”);

}
}

This example declares a method that accepts two integer variables, one of which is nullable and one
which is not. The body of this method then attempts to write out the value of each of these parameters to
the console. Of course, you want your method to detect if either parameter has been actually assigned
a value and only write that value out to the console. If it hasn’t been assigned a value, you just dump a
message indicating that no value exists. Simple enough.

Because the intVal1 parameter was declared as a nullable type, you can easily detect if it is null by
checking the HasValue property. Meanwhile, the intVal2 parameter is never assigned a value, leaving
you with no definitive means of determining if it’s null. As a compromise, you could artificially decide
that if it’s greater than 0 it will be treated as non-null. However, that’s an arbitrary rule you’ve defined in
your code. Using the Nullable class gives you a universal, absolute definition for null that you can use
throughout your code. It should be noted that the Nullable class only holds value types (int, double,
and so on).

While the Nullable<T> type might look and behave like any other generic data container you’ll find in
the .NET framework, it is actually afforded special treatment by the CLR. As developers were initially
trying out the Nullable<T> type, they discovered a few scenarios that yielded unexpected results.
Consider the following example:

[VB code]
Dim intVal As New Nullable(Of Int32)
intVal = Nothing
Dim refVal As Object

refVal = intVal
If refVal Is Nothing Then

Console.Out.WriteLine(“Value is null”)
End If

75

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 75

[C# code]
Nullable<int> intVal = null;
object refVal;

refVal = intVal;
if (refVal == null)

Console.Out.WriteLine(“Value is null”);

This example declares a Nullable<int> instance before assigning that instance to refVal, which is an
object data type. By making this assignment, you end up forcing your nullable integer type to be
boxed. Now, if Nullable<T> were just another generic type, this boxing would have caused the null
state of the value type to be lost during the boxing process. As you can imagine, this was not exactly the
intended behavior.

To overcome this problem, the CLR was forced to make the nullable type a true runtime intrinsic. It was
only at this level that runtime could provide behavior that would be more in line with what developers
were expecting. So, as the CLR processes the un-boxing of the nullable types, it provides special han-
dling to ensure that the null state of the value is not lost in translation.

By adding this capability, the CLR also added support for explicitly un-boxing a reference directly into a
Nullable<T> type. The end result is a nullable type that is more directly supported by the CLR, which
ultimately translates into a type that behaves much more intuitively.

Accessing Type Info
Now that you’re actively building and consuming generic types, you might have an occasion when
you’ll want to access the specific type information for your generic types. Here’s a simple example that
dumps type information for a few generic classes:

[VB code]
Public Class OneParamType(Of T)
End Class

Public Class TwoParamType(Of T, U)
End Class

Public Class TypeDumper(Of T, U, V)
Shared Sub DumpTypeInfo()

Console.WriteLine(GetType(T))
Console.WriteLine(GetType(U))

Console.WriteLine(GetType(V))
Console.WriteLine(GetType(OneParamType(Of String)))
Console.WriteLine(GetType(OneParamType(Of T)))
Console.WriteLine(GetType(TwoParamType(Of U, Integer)))

C# provides an alternative syntax for declaring nullable types. By simply appending
a ? to your type (int?) you will have the equivalent of Nullable<int>. This mecha-
nism provides developers with a shorthand way of declaring nullable types. While
the declaration is certainly shorter, this syntax could be seen as impacting the read-
ability of your code. In the end, it’s more a matter of preference.

76

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 76

Console.WriteLine(GetType(TwoParamType(Of T, V)))
End Sub

Public Sub ShowTypeInfo()
TypeDumper(Of String, Integer, Double).DumpTypeInfo()

End Sub
End Class

[C# code]
using System;

public class OneParamType<T> {}

public class TwoParamType<T, U> {}

public class TypeDumper<T, U, V> {
public static void DumpTypeInfo() {

Console.WriteLine(typeof(T));
Console.WriteLine(typeof(U));
Console.WriteLine(typeof(V));
Console.WriteLine(typeof(OneParamType<String>));
Console.WriteLine(typeof(OneParamType<T>));
Console.WriteLine(typeof(TwoParamType<U, int>));
Console.WriteLine(typeof(TwoParamType<T, V>));

}

public static void ShowTypeInfo() {
TypeDumper<String, int, Double>.DumpTypeInfo();

}
}

This example creates a TypeDumper class that accepts three type arguments and includes a
DumpTypeInfo() method that displays type information about each of these parameters in different con-
texts. Then, to see this method in action, the example includes a ShowTypeInfo() method that supplies
string, int, and double type arguments. The output of calling this method will appear as follows:

System.String
System.Int32
System.Double
OneParamType`1[System.String]
OneParamType`1[System.String]
TwoParamType`2[System.Int32, System.Int32]
TwoParamType`2[System.String, System.Double]

It’s mostly what you’d expect. The one piece of information you might not have expected here is the
number that appears after OneParamType and TwoParamType. That number represents the “arity” of
the type, which corresponds to the number of type parameters that were used to construct the type.

Indexers, Properties, and Events
For the most part, generics represent a graceful extension to the languages of the .NET platform. That
said, there are some areas of classes where generics cannot be applied. Specifically, generics cannot be
applied to the indexers, properties, or events that appear in your classes. Each of these members can

77

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 77

reference type parameters in their signature. However, they are not allowed to directly accept type
parameters. That distinction may not be clear. Following is a quick example that will help clarify this
point. Let’s start with an example that would be considered valid:

[VB code]
Imports System.Collections.Generic

Public Delegate Sub PersonEvent(Of T)(ByVal sender As Object, ByVal args As T)

Public Class Person(Of T)
Private _children As List(Of T)

Public Sub New()
Me._children = new List(Of String)()

End Sub

Public Property Children() As List(Of T)
Get

Return Me._children
End Get
Set(ByVal value As List(Of T))

Me._children = value
End Set

End Property

Default Property Item(ByVal index As Long) As T
Get

Return Me._children(index)
End Get
Set(ByVal value As T)

Me._children(index) = value
End Set

End Property

Event itemEvent As PersonEvent(Of T)
End Class

[C# code]
using System.Collections.Generic;

public delegate void PersonEvent<T>(object sender, T args);

public class Person<T> {
private List<T> _children;

public Person() {
this._children = new List<String>();

}

public List<T> Children {
get { return this._children; }
set { this._children = value; }

78

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 78

}

public T this[int index] {
get { return this._children[index]; }
set { this._children[index] = value; }

}

event PersonEvent<T> itemEvent;
}

You’ll notice that this example includes references to its type parameter T in the declaration of a prop-
erty, an indexer, and an event. In all of these cases, however, these members are referencing a type
parameter that was supplied to the class. The difference is that none of these members can directly
accept their own type parameters. So, the following would not be considered legal:

[VB code]
Public Class MySampleClass

Public Sub New()
End Sub

Public ReadOnly Property Children(Of T)() As String
Get

...
End Get

End Property

Default Property Item(Of T)(ByVal index As Long) As String
Get

...
End Get
Set(ByVal value As String)

...
End Set

End Property

Event(Of T) itemEvent As SampleEvent
End Class

[C# code]
using System.Collections.Generic;

public class MySampleClass {

public MySampleClass() {}

public String Children<T> {
get { ... }
set { ... }

}

public String this<T>[int index] {
get { ... }

79

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 79

set { ... }
}

Event<T> SampleEvent itemEvent;
}

This is an example where the property, indexer, and event all accept their own type arguments. None of
these forms of declarations will be deemed acceptable. Fortunately, this same constraint is not applied to
methods.

Generic Structs
Classes and structs, for the most part, are synonymous. Essentially, whatever you can do with a class
you can also do with a struct. Knowing this, you would be correct in assuming that all the same generic
concepts you’ve seen applied to generic classes are also applicable to structs. Just to round things out,
let’s look at a simple example of a generic struct:

[VB code]
Imports System.Collections.Generic

Public Structure SampleStruct(Of T)
Private _items As List(Of T)

Public Function GetValue(ByVal index As Int32) As T
Return Me._items(index)

End Function

Public Sub AddItem(ByVal value As T)
Me._items.Add(value)

End Sub

Public Function ValidateItem(Of T)(ByVal value As Object) As Boolean
Dim retVal As Boolean = False
If (GetType(T).ToString.Equals(value)) Then

retVal = True
End If
Return retVal

End Function
End Structure

[C# code]
using System.Collections.Generic;

public struct SampleStruct<T> {
private List<T> _items;

public T GetValue(int index) {
return this._items[index];

}

public void AddItem(T value) {

80

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 80

this._items.Add(value);
}

public bool ValidateItem<T>(object value) {
bool retVal = false;
if (typeof(T).ToString() == value.ToString())

retVal = true;
return retVal;

}
}

The generic syntax you see here conforms, precisely, to the patterns that you’ve seen applied to generic
classes. So, everything you’ve seen in this chapter regarding generic classes should be applied, univer-
sally, to generic structs.

Generic Interfaces
As part of looking at generic classes, it also makes sense to look at how generics can also be applied to
the interfaces that are implemented by generic (or non-generic) classes. In many respects, generic inter-
faces actually conform to the same set of rules that govern the definition and usage of their non-generic
counterparts. Here’s a simple generic interface just to demonstrate the fundamentals of the syntax:

[VB code]
Public Interface SimpleInterface(Of T)

Function IsValid(ByVal val As T) As Boolean
Function GetValue() As T
Function GetAllValues() As List(Of T)

End Interface

Public Interface ExtendedInterface(Of T)
Inherits SimpleInterface(Of T)
Sub Refresh()

End Interface

Public Class TestClass(Of T)
Implements ExtendedInterface(Of T)
. . .
. . .

End Class

[C# code]
public interface SimpleInterface<T> {

bool IsValid(T val);
T GetValue();
List<T> GetAllValues();

}
public interface ExtendedInterface<T> : SimpleInterface<T> {

81

Generic Classes

07_559885 ch04.qxd 9/8/05 11:01 PM Page 81

void Refresh();
}

public class TestClass<T> : ExtendedInterface<T> {
. . .
. . .

}

If you’re already familiar with working with interfaces, this should be fairly trivial. You can see here that
the interface accepts a type parameter that is then littered, in different forms, through the methods sup-
plied by the interface. This also includes an example of generic interface inheritance so you can see type
parameters used in that context. Finally, to make this complete, the example adds a class that implements
that interface. There should be nothing particularly surprising here.

You should keep a few simple things in mind when working with generic interfaces. First, you should
understand that each class that implements a generic interface can implement one and only one instance
of generic interface. In the preceding example, suppose TestClass actually accepted two type parame-
ters. In that scenario, it could not implement ExtendedInterface<T> and ExtendedInterface<U>. In
this case, there would be instances where the compiler would not be able to resolve which method to call.

In some instances where you’ve implemented multiple interfaces, it may be necessary to qualify your
method calls to be able to explicitly call out a method that’s associated with a given interface. This can be
achieved by simply pre-pending the interface declaration to a method.

Summary
All in all, you should come away from this chapter feeling like generic classes are not all that different
their non-generic counterparts. Throughout this chapter, you have been exposed to each of the elements
of a class and learned how generics are used to extend this model and make your classes more versatile,
type-safe, and efficient. This included looking at constructors, inheritance, fields, methods, overloading,
and all the constructs that are influenced by the introduction of generics. The chapter also looked at
some of the rules that govern accessibility of generic classes. Finally, the chapter examined a series of
other aspects of working with generic classes, including generic interfaces, generic structs, nullable
generic types, and the default keyword. Equipped with this knowledge, you’re likely to find plenty of
new opportunities to leverage generic classes as part of your own solutions.

82

Chapter 4

07_559885 ch04.qxd 9/8/05 11:01 PM Page 82

