
Unit Testing with the 
Unit Test Framework

Unit testing involves writing code to verify a system at a lower and more granular level than with
other types of testing. It is used by programmers for programmers and is quickly becoming stan-
dard practice at many organizations. The Developer and Tester editions of Visual Studio Team
System now include unit testing features that are fully integrated with the IDE and with other fea-
tures such as reporting and source control. Developers no longer need to rely on third-party utili-
ties, such as NUnit, to perform their unit testing, although they still have the option to use them.

In this chapter, we describe the concepts behind unit testing, why it is important, and how to cre-
ate effective unit test suites. We introduce the practice of test-driven development, which involves the
creation of tests before writing the code to be tested.

We introduce the syntax of writing unit tests, and you will learn how to work with Team System’s
integrated features for executing and analyzing those tests. We then go into more detail about the
classes available to you when writing your unit tests, including the core Assert class and many
important attributes. You will also see how easy it is to create data-driven unit tests, whereby a
unit test is executed once per record in a data source, and has full access to that bound data. 

We also describe the features Team System offers for easily accessing nonpublic members from
your unit tests. In addition, you will learn how Team System enables the generation of unit tests
from existing code as well as the generation of member structures when writing unit tests. 

Team System also provides built-in features to support the unit testing of ASP.NET applications.
You will learn how to create ASP.NET unit tests that have full access to the ASP.NET run-time con-
text. This enables actions such as setting and reading form control values and execution of those
controls’ events. 

Finally, we describe how Team System can help measure the effectiveness of your tests. Code cover-
age is the concept of observing which lines of code are used during execution of unit tests. You can
easily identify regions of your code that are not being executed and create tests to verify that code.
This will improve your ability to find problems before the users of your system do.

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 357



Unit Testing Concepts
You’ve likely encountered a number of traditional forms of testing. Your quality assurance staff may run
automated or manual tests to validate behavior and appearance. Load tests may be run to establish that
performance metrics are acceptable. Your product group might run user acceptance tests to validate that
systems do what the customers expect. Unit testing takes another view. Unit tests are written to ensure
that code performs as the programmer expects.

Unit tests are generally focused at a lower level than other testing, establishing that underlying features
work as expected. For example, an acceptance test might walk a user through an entire purchase. A unit
test might verify that a ShoppingCart class correctly defends against adding an item with a negative
quantity.

Unit testing is an example of white box testing, where knowledge of internal structures is used to identify
the best ways to test the system. This is a complementary approach to black box testing, where the focus is
not on implementation details but on overall functionality compared to specifications. You should lever-
age both approaches to effectively test your applications.

Benefits of unit testing
A common reaction to unit testing is to resist the approach because the tests seemingly make more work
for a developer. However, unit testing offers many benefits that may not be obvious at first.

The act of writing tests often uncovers design or implementation problems. The unit tests serve as the
first users of your system and will frequently identify design issues or functionality that is lacking. Once
a unit test is written, it serves as a form of documentation for the use of the target system. Other devel-
opers can look to an assembly’s unit tests to see example calls into various classes and members.  

Perhaps one of the most important benefits is that a well-written test suite provides the original devel-
oper with the freedom to pass the system off to other developers for maintenance and further enhance-
ment. Should those developers introduce a bug in the original functionality, there is a strong likelihood
that those unit tests will detect that failure and help diagnose the issue. Meanwhile, the original devel-
oper can focus on current tasks.  

It takes the typical developer time and practice to become comfortable with unit testing. Once a devel-
oper has been saved enough time by unit tests, he or she will latch on to them as an indispensable part
of the development process. 

Unit testing does require more explicit coding, but this cost will be recovered, and typically exceeded,
when you spend much less time debugging your application. In addition, some of this cost is typically
already hidden in the form of test console- or Windows-based applications. Unlike these informal testing
applications, which are frequently discarded after initial verification, unit tests become a permanent part
of the project, run each time a change is made to help ensure that the system still functions as expected.
Tests are stored in source control very near to the code they verify and are maintained along with the
code under test, making it easier to keep them synchronized.  

Unit tests are an essential element of regression testing. Regression testing involves retesting a piece of
software after new features have been added to make sure that errors or bugs are not introduced.
Regression testing also provides an essential quality check when you introduce bug fixes in your product.

358

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 358



It is difficult to overstate the importance of comprehensive unit test suites. They enable a developer to
hand off a system to other developers with confidence that any changes they make should not introduce
undetected side effects. However, because unit testing only provides one view of a system’s behavior, no
amount of unit testing should ever replace integration, acceptance, and load testing.

Writing effective unit tests
Because unit tests are themselves code, you are generally unlimited in the approaches you can take
when writing them. However, we recommend that you follow some general guidelines:

❑ Always separate your unit test assemblies from the code you are testing. This separation enables
you to deploy your application code without unit tests, which serve no purpose in a production
environment. 

❑ Avoid altering the code you are testing solely to allow easier unit testing. A common mistake is
to open accessibility to class members to allow unit tests direct access. This compromises design,
reduces encapsulation, and broadens interaction surfaces. You will see later in this chapter that
Team System offers features to help address this issue.

❑ Each test should verify a small slice of functionality. Do not write long sequential unit tests that
verify a large number of items. While creating focused tests will result in more tests, the overall
suite of tests will be easier to maintain. In addition, identifying the cause of a problem is much
easier when you can quickly look at a small failed unit test, immediately understand what it
was testing, and know where to search for the bug.  

❑ All tests should be autonomous. Avoid creating tests that rely on other tests to be run before-
hand. Tests should be executable in any combination and in any order. To verify that your tests
are correct, try changing their execution order and running them in isolation.

❑ Test both expected behavior (normal workflows) and error conditions (exceptions and invalid
operations). This often means that you will have multiple unit tests for the same method, but
remember that developers will always find ways to call your objects that you did not intend.
Expect the unexpected, code defensively, and test to ensure that your code reacts appropriately.

The final proof of your unit testing’s effectiveness will be when they save you more time during devel-
opment and maintenance than you spent creating them. In our experience, you will realize this savings
many times over. 

Test-driven development
Test-driven development (TDD) is the practice of writing unit tests before writing the code that will be
tested. The logic behind writing tests against code that does not exist is difficult to grasp at first. Our
experience has shown that TDD can be a challenge to introduce to developers and that the best way to
learn it is by applying it on a small sample or noncritical project. Only after working with TDD will its
advantages be fully understood and appreciated. 

TDD encourages following a continuous cycle of development involving small and manageable steps.
Figure 14-1 illustrates the steps involved in test-driven development.

359

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 359



Figure 14-1

First, you generate an initial list of tests that apply to your task. Tests should verify all expected function-
ality, a variety of inputs, and error handling. Your initial list will rarely, if ever, include all of the tests you
will need to write. As you work, you’ll realize other inputs or scenarios that need testing. As this happens,
simply add them to the list. Think of this list of tests as the requirements of your application. If your code
needs to implement a certain behavior, make sure you have one or more unit tests to enforce it.

Once your initial list is ready, you now enter the cycle of TDD, shown in Figure 14-1. As shown at the
top of the diagram, select one test from the list and begin writing the unit test. Of course, this cannot
compile because the code you’re testing does not exist. Write just enough application code to success-
fully compile and then run the test. As expected, it will fail because the implementation isn’t complete.
Add enough implementation logic to allow the test to pass. Resist the temptation to write all of the code
you think will eventually be needed; instead, focus only on the current test. The code will be completed
later as you implement all of the tests.

Select a Test from
Your List of

Candidate Tests

Run Test and Pass

Write the Test

Write Just Enough
Implementation

to Compile

Refactor

Run Test and Fail

Run the Test
and Fail

Write
Implementation

to Pass Test

360

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 360



Once you have a passing test, you can refactor your code. As you learned in Chapter 11, refactoring is
the process of making small changes to code that improve the design of the code but do not alter its
functionality. Refactoring is critical when following TDD, as your code might not be as clean or orga-
nized as it might otherwise be when following a traditional design-first, top-town development model.
Refactor to remove duplication and reduce complexity, and to improve maintainability and overall
design.

Make sure your refactoring changes are done in small steps, building and running tests with each
change. Once refactoring is complete, resume your cycle at the top by selecting the next test. When the
list of tests is empty, you’re ready to move on to your next task, confident that the functionality you’ve
implemented has been tested and will be much easier to maintain.

This process is often abbreviated to what is known as “red, green, refactor.” The “red” means you begin
with a failing test. Once the implementation code is written, the test will pass, giving you the “green”
result. Finally, the code is refactored to improve design.

You know from Chapter 11 that Visual Studio helps you perform refactoring in efficient and less error-
prone ways. Later in this chapter, you’ll see how Team System can facilitate a TDD approach through its
integrated unit testing features and by offering code generation from within unit tests. 

Third-party tools
Unit testing is not a new concept. Before Team System introduced integrated unit testing, developers
needed to rely on third-party frameworks. The de facto standard for .NET unit testing has been an open-
source package called NUnit. NUnit has its original roots as a .NET port of the Java-based JUnit unit test-
ing framework. JUnit is itself a member of the extended xUnit family.

There are many similarities between NUnit and the unit testing framework in Team System. The struc-
ture and syntax of tests and the execution architecture are conveniently similar. If you have existing
suites of NUnit-based tests, it is generally easy to convert them for use with Team System.

James Newkirk, who led development of NUnit 2.0 and is now employed at Microsoft, has written a tool to
convert your NUnit tests to Team System’s syntax. At the time of writing, this tool, called the “NUnit
Converter,” is available from GotDotNet at http://workspaces.gotdotnet.com/nunitaddons.

Team System’s implementation of unit testing is not merely a port of NUnit. Microsoft has added a number
of features that are unavailable with the version of NUnit available at the time of this writing. Among these
are IDE integration, code generation, new attributes, enhancements to the Assert class, and built-in sup-
port for testing nonpublic members. We describe all of these in detail later in this chapter.

Team System Unit Testing
Unit testing is a feature available in the Developer and Tester editions of Visual Studio Team System. In
this section, we describe how to create, execute, and manage unit tests.

Unit tests are themselves normal code, identified as unit tests through the use of attributes. Like NUnit
2.0 and later, Team System uses .NET reflection to inspect assemblies to find unit tests.

361

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 361



Reflection is a mechanism by which details about .NET objects can be discovered at execution time. The
System.Reflection assembly contains members that help you identify classes, properties, and
methods of any .NET assembly. Reflection even enables you to call methods and access properties of
classes. This includes access to private members, a practice that can be useful in unit testing, as you
will see later in this chapter. 

You will also use attributes to identify other structures used in your tests and to indicate desired behaviors. 

Creating your first unit test
In this section, we’ll take a slower approach to creating a unit test than you will in your normal work.
This will give you a chance to examine details you could miss using only the built-in features that make
unit testing easier. Later in this chapter, you’ll look at the faster approaches.

In order to have something to test, create a new C# Class Library project named ExtendedMath. Rename
the default Class1.cs to Functions.cs.  We’ll add code to compute the Fibonacci for a given number.
The Fibonacci Sequence, as you may recall, is a series of numbers where each term is the sum of the
prior two terms.  The first six terms, starting with an input factor of 1, are {1, 1, 2, 3, 5, 8}.  

Open Functions.cs and insert the following code:

using System;

namespace ExtendedMath
{

public static class Functions
{

public static int Fibonacci(int factor)
{

if (factor < 2)
return (factor);

int x = Fibonacci(--factor);
int y = Fibonacci(--factor);

return x + y;
}

}
}

You are now ready to create unit tests to verify the Fibonacci implementation. Unit tests are recognized
as tests only if they are contained in separate projects called test projects. Test projects can contain any of
the test types supported in Team System. Add a test project named ExtendedMathTesting to your
solution by adding a new project and selecting the Test Project template. If the test project includes any
sample tests for you, such as UnitTest1.cs or ManualTest1.mht, you can safely delete them.

For full details on creating and customizing test projects, see Chapter 13.

362

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 362



Because you will be calling objects in your ExendedMath project, make a reference to that class library
project from the test project. You may notice that a reference to the Microsoft.VisualStudio
.QualityTools.UnitTestFramework.dll assembly has already been made for you. This assembly
contains many helpful classes for creating units tests. We’ll use many of these throughout this chapter.

As you’ll see later in this chapter, Team System supports the generation of basic unit test outlines, but in
this section, we’ll create them manually to make it easier to understand the core concepts. 

Once you have created a new test project, add a new class file (not a unit test; we’ll cover that file type
later) called FunctionsTest.cs. You will use this class to contain the unit tests for the Functions class.
You’ll be using unit testing objects from the ExtendedMath project and the UnitTestFramework assem-
bly mentioned earlier, so add using statements at the top so that the class members do not need to be
fully qualified:

using ExtendedMath;
using Microsoft.VisualStudio.TestTools.UnitTesting;

Identifying unit test classes
To enable Team System to identify a class as potentially containing unit tests, you must assign the
TestClass attribute. If you forget to add the TestClass attribute, the unit tests methods in your class
will not be recognized.

To indicate that the FunctionsTest class will contain unit tests, add the TestClass attribute to its 
declaration:  

namespace ExtendedMath
{

[TestClass]
public class FunctionsTest
{
}

}

Unit tests are required to be hosted within public classes, so don’t forget to include the public descrip-
tor for the class. Note also that parentheses after an attribute are optional if you are not passing parame-
ters to the attribute. For example, [TestClass()] and [TestClass] are equivalent.

Identifying unit tests
Having identified the class as a container of unit tests, you’re ready to add your first unit test. A unit test
method must be public, nonstatic, accept no parameters, and have no return value. To differentiate unit
test methods from ordinary methods, they must be decorated with the TestMethod attribute.  

Add the following code inside the FunctionsTest class:

[TestMethod]
public void FibonacciTest()
{
}

363

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 363



Unit test success and failure
You have the shell of a unit test, but how do you test? A unit test indicates failure to Team System by
throwing an exception. Any test that does not throw an exception is considered to have passed, except in
the case of ExpectedException attribute, which we describe later.

The unit testing framework defines the Assert object. This object exposes many members, which are
central to creating unit tests. You’ll learn more about Assert later in the chapter.

Add the following code to the FibonacciTest:  

[TestMethod]
public void FibonacciTest()
{

const int FACTOR = 8;
const int EXPECTED = 21;

int actual = ExtendedMath.Functions.Fibonacci(FACTOR);

Assert.AreEqual(EXPECTED, actual);
}

This uses the Assert.AreEqual method to compare two values, the value you expect and the value
generated by calling the Fibonacci method. If they do not match, an exception will be thrown, causing
the test to fail.

When you run tests, you will see the Test Results window. Success is indicated with a green checkmark,
failure with a red X. A special result, inconclusive (described later in this chapter), is represented by a
question mark.

To see a failing test, change the EXPECTED constant from 21 to 22 and rerun the test. The Test Results
window will show the test as failed. The Error Message column provides details about the failure rea-
son. In this case, the Error Message would show the following:

Assert.AreEqual failed. Expected:<22>, Actual:<21>

This indicates that either the expected value is wrong or the implementation of the Fibonacci algorithm
is wrong. Fortunately, because unit tests verify a small amount of code, the job of finding the source of
bugs is made easier. 

Managing and running unit tests
Once you have created a unit test and rebuilt your project, Visual Studio will automatically inspect your
projects for unit tests. You can use the Test Manager and Test View windows to work with your tests.  

The easiest way to open these windows is by enabling the Test Tools toolbar and pressing either the Test
View or Test Manager buttons.  They are also available by selecting Test ➪ Windows.

For full details on test management and related windows, see Chapter 13.

364

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 364



Test View
Test View provides a compact view of your tests. It enables you to quickly select and run your tests. You
can group tests by name, project, type, class name, and other criteria. Figure 14-2 shows the Test View
window.

Figure 14-2

Double-click on any test to navigate to that test’s code. To run one or more tests, select them and press
the Run Selection button.

Test Manager
The Test Manager offers all of the features of the Test View window, but provides more options for 
organization and display of your tests. Figure 14-3 shows the Test Manager.

Figure 14-3

By default, all tests are listed, but you can organize tests into lists. In Test Manager, right-click on the
Lists of Tests node on the tree on the left-hand side. Select New Test List and the Create New Test List
dialog will appear as shown in Figure 14-4. You can also create a new test list by choosing Test ➪ Create
New Test List.

365

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 365



Figure 14-4

Give the list a name and optionally a description. You can also place this list within another list. For
example, as shown in Figure 14-4, you might have a top-level Database Required list with a sublist of
SQL Server, to which a second sublist for Oracle is being added.

Once you have created a list, you can drag tests from the Test Manager list onto it. The list enables you to
easily select all related tests for execution by checking the box next to the list name.

You can also group by test properties. First, click the All Loaded Tests node to ensure that all tests are
listed. Then, in the Group By drop-down list, scroll to and select Class Name. You will then see your
tests in collapsible groups by class name.

If you have many tests, you will find the filtering option useful. With filters, you can limit the list of tests
to only those that match text you enter. Next to the Group By list is a Filter Column drop-down and a
text box. Enter the text you wish to match in the text box; you can optionally select a column you would
like to match against. For example, if you wish to show only tests from a certain class, enter that class
name then select Class Name in the Filter Column list. When you press the Apply Filter button, only
tests from that class will be displayed. If the Filter Column is set to [All Columns], tests will display if
any of their fields contain the text you enter.

Test run configuration
Whenever you run a set of tests, a group of settings apply to that run. Those settings, called the test run
configuration, are stored in an XML file with a .testrunconfig extension. A test run configuration is
created automatically for every new test project, named localtestrun.testrunconfig.

The settings include items such as the naming structure of your results files, configuration of remote test
execution, enabling of code coverage, and specifying additional files to deploy during your tests.

366

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 366



To edit a test run configuration, choose Test ➪ Edit Test Run Configurations, and then choose the config-
uration you wish to modify. You can also double-click the configuration file in Solution Explorer. Figure
14-5 shows the Test Run Configuration interface.

Figure 14-5

You may have more than one test run configuration, perhaps to support different execution environ-
ments or code coverage settings, but you must select a single configuration as “active” when you run
your tests. To set another configuration as active, choose Test ➪ Select Active Test Run Configuration,
and then choose the correct configuration.

The default configuration settings will generally be fine for your initial unit testing. As you begin to
require additional unit testing features, you may need to adjust these settings. For example, later in this
chapter, we describe how to monitor code coverage with Team System. In that section, you will learn
how to use the test run configuration to enable that feature.

Test results
Once you have selected and run one or more unit tests using the Test View or Test Manager windows,
you will see the Test Results window. This window displays the status of your test execution, as shown
in Figure 14-6.  

You can see that one of the tests has failed, two have passed, and two are inconclusive. The error mes-
sage for any nonpassing test is displayed. You can double-click on any test result to see details for that
test. You can also right-click on a test result and choose Open Test to navigate to the unit test code.

367

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 367



Figure 14-6

Notice that the nonpassing tests are checked. This convenient feature enables you to make some changes
and then quickly rerun just those tests that have not passed.  

Debugging unit tests
Because unit tests are simply methods with special attributes applied to them, they can be debugged just
like other code.  

Breakpoints can be set anywhere in your code, not just in your unit tests. For example, the
FibonacciTest calls into the ExtendedMath.Fibonacci method. You could set a breakpoint in either
method and have execution paused when that line of code is reached.

However, setting program execution will not pause at your breakpoints unless you run your unit test in
debugging mode. The Test View, Test Results, and Test Manager windows all feature a drop-down arrow
next to the Run button. For example, in Test Manager, click on the arrow next to the Run Checked Tests
button. You will see a new option, Debug Checked Tests. If you choose this, the selected unit tests will be
run in debug mode, pausing execution at any enabled breakpoints, and giving you a chance to evaluate
and debug your unit test or implementation code as necessary.

If you have enabled code coverage for your application, you will see a message indicating that you can-
not debug while code coverage is enabled. Click OK and you will continue debugging as normal, but
code coverage results will not be available. We describe code coverage later in this chapter.

Keep in mind that the Run/Debug buttons are “sticky.” The last selected mode will continue to be used
when the button is pressed until another mode is chosen from the drop-down list.

Programming with the Unit Test Framework
In this section, we describe in detail the attributes and methods available to you for creating unit tests. All
of the classes and attributes mentioned in this section can be found in the Microsoft.VisualStudio
.TestTools.UnitTesting namespace.  

Initialization and cleanup of unit tests
Often, you’ll need to configure a resource that is shared among your tests. Examples might be a database
connection, a log file, or a shared object in a known default state. You might also need ways to clean up
from the actions of your tests, such as closing a shared stream or rolling back a transaction.

368

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 368



The unit test framework offers attributes to identify such methods. They are grouped into three levels:
Test, Class, and Assembly. The levels determine the scope and timing of execution for the methods they
decorate. The following table describes these attributes.

Attributes Frequency and Scope

TestInitialize, TestCleanup Executed before (Initialize) or after (Cleanup) any of the
class’s unit tests are run

ClassInitialize, ClassCleanup Executed a single time before or after any of the tests in the
current class are run

AssemblyInitialize, Executed a single time before or after any number of tests in
AssemblyCleanup any of the assembly’s classes are run

Having methods with these attributes is optional, but do not define more than one of each attribute in
the same context.

TestInitialize and TestCleanup attributes
Use the TestInitialize attribute to create a method that will be executed one time before each unit
test run in the current class. Similarly, TestCleanup marks a method that will always run immediately
after each test. Like unit tests, methods with these attributes must be public, nonstatic, accept no param-
eters, and have no return values.

Here is an example test for a simplistic shopping cart class. It contains two tests and defines the
TestInitialize and TestCleanup methods:  

using Microsoft.VisualStudio.TestTools.UnitTesting;

[TestClass]
public class ShoppingCartTest
{

private ShoppingCart cart;

[TestInitialize]
public void TestInitialize()
{

cart = new SomeClass();
cart.Add(new Item(“Test”);)

}

[TestCleanup]
public void TestCleanup() 
{

// Not required - here for illustration
cart.Dispose(); 

Do not use class- or assembly-level initialize and cleanup attributes with ASP.NET
unit tests. When run under ASP.NET, these methods cannot be guaranteed to run
only once. Because these are static methods, this may lead to false testing results.

369

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 369



}

[TestMethod]
public void TestCountAfterAdd()
{

int expected = cart.Count + 1;
cart.Add(new Item(“New Item”);)
Assert.AreEqual(expected, cart.Count);

}

[TestMethod]
public void TestCountAfterRemove()
{

int expected = cart.Count - 1;
cart.Remove(0);
Assert.AreEqual(expected, cart.Count);

}
}

When you run both tests, TestInitialize and TestCleanup are both executed twice.
TestInitialize is run immediately before each unit test and TestCleanup immediately after.

ClassInitialize and ClassCleanup attributes
The ClassInitialize and ClassCleanup attributes are used very similarly to TestInitialize and
TestCleanup. The difference is that these methods are guaranteed to run once and only once no matter
how many unit tests are executed from the current class. Unlike TestInitialize and TestCleanup,
these methods are marked static and accept a TestContext instance as a parameter.

The importance of the TestContext instance is described later in this chapter.

The following code demonstrates how you might manage a shared logging target using class-level ini-
tialization and cleanup with a logging file:

private System.IO.File logFile;

[ClassInitialize]
public static void ClassInitialize(TestContext context) 
{ 

// Code to open the logFile object 
}

[ClassCleanup]
public static void ClassCleanup(TestContext context) 
{

// Code to close the logFile object 
}

You could now reference the logFile object from any of your unit tests in this class, knowing that it will
automatically be opened before any unit test is executed and closed after the final test in the class has
completed.

This approach to logging is simply for illustration. You’ll see later how the TestContext object passed
into these methods enables you to more effectively log details from your unit tests.

370

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 370



The following code shows the flow of execution should you again run both tests:

ClassInitialize
TestInitialize

TestCountAfterAdd
TestCleanup
TestInitialize

TestCountAfterRemove
TestCleanup

ClassCleanup

AssemblyInitialize and AssemblyCleanup attributes
Where you might use ClassInitialize and ClassCleanup to control operations at a class level, use
the AssemblyInitialize and AssemblyCleanup attributes for an entire assembly. For example, a
method decorated with AssemblyInitialize will be executed once before any test in that current
assembly, not just those in the current class. As with the class-level initialize and cleanup methods, these
must be static and accept a TestContext parameter:  

[AssemblyInitialize]
public static void AssemblyInitialize(TestContext context) 
{
// Assembly-wide initialization code 

}

[AssemblyCleanup]
public static void AssemblyCleanup(TestContext context) 
{ 
// Assembly-wide cleanup code 

}

Consider using AssemblyInitialize and AssemblyCleanup in cases where you have common opera-
tions spanning multiple classes. Instead of having many per-class initialize and cleanup methods, you
can refactor these to single assembly-level methods.

Using the Assert methods
The most common way to determine success in unit tests is to compare an expected result against an
actual result. The Assert class features many methods that enable you to make these comparisons
quickly.

Assert.AreEqual and Assert.AreNotEqual
Of the various Assert methods, you will likely find the most use for AreEqual and AreNotEqual. As
their names imply, you are comparing an expected value to a supplied value. If the operands are not
value-equivalent (or are equivalent for AreNotEqual), then the current test will fail.

A third, optional argument can be supplied: a string that will be displayed along with your unit test
results, which you can use to describe the failure. Additionally, you can supply parameters to be
replaced in the string, just as the String.Format method supports:

371

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 371



[TestMethod]
public void IsPrimeTest()
{

const int FACTOR = 5;
const bool EXPECTED = true;

bool actual = CustomMath.IsPrime(FACTOR); 

Assert.AreEqual(EXPECTED, actual, “The number {0} should have been computed as
prime, but was not.”, FACTOR);

}

Assert.AreEqual and AreNotEqual have many parameter overloads, accepting types such as string,
double, int, float, object, and generic types. Take the time to review the overloads in the Object
Browser.  

When using these methods with two string arguments, one of the overrides allows you to optionally
supply a third argument. This is a Boolean, called ignoreCase, that indicates whether the comparison
should be case-insensitive. The default comparison is case-sensitive.

Working with floating-point numbers involves a degree of imprecision. You can supply an argument
that defines a delta by which two numbers can differ yet still pass a test — for example, if you’re com-
puting square roots and decide that a “drift” of plus or minus 0.0001 is acceptable:

[TestMethod]
public void SquareRootTeset()
{

const double EXPECTED = 3.1622;
const double DELTA = 0.0001;
double actual = CustomMath.SquareRoot(10); 

Assert.AreEqual(EXPECTED, actual, DELTA, “Root not within acceptable range”);
}

Assert.AreSame and Assert.AreNotSame
AreSame and AreNotSame function in much the same manner as AreEqual and AreNotEqual. The
important difference is that these methods compare the references of the supplied arguments. For exam-
ple, if two arguments point to the same object instance, then AreSame will pass. Even when the argu-
ments are exactly equivalent in terms of their state, AreSame will fail if they are not in fact the same
object. This is the same concept that differentiates object.Equals from object.ReferenceEquals.

A common use for these methods is to ensure that properties return expected instances or that collec-
tions handle references correctly. In the following example, we add an item to a collection and ensure
that what we get back from the collection’s indexer is a reference to the same item instance:

[TestMethod]
public void CollectionTest()
{

CustomCollection cc = new CustomCollection();
Item original = new Item(“Expected”);
cc.Add(original);

372

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 372



Item actual = cc[0];

Assert.AreSame(original, actual);
}

Assert.IsTrue and Assert.IsFalse
As you can probably guess, IsTrue and IsFalse are used simply to ensure that the supplied expression
is true or false as expected. Returning to the IsPrimeNumberTest example, we can restate it as follows:

[TestMethod]
public void IsPrimeTest()
{

const int FACTOR = 5;

Assert.IsTrue(CustomMath.IsPrime(FACTOR), “The number {0} should have been
computed as prime, but was not.”, FACTOR);

}

Assert.IsNull and Assert.IsNotNull
Similar to IsTrue and IsFalse, these methods verify that a given object type is either null or not null.
Revising the collection example, this ensures that the item returned by the indexer is not null:

[TestMethod]
public void CollectionTest()
{

CustomCollection cc = new CustomCollection();
cc.Add(new Item(“Added”));
Item item = cc[0];

Assert.IsNotNull(item);
}

Assert.IsInstanceOfType and Assert.IsNotInstanceOfType
IsInstanceOfType simply ensures that a given object is an instance of an expected type. For example,
suppose you have a collection that accepts entries of any type. You’d like to ensure that an entry you’re
retrieving is of the expected type: 

[TestMethod]
public void CollectionTest()
{

UntypedCollection untyped = new UntypedCollection();
untyped.Add(new Item(“Added”));
untyped.Add(new Person(“Rachel”));
untyped.Add(new Item(“Another”));

object entry = untyped[1];

Assert.IsInstanceOfType(entry, typeof(Person));
}

As you can no doubt guess, IsNotInstanceOfType will test to ensure that an object is not the specified type.

373

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 373



Assert.Fail and Assert.Inconclusive
Use Assert.Fail to immediately fail a test. For example, you may have a conditional case that should
never occur. If it does, call Assert.Fail and an AssertFailedException will be thrown, causing the
test to abort with failure. You may find Assert.Fail useful when defining your own custom Assert
methods. 

Assert.Inconclusive enables you to indicate that the test result cannot be verified as a pass or fail.
This is typically a temporary measure until a unit test (or the related implementation) has been com-
pleted. As described in the section “Code Generation” later in this chapter, Assert.Inconclusive is
used to indicate that more work is needed to be done to complete a unit test.  

There is no Assert.Succeed because success is indicated by completion of a unit test method without a
thrown exception. Use a return statement if you wish to cause this result from some point in your test.

Assert.Fail and Assert.Inconclusive both support a string argument and optional arguments,
which will be inserted into the string in the same manner as String.Format. Use this string to supply a
detailed message back to the Test Results window, describing the reasons for the nonpassing result.

Using the CollectionAssert class
The Microsoft.VisualStudio.TestTools.UnitTesting namespace includes a class, Collection
Assert, containing useful methods for testing the contents and behavior of collection types.

The following table describes the methods supported by CollectionAssert.

Method Description

AllItemsAreInstancesOfType Ensures that all elements are of an expected type

AllItemsAreNotNull Ensures that no items in the collection are null

AllItemsAreUnique Searches a collection, failing if a duplicate member is found

AreEqual Ensures that two collections have reference-equivalent members

AreNotEqual Ensures that two collections do not have reference-equivalent
members 

AreEquivalent Ensures that two collections have value-equivalent members 

AreNotEquivalent Ensures that two collections do not have value-equivalent mem-
bers

Contains Searches a collection, failing if the given object is not found

DoesNotContain Searches a collection, failing if a given object is found 

IsNotSubsetOf Ensures that the first collection has members not found in the
second

IsSubsetOf Ensures that all elements in the first collection are found in the
second

374

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 374



The following example uses some of these methods to verify various behaviors of a collection type,
CustomCollection. When this example is run, none of the assertions fail and the test results in success.
Note that proper unit testing would spread these checks across multiple smaller tests.

[TestMethod]
public void CollectionTests()
{

CustomCollection list1 = new CustomCollection();
list1.Add(“alpha”);
list1.Add(“beta”);
list1.Add(“delta”);
list1.Add(“delta”);  

CollectionAssert.AllItemsAreInstancesOfType(list1, typeof(string));
CollectionAssert.AllItemsAreNotNull(list1);

CustomCollection list2 = (CustomCollection)list1.Clone();

CollectionAssert.AreEqual(list1, list2);
CollectionAssert.AreEquivalent(list1, list2);

CustomCollection list3 = new CustomCollection();
list3.Add(“beta”);
list3.Add(“delta”);

CollectionAssert.AreNotEquivalent(list3, list1);
CollectionAssert.IsSubsetOf(list3, list1);
CollectionAssert.DoesNotContain(list3, “alpha”);
CollectionAssert.AllItemsAreUnique(list3); 

}

The final assertion, AllItemsAreUnique(list3), would have failed if tested against list1 because
that collection has two entries of the string “delta”.

Using the StringAssert class
Similar to CollectionAssert, the StringAssert class contains methods that enable you to easily
make assertions based on common text operations. The following table describes the methods supported
by StringAssert.

Method Description

Contains Searches a string for a substring and fails if not found

DoesNotMatch Applies a regular expression to a string and fails if any matches are found

EndsWith Fails if the string does not end with a given substring

Matches Applies a regular expression to a string and fails if no matches are found

StartsWith Fails if the string does not begin with a given substring

375

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 375



Here are some simple examples of these methods. Each of these assertions will pass:

[TestMethod]
public void TextTests()
{

StringAssert.Contains(“This is the searched text”, “searched”);

StringAssert.EndsWith(“String which ends with searched”, “ends with searched”);

StringAssert.Matches(“Search this string for whitespace”, 
new System.Text.RegularExpressions.Regex(@”\s+”));

StringAssert.DoesNotMatch(“Doesnotcontainwhitespace”, 
new System.Text.RegularExpressions.Regex(@”\s+”));

StringAssert.StartsWith(“Starts with correct text”, “Starts with”);
}

Matches and DoesNotMatch accept a string and an instance of System.Text.RegularExpressions
.Regex. In the preceding example, a simple regular expression that looks for at least one whitespace
character was used. Matches finds whitespace and the DoesNotMatch does not find whitespace, so
both pass.

Expecting exceptions
Normally, a unit test that throws an exception is considered to have failed. However, you’ll often wish to
verify that a class behaves correctly by throwing an exception. For example, you might provide invalid
arguments to a method to verify that it properly throws an exception.  

The ExpectedException attribute indicates that a test will succeed only if the indicated exception is
thrown. Not throwing an exception or throwing an exception of a different type will result in test failure.

The following unit test expects that an ObjectDisposedException will be thrown:

[TestMethod]
[ExpectedException(typeof(ObjectDisposedException))]
public void ReadAfterDispose()
{

CustomFileReader cfr = new CustomFileReader(“target.txt”);
cfr.Dispose();
string contents = cfr.Read();  // Should throw ObjectDisposedException

}

The ExpectedException attribute supports a second, optional string argument. The Message property
of the thrown exception must match this string or the test will fail. This enables you to differentiate
between two different instances of the same exception type.  

For example, suppose you are calling a method that throws a FileNotFoundException for several dif-
ferent files. To ensure that it cannot find one specific file in your testing scenario, supply the message
you expect as the second argument to ExpectedException. If the exception thrown is not
FileNotFoundException and its Message property does not match that text, the test will fail.

376

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 376



Defining custom unit test properties
You may define custom properties for your unit tests. For example, you may wish to specify the author
of each test and be able to view that property from the Test Manager.

Use the TestProperty attribute to decorate a unit test, supplying the name of the property and a value:

[TestMethod]
[TestProperty(“Author”, “Deborah”)]
public void ExampleTest()
{

// Test logic
}

Now, when you view the properties of that test, you will see a new entry, Author, with the value
Deborah. If you change that value from the Properties window, the attribute in your code will automati-
cally be updated.

TestContext class
Unit tests normally have a reference to a TestContext instance. This object provides run-time features
that might be useful to tests, such as details of the test itself, the various directories in use, and several
methods to supplement the details stored with the test’s results. TestContext is also very important for
data-driven and ASP.NET unit tests, as you will see later.

Several methods are especially useful to all unit tests. The first, WriteLine,enables you to insert text
into the results of your unit test. This can be useful for supplying additional information about the test,
such as parameters, environment details, and other debugging data that would normally be excluded
from test results. By default, information from the test run is stored in a test results file, an XML file with a
.trx extension. These files can be found in the TestResults subdirectory of your project. The default
name for the files is based on the user, machine, and date of the test run, but this can be modified via the
test run configuration settings. See Chapter 13 for more information on test results files.

Here is a simple example of a unit test that accesses the TestContext to send a string containing the
test’s name to the results:

[TestClass]
public class TestClass
{

private TestContext testContextInstance;

public TestContext TestContext
{

get { return testContextInstance; }
set { testContextInstance = value; }

}

[TestMethod]
public void TestMethod1()
{

TestContext.WriteLine(“This is test {0}”, TestContext.TestName);
}

377

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 377



The AddResultFile method enables you to add a file, at runtime, to the results of the test run. The file
you specify will be copied to the results directory alongside other results content. For example, this may
be useful if your unit test is validating an object that creates or alters a file and you would like that file to
be included with the results for analysis.

Finally, the BeginTimer and EndTimer methods enable you to create one or more named timers within
your unit tests. The results of these timers are stored in the test run’s results.

Creating data-driven unit tests
An excellent way to verify the correct behavior of code is to execute it using realistic data. Team System
provides features to automatically bind data from a data source as input to unit tests. The unit test is run
once for each data row.

A unit test is made data-driven by assigning attributes for connecting to and reading from a data source.
The easiest way to do this is to modify an existing unit test’s properties in the Test Manager window. Begin
with a normal unit test outline, and then open Test Manager. Select the unit test and view its properties.

First, establish the connection to the data source by setting the Data Connection String property. You
may either enter it manually or click the button labeled with ellipses (“...”) to use dialogs to create the
connection string. Once the connection is specified, select the table you wish to use in the Data Table
Name property.

As mentioned before, the unit test will be called once per row in the data source. You can set how rows
are fed into the unit test via the Data Access Method property. Sequential will feed the rows in exactly
the order returned from the data source, whereas Random will select random rows. Rows are provided
to the unit test until all rows have been used once.

Setting these properties will automatically decorate the selected unit test with the appropriate attributes.
You do not need to use the Properties window to create data-driven tests. For example, you may wish to
copy attributes from an existing data-driven test to quickly create another. 

To access the data from within the unit test, use the DataRow property of the TestContext. For exam-
ple, if you bound to a table with customer data, you could read the current customer’s ID from the
CustomerID column with the following:

long customerID = TestContext.DataRow[“CustomerID”];

Besides a column name, the DataRow property also accepts a column offset. If CustomerID were the first
column in the table, you could supply a zero as the argument with the same result.

Because the unit test is run once per row in the data source, you want to be able to tell which rows
caused certain results. Fortunately, this detail is already tracked for you. In the Test Results window,
right-click on the test result and choose View Test Results Details. You will see a list of pass/fail results
for each record in the database, enabling you to easily see which rows caused your test to fail. 

Team System makes it very easy to write comprehensive tests against actual data. However, keep in
mind that it is not enough to test only valid data, such as your real customer data. You will also want to
have unit tests that verify your code’s behavior when invalid data, perhaps in this case a negative num-
ber, is supplied.

378

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 378



Accessing Nonpublic Members from Tests
What if you want to test a class member that is not public? For example, suppose you’re writing a pri-
vate function that is never publicly accessed and is only used internally by other members. You’d like to
test this method, but your test code does not have access to private members (or to internal members if
the code is in a separate assembly). 

There are three main approaches for addressing this issue:

❑ Make the private members you need to test public.

❑ Ensure that the private members are reachable through a public member and test via those pub-
lic members.

❑ Use .NET reflection in the tests to load and directly invoke the nonpublic members.

With Team System, this final approach is abstracted for you. The following two sections describe how
Team System helps to automate this previously manual task.  

Using PrivateObject to access nonpublic instance
members

Suppose you’d like to test the private field and method of the following class:

public class Example
{

public Example() {}

private string password = “letmein”;

private bool VerifyPassword(string password)
{

return (String.Compare(this.password, password, false) == 0);
}

}

Because the field and method are marked private, a unit test will not have the ability to directly access
them. How can you ensure that VerifyPassword is working correctly?

Team System introduces the PrivateObject class, which is a wrapper around reflection code that
enables you to access nonpublic members in a fairly straightforward manner.  

The following table summarizes the methods supported by PrivateObject.

Testing private members is a controversial subject. Some people prefer to test only
via public members to allow for easier refactoring. Others argue that an API should
never be modified just for the sake of easier testing. If you agree with the former
opinion, you can safely skip the remainder of this section. 

379

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 379



Method Description

GetArrayElement Returns the selected item from a private array member. Supports mul-
tidimensional arrays with additional arguments.

GetField Returns the value of the target field

GetFieldOrProperty Returns the value of the target field or property

GetProperty Returns the value of the target property

Invoke Invokes the target method, optionally passing parameters

SetArrayElement Assigns the given value to the indicated element of a private array
Supports multidimensional arrays with additional arguments

SetField Assigns the supplied object to the target field

SetFieldOrProperty Assigns the supplied object to the target field or property

SetProperty Assigns the supplied object to the target property

To use it, you first create an instance of the PrivateObject class, passing a Type object for the class you
wish to work with:

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Explorations
{

[TestClass]
public class ExampleTest
{

private PrivateObject privateObject;
const string PASSWORD = “letmein”;

[TestInitialize]
public void TestInitialize()
{

privateObject = new PrivateObject(typeof(Example));
}

}
}

Now you can create your tests. Use the GetField method of the PrivateObject instance to access non-
public fields, supplying the name of the desired variable. Similarly, use Invoke to call methods, supply-
ing the method name as the first argument, followed by any parameters to that method:

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Explorations
{

[TestClass]
public class ExampleTest
{

380

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 380



private PrivateObject privateObject;
const string PASSWORD = “letmein”;

[TestInitialize]
public void TestInitialize()
{

privateObject = new PrivateObject(typeof(Example));
}

[TestMethod]
public void ComparePrivatePassword()
{

string password = (string)privateObject.GetField(“password”);
Assert.AreEqual(PASSWORD, password);

}

[TestMethod]
public void TestPrivateVerifyPassword()
{

bool accepted = (bool)privateObject.Invoke(“VerifyPassword”, PASSWORD);
Assert.IsTrue(accepted);

}
}

}

Because PrivateObject uses reflection, you need to cast the results of these calls from the generic
Object type back to the correct underlying type.

Using PrivateType to access nonpublic static members
PrivateObject is used to access instance-based members of a class. If you need to access static non-
public members, you use the PrivateType class, which has a very similar interface and is a wrapper of
reflection code.

The following table summarizes the methods exposed by PrivateType.

Method Description

GetStaticArrayElement Returns the selected item from a private static array member. Supports
multidimensional arrays with additional arguments.

GetStaticField Returns the value of the target static field.

GetStaticProperty Returns the value of the target static property.

InvokeStatic Invokes the target static method, optionally passing parameters.

SetStaticArrayElement Assigns the given value to the indicated element of a private static
array. Supports multidimensional arrays with additional arguments.

SetStaticField Assigns the supplied object to the target static field.

SetStaticProperty Assigns the supplied object to the target static property.

381

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 381



The usage is very similar to the PrivateObject. Create an instance of the PrivateType, indicating
which type you wish to work with, and then use the methods to access members as with
PrivateObject. Suppose you added a private static count of password failures with a wrapping pri-
vate property called FailureCount. The following code could read and test that property:

[TestMethod]
public void TestPrivateStaticFailureCount()
{

PrivateType example = new PrivateType(typeof(Example));
int failureCount = (int)example.GetStaticProperty(“FailureCount”);
Assert.AreEqual(failureCount, 0);

}

Again, you create an instance of PrivateType, passing the type reference for the class you wish to
access. Then you use that instance, invoking GetStaticProperty to retrieve the value you wish to test.
Finally, you ensure that the value is zero as expected.

Use caution when testing static data. Because static data is shared and is not automatically reset
between your tests, sometimes the order of your tests will affect their results. In other words, if you test
that a value is initialized to zero in one test and then set it to a test value in another test, if the order of
those tests is reversed, the zero test will fail. Remember that you must be able to run your tests in any
order and in any combination.

Code Generation
Remember the work you did earlier in this chapter to create your first unit test? Depending upon the
degree to which you practice TDD, you might not create many of your unit tests in that manner. We cre-
ated the first unit tests manually to help convey basic concepts, but Team System has support for auto-
matically generating code. You may generate unit tests from your implementation code or generate
limited implementation code when writing your tests. 

Generating tests from code
If you have ever needed to add unit testing to an existing project that had none, it was likely a frustrat-
ing experience. Fortunately, Team System has introduced the capability to generate outlines of unit tests
based on selected implementation code.

If you are practicing test-driven development, described earlier, be aware that generating tests from
existing code is considered a very non-TDD practice. In pure TDD, no implementation code should
exist before unit tests are created. 

Let’s begin with the Functions class we used earlier in this chapter. Open Functions.cs and ensure it
contains the following code:

using System;

namespace ExtendedMath
{

public sealed class Functions
{

382

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 382



private Functions() {}

public static int Fibonacci(int factor)
{

if (factor < 2)
return (factor);

int x = Fibonacci(--factor);
int y = Fibonacci(--factor);

return x + y;
}

}
}

If you have been following the examples in this chapter, delete your existing FunctionsTest.cs file.
Now you can right-click in your code and choose Create Unit Tests or choose the Create Tests button
from the Test Views toolbar. The Create Unit Tests dialog will appear, as shown in Figure 14-7.

Figure 14-7

Right-clicking in code is context-sensitive and the dialog will default appropriately based on where you
clicked. For example, if you click from your class definition, all of that class’s members will be selected
for generation by default. Clicking on a method will default with only that method selected.

Select the members for which you would like to generate unit tests and then click the Settings button.
The Test Generation Settings dialog will appear, as shown in Figure 14-8.

This dialog enables you to choose the behavior and naming conventions that will be used to generate
your unit test code. For this first run, leave the settings at their defaults and click OK.

Team System will create a new class file, FunctionsTest.cs, if it does not already exist. Inside, you
will find a class, FunctionsTest, marked with [TestClass] attribute.

383

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 383



Figure 14-8

At the top of the class is a TestContext field initialized to null, with a TestContext property to
enable you to access context from your tests:

private TestContext testContextInstance;

public TestContext TestContext
{

get 
{

return testContextInstance; 
}
set 
{ 

testContextInstance = value; 
}

}

Next, you will find commented-out placeholder methods for ClassInitialize, ClassCleanup,
TestInitialize, and TestCleanup,  wrapped in a region:

#region Additional test attributes
// 
//You can use the following additional attributes as you write your tests:
//
//Use ClassInitialize to run code before running the first test in the

class
//

384

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 384



//[ClassInitialize()]
//public static void MyClassInitialize(TestContext testContext)
//{
//}
//
//Use ClassCleanup to run code after all tests in a class have run
//
//[ClassCleanup()]
//public static void MyClassCleanup()
//{
//}
//
//Use TestInitialize to run code before running each test
//
//[TestInitialize()]
//public void MyTestInitialize()
//{
//}
//
//Use TestCleanup to run code after each test has run
//
//[TestCleanup()]
//public void MyTestCleanup()
//{
//}
//
#endregion

Finally, you will see the actual generated unit test:

/// <summary>
/// A test for Fibonacci (int)
/// </summary>
[TestMethod()]
public void FibonacciTest()
{

int factor = 0; // TODO: Initialize to an appropriate value

int expected = 0;
int actual;

actual = ExtendedMath.Functions.Fibonacci(factor);

Assert.AreEqual(expected, actual, “ExtendedMath.Functions.Fibonacci did
not return the expected value.”);

Assert.Inconclusive(“Verify the correctness of this test method.”);
}

The generated code defines a basic structure that depends on the signature of the member being tested.
In this example, it recognized that Fibonacci accepts an integer and returns an integer, including an
Assert.AreEqual for you. The TODO indicates that factor and expected are only default values and
need to be adjusted by you to ensure correct test values.

385

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 385



Keep in mind that generated code will often benefit from careful refactoring, and your generated unit
tests will be no exception. For example, look for ways to consolidate common tasks into shared func-
tions. Refactoring is covered in Chapter 11.

Optionally, but by default, generated tests end with calls to Assert.Inconclusive to indicate that the
unit test needs further inspection to determine its correctness. See the “Using the Assert methods” sec-
tion for more information.

Generating code from tests
As you have just seen, generating tests from existing code can be very useful.  It can be invaluable when
you’ve taken ownership of a system that has no unit tests. However, adherents of test-driven develop-
ment discourage such approaches, preferring to write test code before implementation code.

Fortunately, Visual Studio also has some support for this approach. You can write unit tests, including
calls to classes and methods that do not exist, and the IDE will help you define outlines of their imple-
mentations automatically.

Begin by creating a new Class Library project called ResourceExample. While TDD purists prefer to
avoid writing any implementation code before tests, Team System requires an existing class in which to
place generated code. All you need is a basic class definition, so add a new class file called
ResourceLoader.cs containing the following code:

using System;

namespace ResourceExample
{

public class ResourceLoader 
{
}

}

Now you can write your unit test. It will verify that a call to the ResourceLoader class’s GetText
method with an identifier returns the expected resource string. Create a new test project named
ResourceExampleTesting and set a reference to the ResourceExample project. Next, add a new class
file called ResourceLoaderTest.cs with the following code:

using Microsoft.VisualStudio.TestTools.UnitTesting;
using ResourceExample;

namespace ResourceExampleTesting
{

[TestClass]
public class ResourceLoaderTest
{

[TestMethod]
public void GetTextTest()
{

const int RESOURCE = 100;
const string EXPECTED = “Result for 100”;
string actual = ResourceLoader.GetText(RESOURCE); 

Assert.AreEqual(EXPECTED, actual);

386

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 386



}
}

}

In the code editor, click on GetText. It should be underscored with a small rectangle indicating that one
or more options are available. Hover the mouse pointer over the rectangle, click on the resulting button,
and you will see “Generate method stub for ‘GetText’ in ‘ResourceExample.ResourceLoader.’”
Alternately, you can right-click on GetText and choose Generate Method Stub. If you have trouble finding
these options, make sure that you have set a reference from the test project to the ResourceExample project.

Choose either of these options and then switch to ResourceLoader.cs, where you will now see the 
following:

using System;

namespace ResourceExample
{

public class ResourceLoader 
{

public static string GetText(int RESOURCE)
{

throw new Exception(“The method or operation is not implemented.”);
}

}
}

You will notice that Visual Studio inferred the best signature for the method from the context of its use in
the unit test. Also notice that the only action in the method is throwing an Exception. This is to remind
you that there is work left to do. Replace the throw with whatever implementation code you need to
make your test(s) pass, and then refactor and continue with your next test.

Unit Testing ASP.NET Applications
A common problem for developers prior to Team System was the challenge of unit testing ASP.NET
applications. Most of the behavior of ASP.NET applications relies on having a web request context — for
example, querystrings, cookies, and server variables. To effectively test this code, a web environment
needed to be simulated. While some frameworks, such as NUnitASP existed, the task was still difficult
and not integrated with the Visual Studio environment.

Team System enables developers to write unit tests that have access to an active ASP.NET context. The
unit testing framework connects to the target ASP.NET application, executes a request, and provides the
context of that request to the unit test.

ASP.NET unit test attributes
An ASP.NET unit test looks much like any other unit test, except that it is decorated with additional
attributes to indicate details about the target ASP.NET application. The following table summarizes com-
mon ASP.NET unit testing attributes.

387

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 387



Attribute Description

HostType Identifies the type of host that will run the unit test. Typi-
cally, this will be ASP.NET.

UrlToTest The URL that will be requested. The context of this request
will be made available to the unit test via TestContext.

AspNetDevelopmentServerHost Specify this attribute when the host for the web application
will be the built-in ASP.NET Development Server. The first
argument is the physical directory of the web application.
The second is the name of the application root.

These attributes exist in the Microsoft.VisualStudio.TestTools.UnitTesting.Web namespace,
and, as with all unit tests, a reference to the Microsoft.VisualStudio.TestTools
.UnitTestFramework assembly is required. Ensure that you add the associated using statements as
well:

using Microsoft.VisualStudio.TestTools.UnitTesting;
using Microsoft.VisualStudio.TestTools.UnitTesting.Web;

Now that you have an understanding of the attributes for ASP.NET unit tests, we’ll describe your
options for creating them.

Creating ASP.NET unit tests
One way to create an ASP.NET unit test is to generate one from a class or method of your web applica-
tion. You saw in the previous section how simple Team System makes this.

First, open your web application project. Then, open the class containing methods you wish to test.
Right-click and choose Create Unit Tests. Select the specific methods for which you wish to generate unit
tests and click OK.

The unit tests, already decorated with the appropriate attributes for your web application, are created in
a test project in your solution. If you don’t already have a test project, one will be created automatically
for you.

Whether you generated your ASP.NET unit test or converted a unit test by adding attributes, you are
ready to tap into the ASP.NET context in order to verify behavior. The TestContext object features a
RequestedPage property. This is actually an instance of a System.Web.UI.Page object appropriate for
your web application. Assign this to a local variable and you can use it to access controls of the page.

In order to read and set values of the controls on the page, you will need to obtain a reference to the con-
trol using the Page object’s FindControl method.

ASP.NET unit test generation is only available to classes in your web application’s
App_Code folder. For other items, such as code-behind implementations, we suggest
you copy the attributes from a previously generated ASP.NET unit test to another
unit test for the code you wish to test.

388

Chapter 14

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 388



Frequently, you will need to access nonpublic methods of the page. For example, most button submit
methods are not public. As you saw earlier in this chapter, Team System provides a simple way to wrap
objects in order to access their nonpublic members. To access such methods, use a PrivateObject
pointing to the Page instance. Once you have that PrivateObject, use its Invoke method to call the
target nonpublic method. 

Here is an example ASP.NET unit test, using a local ASP.NET development server, which enters a stock
ticker symbol and requests a quote:

[TestMethod]
[HostType(“ASP.NET”)]
[AspNetDevelopmentServerHost(“%PathToWebRoot%\\StockTicker”, “/StockTicker”)]
[UrlToTest(“http://localhost/StockTicker”)]
public void VerifyCompanyTickerLookup()
{

Page page = TestContext.RequestedPage;
TextBox stockName = (TextBox)page.FindControl(“txtStockSymbol”);
stockName.Text = “MSFT”;

PrivateObject po = new PrivateObject(page);
Button getCompanyName = (Button)page.FindControl(“cmdGetCompanyName”);
po.Invoke(“cmdGetCompanyName_Click”, getCompanyName, EventArgs.Empty);

Label result = (Label)page.FindControl(“lblResults”);
Assert.AreEqual(“Microsoft”, result.Text);

}

The attributes indicate how to connect to the local StockTicker ASP.NET web application. First, the
Page reference is obtained from the TestContext. Then, the value of the txtStockName control is set to
MSFT. Access to the Submit button is not public, so a PrivateObject is used to access the Page. After
invoking the button’s click method, the txtResult control is read to ensure that the ticker MSFT was
correctly returned as “Microsoft”.

Code Coverage
The unit testing features in Team System have full support for code coverage. Code coverage automati-
cally inserts tracking logic, a process called instrumentation, to monitor which lines of code are executed
during the execution of your tests. The most important result of this is the identification of regions of
your code that you have not reached with your tests. 

Often, you may have branching or exception-handling logic that isn’t executed in common situations. It
is critical to use code coverage to identify these areas because your users certainly will. Add unit tests to
cause those areas of code to be executed, and you’ll be able to sleep soundly at night.

Code coverage is a useful tool, but it should not be relied upon as an exclusive indicator of unit test
effectiveness. It cannot tell you the manner in which code was executed, possibly missing errors that
would result with different data or timing. A suite of unit tests based on a variety of different inputs
and execution orders will help to ensure that your code is correct, complete, and resilient. Use code cov-
erage to help identify code your tests are missing, not to tell you when your tests are complete.

389

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:49 PM  Page 389



A tenet of effective unit testing is that the removal of any line of code should cause at least one unit test
to fail. This is, of course, an ideal, but worth keeping in mind as you develop your systems.

Enabling code coverage
Code coverage is activated via a setting in the Test Run Configuration. Open the configuration for edit-
ing by choosing Test ➪ Edit Test Run Configuration and selecting the configuration. Once you have the
Edit Test Run Configuration dialog active, select the Code Coverage page.

Select the assemblies you wish to instrument from the Select Artifacts to Instrument list. If you don’t see
an assembly you’d like to instrument, you can click Add Assembly to manually add it. Figure 14-9 is a
screenshot of the Code Coverage page of the Test Run Configuration editor.

Figure 14-9

The instrumentation process modifies your original assemblies, invalidating original signatures. If you
are working with signed assemblies, use the Re-signing key file field to specify a key file with which to
sign the instrumented assembly. 

Viewing code coverage results
Once you have enabled coverage and selected the assemblies to instrument, run your unit tests as nor-
mal. You will then be able to see results of the coverage in the Code Coverage Results window. This win-
dow will show counts of lines and percentages of code covered and uncovered. You may expand the
view by clicking the plus signs to see details at the assembly, class, and member levels.

390

Chapter 14

20_584367 ch14.qxp  4/20/06  11:50 PM  Page 390



To quickly determine which areas of code need attention, enable code coverage highlighting of your
code by pressing the Show Code Coverage button on the Code Coverage toolbar. Executable lines of
code will be highlighted in red if they have not been run by your tests and in blue if they were. Code
that is purely structural or documentation will not be highlighted. Figure 14-10 illustrates the results of a
code coverage test. 

Figure 14-10

In this example, we added two lines to our previous Fibonacci implementation that check for a nega-
tive factor and throw an exception. Code Coverage has colored the line throwing the exception red.
This means that none of the unit tests we executed caused that line to run. This is a clear indication that
we need another unit test. Create a new unit test — for example,
FibonacciOfNegativeFactorsNotSupportedTest— and test calling Fibonacci with a factor less
than zero. Decorate the test with the ExpectedException attribute, indicating that you expect the
ArgumentOutOfRangeException in order for the test to pass. Rerun the unit tests and the Fibonacci
method should now have 100 percent coverage.

Again, keep in mind that 100 percent code coverage does not mean you have finished writing your unit
tests. Proper testing may involve multiple executions of the same code using different data. Code cover-
age is one measure of effectiveness, but certainly not the only one. Consider adopting test-driven devel-
opment, plan your testing cases up front, and then use code coverage to alert you to scenarios you forgot
to test.

391

Unit Testing with the Unit Test Framework

20_584367 ch14.qxp  4/20/06  11:50 PM  Page 391



Summary
The Developer and Tester editions of Visual Studio Team System bring the advantages of unit testing to
the developer by fully integrating features with the development environment. If you’re new to unit
testing, this chapter has provided an overview of what unit testing is, how to create effective unit tests,
and some of the principles behind test-driven development. We covered the creation and management
of unit tests and detailed the methods and attributes available in the unit test framework. You should be
familiar with attributes for identifying your tests as well as many of the options that the Assert class
offers for testing behavior of code.

You’ve learned how to generate code with Team System, either by generating tests from code or code
from tests. As you saw, it is also very easy to bind unit tests to a data source to create data-driven tests.
This chapter also showed that Team System offers a simple way to access private members for testing,
addressing a need that previously required manual workarounds.  

You’ve also seen that ASP.NET developers can now create unit tests against web applications without
relying on external tools and frameworks. Finally, you learned how to use code coverage to help identify
where your unit tests may have missed some scenarios. 

If you have been using other frameworks for your unit testing to date, you’ll enjoy not having to leave
the IDE to work with your tests, as well as the familiar options and syntax that Team System offers.

We strongly encourage you to become familiar with the benefits of unit testing, keeping in mind that
unit tests are not a replacement for other forms of testing, but a very strong supplement.  

Over the next three chapters, we’ll continue our look at those other forms of testing that Team System
Team Tester Edition supports. You’ll learn about load and web tests in Chapter 15, manual tests in
Chapter 16, and custom tests in Chapter 17. 

392

Chapter 14

20_584367 ch14.qxp  4/20/06  11:50 PM  Page 392


