

P A R T I I I

Designing
Database Systems

riordan_ch09.fm Page 141 Thursday, December 16, 2004 2:16 PM

riordan_ch09.fm Page 142 Thursday, December 16, 2004 2:16 PM

143

C H A P T E R 9

The Design Process

In Parts 1 and 2, we looked at the principles of relational and dimensional
database design. But the structure of the data is only one component of a
database system—a critical component, obviously, but still only a single
component. Beginning with this part, we’ll look at some of the remaining
aspects of designing database systems.

In this part, we’ll discuss most of the activities involved in the analysis
and design of database systems, including the definition of system parame-
ters and work processes, the conceptual database model, and the database
schema. The design of the user interface, because it is such a complex topic,
will be discussed in Part IV.

I’ll be examining only the analysis and design of database systems here;
implementation lies outside the scope of this book. But analysis and design
can’t exist in isolation from the rest of the process, so we’ll begin with a brief
discussion of project life cycles.

Life Cycle Models

Once upon a time, systems analysts used a paradigm for the development
process known as the

waterfall model

. There are several versions of this
model. A reasonably simple one is shown in Figure 9–1.

The process begins with systems analysis, sometimes called require-
ments analysis, since it focuses on what the organization and the users
require the system to do. Once the systems analysis has been completed
and approved, the entire system is designed in detail. This phase is followed
by planning and budgeting, and then the entire system is built, tested, and
released. At least it is in theory.

The waterfall model is aesthetically pleasing. Each activity is completed
and approved before the next one is begun, and the model allows a fine
degree of control over budgets, staffing, and time. Deliver a waterfall
project on time and on budget, and your clients will probably love you.

riordan_ch09.fm Page 143 Thursday, December 16, 2004 2:16 PM

144

Chapter 9 The Design Process

The problem, of course, is that reality is hardly ever this neat. The
model assumes that all the information required to complete a task is avail-
able during the performance of that task, and makes no allowance for new
information coming to light later in the process. With the possible exception
of very small systems (the sort of thing you can design and build for yourself
over the course of a long weekend), this situation is unlikely in the extreme.

The waterfall model also doesn’t allow for changes in business
requirements during the course of the project. To assume that a system
that met the business needs at the beginning of a project will still meet
them at the end of a two- or three-year development process is foolhardy.
Your clients will not love you for delivering a useless system, even if it

is

on time and on budget.
Understand, however, that the activities identified in the waterfall

model are perfectly sound. In fact, omitting any of them from a develop-
ment project is a recipe for disaster. The problem with the model is its lin-
earity, its assumption that each phase need never be re-examined once it
has been completed.

Figure 9–1

The Waterfall Model

Systems
Analysis

Design

Plan & Budget

Build

Test

Release

End of Project *

* The miracle happens here

riordan_ch09.fm Page 144 Thursday, December 16, 2004 2:16 PM

Life Cycle Models

145

Several alternative life cycle models have been proposed to deal with
the problems in the waterfall model. The

spiral model

 assumes multiple
iterations of the waterfall, each one expanding the scope of the previous
iteration, as shown in Figure 9–2.

The problem with the spiral model is that, when strictly applied, the
entire scope of the project is not considered until very late in the develop-
ment project, and there is a (not insignificant) chance that later iterations
will invalidate earlier work. This has always seemed to me a recipe for blown
budgets and frustrated developers. The situation is particularly dangerous
for database projects, where expansions in scope can change the semantics of
the data, which requires a change to the database schema, and a change in
the database schema can require unexpected—and unpredictable—changes
throughout the system.

Figure 9–2

The Spiral Model

Project
Commencement

Project
Completion

Plan & Budget

Plan & Budget

Design

Design
Analysis

Analysis

Build

Build

Test

Test

Release

Release

riordan_ch09.fm Page 145 Thursday, December 16, 2004 2:16 PM

146

Chapter 9 The Design Process

The model that I prefer for large systems, and use in my own work, is
variously described as

incremental development

 or

evolutionary devel-
opment

, and is shown in Figure 9–3.
In this model, which is in many ways simply a variation on the spiral

model, the preliminary analysis is performed for the entire system, not just
a portion of it. This is followed by an architectural design, again of the
whole system. The goal of the architectural design is to define individual
components that can be implemented more or less independently, and to
describe the interactions and interdependencies between these compo-
nents. The detailed design and implementation of each component is then
performed using whichever model seems most appropriate. I use the spiral
model for this phase, as shown in Figure 9–3, because it allows greater flex-
ibility in design and implementation.

Note that the spiral here includes an additional task: integration. Com-
ponent integration is implicit in the spiral model as well, of course, but it’s
been my experience that the task is rather more complex using the incre-
mental development approach. This is also one of the reasons I prefer to

Figure 9–3

The Incremental Development Model

Preliminary
Analysis

Architectural
Design

Release

Detailed Design

Plan & Budget

BuildIntegrate

Test

Component
Spiral

riordan_ch09.fm Page 146 Thursday, December 16, 2004 2:16 PM

Life Cycle Models

147

use the spiral model during component development. Deferring the
detailed design of a component until just before it is to be developed allows
you to accommodate any insights gained during the integration of previous
components, and, with a bit of luck, avoid any of the problems you might
have encountered during the integration.

The problem with the incremental development model is that it
assumes that any large system can be decomposed into distinct compo-
nents, and this is not necessarily the case for all systems. It can also result in
a lot of “scaffolding” code. For example, say that a data entry screen is sup-
posed to make a call to a COM component that will perform a lookup on a
customer code and take some action if a match is found, but that the com-
ponent hasn’t yet been built. The development team will have to build a
dummy component that allows the call to be made without error. Complex
systems can include a substantial amount of scaffolding like this.

Additionally, there’s always a chance that the external component will
never be implemented; perhaps the budget doesn’t stretch that far, or you
later determine that it wasn’t such a good idea after all. If you don’t plan for
this possibility, you could be distributing components whose only function is
to keep

other

 components from failing. Not an elegant situation, and cer-
tainly not one you’d like to explain to a maintenance programmer.

Because the analysis and architectural design are performed at the
beginning of the project, there is the risk of them becoming obsolete,
which as you will recall is one of the main disadvantages of the waterfall
model. For this reason, it’s important to review these two steps—particularly
the requirements analysis, since it’s more likely to change—before com-
mencing the detailed design of each component. It’s often a pleasant sur-
prise how changes in requirements can be accommodated by changes to
as-yet-undeveloped components, or even by changing the order in which
new components are developed, without invalidating previous develop-
ment work.

And despite the risks, the incremental development model does have
several advantages. Because a “big picture” of the system is defined at the
outset, the chances of wasted development work are minimized. Because
large projects are decomposed into smaller components, the individual
component projects become easier to manage. And, by breaking the system
into individual components, you have a good chance of being able to deliver
some core functionality to your users early in the project. This allows the
system to start paying for itself and also provides a mechanism for soliciting
user input to be fed into subsequent development efforts.

riordan_ch09.fm Page 147 Thursday, December 16, 2004 2:16 PM

148

Chapter 9 The Design Process

The Database Design Process

Whatever overall development model you choose, you must perform cer-
tain analysis and design activities. Whether you perform them sequentially
or iteratively, whether the scope of your inquiry is the entire system or only
a single component, whether your techniques are formal or informal, every
project should include each of these steps at least once.

Defining the System Parameters

Ideally, every project should begin with a clear definition of what you’re try-
ing to achieve, why you’re trying to achieve it, and how your success will be
judged. Most projects won’t have this definition prior to commencement, so
this is what the first phase of the design process is about. The project’s goal
defines the “why” of the project. Based on this, you can define the “what,”
the project’s scope. Once you understand the goal and scope, you can begin
to determine realistic design criteria, the “how.” Each of these is discussed
in detail in Chapter 11.

Defining the Work Processes

Although ostensibly involved in the storage and retrieval of data, the major-
ity of database systems support one or more work processes. Your users
aren’t just storing data for the sake of storing data; they want to

use

 it in
some way. Understanding the work processes the data needs to support is
crucial to understanding the semantics of the data model. Work processes
are discussed in Chapter 12.

Building the Conceptual Data Model

More than simply a set of table structures, the conceptual data model
defines the data usage for the entire system. This includes not only the logi-
cal data model, but also a description of how the work processes interact
with the data. The conceptual data model is discussed in Chapter 13.

Preparing the Database Schema

The database schema translates the conceptual data model into physical
terms. It includes a description of the tables that will be implemented in the
system and also the physical architecture of the data. Physical architectures
and the database schema are discussed in detail in Chapter 14.

riordan_ch09.fm Page 148 Thursday, December 16, 2004 2:16 PM

A Note on Design Methodologies and Standards

149

Designing the User Interface

No matter how impressive the technical performance of your system, if the
user interface is clumsy, confusing, or patronizing, the project is unlikely to
be successful. To most users, after all, the interface

is

 the system. User
interface design is discussed in Part IV.

A Note on Design Methodologies and Standards

I’m not a great fan of checklists and step-by-step procedures for the design
of computer systems. It’s been my experience that they can actually get in
the way of good design, as the analyst can easily become more involved in
ticking the boxes than in understanding the user’s requirements.

In large systems, however, with multiple analysts and several teams of
programmers, it’s obviously necessary to establish some common proce-
dures for managing the process. Several methodologies are around, and
most have automated tools to support them. I’m not going to make any rec-
ommendations. In the first place, this tends to be a religious issue; in the
second, as with variable naming, the

existence

 of a methodology is usually
more important than the methodology chosen.

I do understand, however, that preparing design documents can be
daunting, at least the first few times you do it. Chapter 14 contains a general
discussion of the process.

riordan_ch09.fm Page 149 Thursday, December 16, 2004 2:16 PM

riordan_ch09.fm Page 150 Thursday, December 16, 2004 2:16 PM

