
www.packtpub.com/virtualization-and-cloud/
openstack-administration-ansible

For more information visit:

Migrating
Instances

A free chapter sample from
OpenStack Administration with Ansible

[75]

Migrating Instances
In this chapter, we will cover the task of migrating instances using the native
OpenStack capability built into the Compute service (Nova). As mentioned earlier, the
existence of this functionality is unknown by many. Before this chapter is over, we will
prove this capability by demonstrating how to manually migrate instances; as well as,
review the steps required to automate this task and finally create a playbook with roles
to fully automate instance migration to a specified compute node.

In this chapter, we will cover the following topics,

•	 Instance migration
•	 Automation considerations
•	 Coding the playbook and roles
•	 Playbook and role review

Instance migration
Whenever the topic of instance migration comes up, it normally ends in a spirited
conversation among my OpenStack peers for various reasons. So as a responsible
adult, I will go on record and say instance migration is not perfect.

It has its flaws and can be quirky at best. Migration, whether live or not, has a
practical use case in your OpenStack cloud. Within OpenStack, you have the
capability of migrating instances from one compute node to another. You may do
this for maintenance purposes and/or to rebalance the resource utilization across
the cloud. Also, keep in mind that there are multiple ways to clear out a compute
node for maintenance and we will cover this in more detail in Chapter 8, Deploying
OpenStack Features.

Migrating Instances

[76]

As mentioned earlier, the OpenStack Compute service (Nova) has the
functionality to migrate instances in a traditional method and the ability
to live-migrate an instance as well.

We will first examine the traditional migration method and its properties.

The traditional migration method moves an instance by shutting down the instance,
copying the instance image or file to the next available compute node, starting the
instance on the new node, and lastly removing the instance from the original node.
The areas to focus on in this method are:

•	 The instance is shutdown
•	 The instance image or file will take time to copy to a new compute node
•	 The new compute node selection is done by Nova Scheduler, you can not

assign one without the additional steps required
•	 The instance is then brought back online once the copy is completed

Note that some may consider this method to be intrusive. The idea of shutting down
an instance to move it was not a desirable scenario back in the virtualization days.
Remember that we are in a new era, the era of cloud and disposable resources.

Since resources are readily available and you have the control to determine how
to consume these resources, there should be no issue in taking an instance offline.
Right? Yes, I know it will take a while to shake that pet mentality, you will get there.
In the event the circumstances allow for this, which normally means you did a good
job distributing across your hypervisors the instances running your application(s),
you can very easily use this method to migrate instances.

A working example of the traditional instance migration command via the Nova CLI
will be as follows:

$ nova migrate <instance>

$ nova migrate testinst

The other migration method would be to perform live instance migration. This
method will remove the requirement of shutting down the instance, as it was
highlighted in the traditional migration process described above. Instead of shutting
down the instance, it is suspended (still in a running state) till it is reassigned to a
new compute node. There are additional system requirements that are needed in
order to leverage the live-migration functionality. The requirements are as follows:

•	 Some sort of shared or external storage capability must exist between your
compute nodes

Chapter 6

[77]

•	 With live-migration, you can select the new compute node but you must
assure that the new node has the resources required for the new instance

•	 The old and new compute nodes must have the same CPU (OpenStack
releases before Kilo may encounter an issue if this is not the case)

The first requirement is the most important one on the list and deserves some
further explanation. The additional storage requirement can be covered in three
different ways:

•	 The first way to satisfy the demand is to configure your hypervisors to store
and have access to the shared storage; for instance, placement. It means
that the instances are stored on the shared storage device and not on the
ephemeral storage. This could involve mounting NFS share on the compute
node to be used to store instances or through fiber channel sharing a LUN
across the compute nodes, for example.

•	 The second approach to satisfy the shared or external storage requirement
can be to leverage direct block storage, where your instances are backed by
image-based root disks.

•	 The third and final approach could be the boot from volume storage
capability. This is where you are booting instances off of Cinder-based
volumes. Of course, you will need the block storage service (Cinder) enabled
and configured within your OpenStack cloud.

The key message, in relation to utilizing the live-migration
capability, within Nova is that your instances must exist on some
sort of shared or external storage and cannot use ephemeral storage
local to the compute node.

A working example of an instance live-migration command via the Nova CLI would
be as follows:

$ nova live-migration <instance><new compute node>
$ nova live-migration testinst compute01

As mentioned earlier, the whole concept of instance migration can range from being
very simple all the way to being extremely complex. We hope that you can now
clearly understand what is required and the process followed during an instance
migration. Let's now examine the process of manually migrating an instance using
the CLI.

For simplicity purposes, we will demonstrate the manual
commands using the OpenStack CLI only.

Migrating Instances

[78]

Manually migrating instances
The Compute service (Nova) is responsible for managing the instance migration
process. Nova behind the scenes will execute all the steps needed to reassign
the instance(s) to the new node and the movement of the instance image or file.
Similar to every OpenStack service, you must authenticate against Keystone either
by sourcing the OpenRC file discussed in Chapter 1, An Introduction to OpenStack,
or by passing authentication parameters in-line with the command. The two
tasks, individually, require different parameter values to be provided in order to
successfully execute the command. See the following example:

For instance migration using OpenRC file, use the following commands:

$ source openrc

$ nova migrate <instance>

For instance backup passing the authentication parameters inline:

$ nova --os-username=<OS_USERNAME> --os-password=<OS_PASSWORD> --os-
tenant-name=<OS_TENANT_NAME> --os-auth-url=<OS_AUTH_URL> migrate
<instance>

With the nova migrate command you can add an optional additional argument
to the command to report the instance migration process. The --poll argument
can be used with various other Nova commands as well. It is something I will not
use regularly when automating OpenStack tasks, for obvious reasons. Since the
migration process can take some time and we are executing the task manually, it
helps to keep track of its progress. An example of adding that optional argument
would be:

$ nova migrate --poll <instance>

Since the traditional nova migrate command without the --poll argument
does not output anything on the screen, you will need to execute a subsequent
command to check on the migration status. The follow-up command will be the nova
migration-list command.

A real life working example with an OpenRC file will look something similar to this:

$ source openrc

$ nova list

$ nova migrate test-1ae02fae-93ca-4485-a797-e7f781a7a25b

The output of the nova migration-list command will appear similar to:

Chapter 6

[79]

The complete output provided in the preceding command will vary, based on any
previous migrations executed. The key information to focus on is the Status of the
migration for the instance you just attempted to migrate. The status will be reported
as either migrating or finished. Once the status is updated to finished, you can
confirm the migration of the instance. After migration the instance will be in a
VERIFY_RESIZE state by default, whether or not if you actually resized it. If you
issue a nova show command the output will appear similar to this:

You will then need to execute the nova resize-confirm command to put the
instance back in the ACTIVE state. The following example demonstrates this task:

$ nova resize-confirm test-1ae02fae-93ca-4485-a797-e7f781a7a25b

Migrating Instances

[80]

At this point you are good to go! Your instance will get migrated to a new compute
node and run in an active state. For those of us who have learned to accept the
traditional migration process, the next statement normally is, "Why can't I migrate an
instance to a specific compute node, using the nova migrate command?". We will talk about
this in the next section.

Migrating an instance to a specific compute
node
The honest and straight answer to the above question is, I have no clue why this
capability was not included. The good thing, just like most things within OpenStack,
is that there is always a way to get it to do what you want.

Note that the steps outlined in the next section are 100% a workaround
(a mid-grade dirty workaround) and should not be used within a
production environment, without first executing multiple levels of
testing to ensure the expected functionality.

As covered in the preceding sections, you cannot migrate an instance to a specific
compute node using the traditional migration method. The option just does not
exist (hope that changes soon). However, you can trick the Nova scheduler to place
the instance on a selected compute node by disabling the other compute nodes. The
Nova scheduler will then have no choice but to migrate the instance to the compute
node you selected. Yes, in your mind you just called me an idiot; don't worry, it is
not as intrusive as it sounds on paper.

The OpenStack control plane services are designed to report the status of the
distributed components, such as compute nodes and/or cinder nodes; for example,
the report received is stored within the OpenStack database and this is how the
control plane services know if a particular node is up or down. Similarly, the control
plane services can also force a report of a nodes status.

The Compute service (Nova) is an example service that can force a report on the
status of a compute node. This will simply mark a compute node as up or down
within the database and never actually do anything physically to the compute node.
All the instances running on those compute nodes will remain running and the
overall functionality of the node will go unchanged. However, the time for which the
node is disabled within the database will prevent new instances to be created there.
If you have a very busy and continuously changing OpenStack cloud and are not
using a segregated set of compute nodes, this work-around is probably not a
wise idea.

Chapter 6

[81]

Due to its intrusive nature, it feels like a perfect administrative task to try and
automate. With something like this, timing and accuracy is very critical. Wasting
something as small as a minute could equate to the failure of being able to create any
number of new instances by the cloud consumers inside your OpenStack cloud. For
tasks of this nature, automation is king. In the next few sections, we will review the
required steps to automate this task.

Automation considerations
This task also did not require any new framework decisions. All the other
automation decisions we reviewed previously and carried over.

Before we start, it is worth noting that when automating a task, such as this one,
(migrating an instance and disabling compute nodes) it is best to collect the details
concerning them both before and after the migration. Having those details will
simplify the process of reversing your changes, if required. Yes, this will add
additional tasks to your role making it slightly more complex but still well worth it.

With that said, we are now ready to proceed to create our next playbook and role.

Coding the playbook and roles
In this section, we will now create the playbook and role that will allow you to
migrate an instance to a specific compute node using the traditional nova migrate
command. Unlike the other tasks that we have created so far, there is really only
one way to handle this task. We will take the steps outlined in the preceding two
sections, automate them to make sure that we have to supply only a few variable
values, and then execute only one command.

This chapter started off with talking about instance migration and how there
are two options within Nova to handle this; namely, traditional migration and
live-migration. The traditional migration process is basically a one step process
but in order to properly automate this task we will need to add a few more steps
to the process. A brief outline of the tasks that we will have to create are:

1.	 List the compute nodes.
2.	 Collect pre-migration instance details.
3.	 Disable all compute nodes except for the one we want the instance

to migrate to.
4.	 Migrate the instance.

Migrating Instances

[82]

5.	 Enable all compute nodes.
6.	 Confirm instance migration.
7.	 Collect post-migration instance details.

Since we are only creating a role in this example, we can start with the main.yml file
within the role directory named instance-migrate/tasks. The initial contents of
this file will look similar to the following code:

- name: Retrieve hypervisor list
shell: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
hypervisor-list | awk 'NR > 3' | awk '$4 != "{{ desthype }}" { print
$4 }'
register: hypelist

The first step to retrieving the complete list of compute nodes within your OpenStack
cloud is very easy if we use the nova hypervisor-list command. Once you get
these results, it is best to strip down the output to provide just the information you
need. Again, we will do this using the awk command and pipe (|) symbol. You will
note that this is similar to how we did it in the last chapter. Remember that the
shell module is used here because we are executing commands that require
shell-specific operations.

For this particular task, we have to get a bit magical with the awk commands:

awk 'NR > 3' | awk '$4 != "{{ desthype }}" { print $4 }'

Not only will it pull off the first three lines of the standard CLI output, it will also
check the fourth column and print the complete output excluding the value within
the {{ desthype }} variable being passed. The consolidated output will then be
registered into a variable named hypelist.

The next task will now collect the pre-migration instance details that will be stored
for later use within the role. The code to accomplish this looks similar to the
following code:

- name: Collect pre-migration instance details
shell: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
list --name {{ instance }} --fields OS-EXT-SRV-ATTR:host | awk 'NR >
3' | awk '{ print $4 }'
register: preinststat

Chapter 6

[83]

For this task, we are again using the Nova CLI to provide the instance details
using the nova list command. You could have, just as well, used the nova
show command to list the instance details. A distinct difference between the two
commands is that with the nova list command you can choose which fields to
return for the output. To do this, add the optional argument of --fields and a
comma-delimited list of instance related field names to the command.

The following example will return only the instance ID, name, and status:

nova list --fields name,status

In our particular case, we want to know the compute node that the particular
instance is currently running on. Thus our command will look similar to:

nova list --name {{ instance }} --fields OS-EXT-SRV-ATTR:host

The output will look similar to the following screenshot:

The third task will be to disable the compute node(s) that you do not want the
instance to migrate to; remember that we are only disabling the compute nodes
within Nova and not physically changing the state of the compute node(s).
The code to do this will look similar to the following example:

- name: Disable unselected hypervisors
command: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
service-disable {{ item }} nova-compute --reason '{{ migreason }}'
with_items: hypelist.stdout_lines

With use of the nova service-disable command, you can tell Nova to disable any
particular Nova related service on remote hosts. In order to have Nova scheduler
ignore or skip a compute node, you need to disable the nova-compute service. The
command also requires a reason to be provided, of which will be stored in the Nova
database for later reference if required. It is in this task where we will use the list of
compute node(s) stored in the hypelist variable collected earlier.

Migrating Instances

[84]

Note that we will not disable the compute node that we want the instance
to be migrated to, as we have filtered it out of the list already.

Moving onto the fourth task, we will now execute the instance migration. At this
point, only the compute node you specify is enabled and nothing special needs
to be done in reference to the nova migrate command except adding the --poll
argument, so we can pause the role execution until the migration completes. See the
following supporting code:

- name: Migrate instance
command: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
migrate --poll {{ instance }}

Once the migration is completed, we need to immediately enable the compute
node(s) that were disabled. One of the things I appreciate about OpenStack is, if you
are given a command to disable something, you are normally given a command to
re-enable it. So, we will simply execute the nova service-enable command and
we will use the hypelist variable to provide the list of compute node(s) to execute
against. The following code is used:

- name: Enable the disabled hypervisors
command: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
service-enable {{ item }} nova-compute
with_items: hypelist.stdout_lines

Now that the migration is complete and the compute node(s) is enabled, we can
focus on completing the instance migration process. The last step in an instance
migration process is to notify Nova that you acknowledge that the instance was
moved. At first glance, I could live without this step, but in hindsight some sort of
confirmation does make overall sense. The code for this task is as follows:

- name: Confirm instance migration
command: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
resize-confirm {{ instance }}

Chapter 6

[85]

The last two final tasks will be used to provide the individual running the playbook
with a visual confirmation of what was done. You can consider this more of an
automation fail safe and less of a requirement. With an administrative task as
complex as this, it is always a good common practice to output some details
of what was changed on your system:

- name: Collect post-migration instance details
shell: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
list --name {{ instance }} --fields OS-EXT-SRV-ATTR:host,status | awk
'NR > 3' | awk '{ print $4 " and has a status of " $6 }' | awk 'NR ==
1'
register: postinststat

- name: Show instance location and status
debug: msg="{{ instance }} was migrated from {{ item.0 }} to {{ item.1
}}"
with_together:
- preinststat.stdout_lines
- postinststat.stdout_lines

These two tasks will first collect post-migration instance details and then use the
information collected from the preinststat and postinststat variables to output
to the screen a synopsis of the changes. The synopsis template used will be:

<instance migrated> was migrated from <compute node> to <compute node>
and has a status of <instance current status>

Feel free to go in and change it to fit your needs. This is just my
opinionated approach. It felt right to keep it simple, while still
supplying the pertinent details we care about when handling a
migration. Upon the review of the playbook recap, if something went
wrong and/or was implemented incorrectly, you should be able to
quickly target steps for remediation.

Congratulations again; you have just completed your fourth OpenStack
administration role. To support this role, we now need to create the variable file that
will go along with it—the variable file named main.yml, which will be located in the
instance-migrate/vars directory.

Keep in mind that the values defined in the variable file are intended
to be changed before each execution, for normal everyday use.

Migrating Instances

[86]

For this role, we kept it pretty simple on the variables front and only needed to
define three variables:

desthype: 021579-compute02
instance: testG-2c00131c-c2c7-4eae-aa90-981e54ca7b04
migreason: "Migrating instance to new compute node"

Let's take a moment to break down each variable. The summary will be:

desthype # this value would be the name of the compute node you wish
to migrate the instance to

instance # the name of the instance to be migrated

migreason: # a string encapsulated in quotes to explain the reason for
migrating the instance (keep the string brief)

With the variable file completed, we can now move on to creating the master
playbook file. The file will be named migrate.yml and saved to the root of the
playbook directory.

The playbook and role names can be anything you choose. The
specific names have been provided here in order to allow for you to
easily follow along and reference the completed code found in the
GitHub repository. The only warning is, whatever you decide to
name the roles must remain uniform when referenced from within
the playbook(s).

The contents of the migrate.yml file will be:

This playbook used to migrate instance to specific compute node.

- hosts: util_container
user: root
remote_user: root
sudo: yes
roles:
- instance-migrate

Chapter 6

[87]

The summary of this file is as follows:

hosts # the host or host group to execute the playbook against

user # the user to use when executing the playbook locally

remote_user # the user to use when executing the playbook on the
remote host(s)

sudo # will tell Ansible to sudo into the above user on the
remote host(s)

roles # provide a list of roles to execute as part of this
playbook

Adding content to our host inventory file and the global variable file was done two
chapters ago, so we already have that part covered. The values defined earlier will
remain the same. The following is a quick recap of how those files are configured.

The hosts file in the root of the playbook directory:

[localhost]
localhostansible_connection=local

[util_container]
172.29.236.199

The global variable file inside the group_vars/ directory:

Here are variables related globally to the util_container host group

OS_USERNAME: ansible
OS_PASSWORD: passwd
OS_TENANT_NAME: admin
OS_AUTH_URL: http://172.29.236.7:35357/v2.0

A word of caution
Due to the contents of this file, it should be stored as a secure file within
whatever code repository you may want to use to store your Ansible
playbooks/roles. Gaining access to this information can compromise your
OpenStack cloud security.

Migrating Instances

[88]

We are moving along very smoothly now, smile, you did it! Hoping that by this
point everything is becoming a bit clearer. Keeping with our tradition, we will finish
up the chapter with a quick review of the playbook and the role just created.

Playbook and role review
Let's jump right into examining the role we created called instance-migrate. The
completed role and file named main.yml located in the instance-migrate/tasks
directory looks similar to the following example:

- name: Retrieve hypervisor list
shell: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
hypervisor-list | awk 'NR > 3' | awk '$4 != "{{ desthype }}" { print
$4 }'
register: hypelist

- name: Collect pre-migration instance details
shell: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
list --name {{ instance }} --fields OS-EXT-SRV-ATTR:host | awk 'NR >
3' | awk '{ print $4 }'
register: preinststat

- name: Disable unselected hypervisors
command: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
service-disable {{ item }} nova-compute --reason '{{ migreason }}'
with_items: hypelist.stdout_lines

- name: Migrate instance
command: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
migrate --poll {{ instance }}

- name: Enable the disabled hypervisors
command: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}

Chapter 6

[89]

service-enable {{ item }} nova-compute
with_items: hypelist.stdout_lines

- name: Confirm instance migration
command: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
resize-confirm {{ instance }}

- name: Collect post-migration instance details
shell: nova --os-username={{ OS_USERNAME }} --os-password={{ OS_
PASSWORD }} --os-tenant-name={{ OS_TENANT_NAME }} --os-auth-url={{
OS_AUTH_URL }}
list --name {{ instance }} --fields OS-EXT-SRV-ATTR:host,status | awk
'NR > 3' | awk '{ print $4 " and has a status of " $6 }' | awk 'NR ==
1'
register: postinststat

- name: Show instance location and status
debug: msg="{{ instance }} was migrated from {{ item.0 }} to {{ item.1
}}"
with_together:
- preinststat.stdout_lines
- postinststat.stdout_lines

The corresponding variable file named main.yml, located in the instance-migrate/
vars directory, for this role will look similar to the following example:

desthype: 021579-compute02
instance: testG-2c00131c-c2c7-4eae-aa90-981e54ca7b04
migreason: "Migrating instance to new compute node"

Next, the master playbook file named migrate.yml, located in the root of the
playbook directory, will look similar to the following example:

This playbook used to migrate instance to specific compute node.

- hosts: util_container
user: root
remote_user: root
sudo: yes
roles:
- instance-migrate

Migrating Instances

[90]

Following that, we created the hosts file, which is also located in the root of the
playbook directory:

[localhost]
localhostansible_connection=local

[util_container]
172.29.236.199

Finally, creating the global variable file named util_container and saving it to the
group_vars/ directory of the playbook will complete the playbook:

Here are variables related globally to the util_container host group

OS_USERNAME: ansible
OS_PASSWORD: passwd
OS_TENANT_NAME: admin
OS_AUTH_URL: http://172.29.236.7:35357/v2.0

The complete set of code can again be found in the following GitHub
repository:
https://github.com/os-admin-with-ansible/os-admin-
with-ansible

We have finally landed on my favorite part of creating Ansible playbooks and roles,
which is to test out our great work. Fortunately, for you I have knocked out all
the bugs already (wink wink). Assuming you have cloned the GitHub repository
from the link provided in the note, the command to test the playbook from the
Deployment node will be as follows:

$ cd os-admin-with-ansible

$ ansible-playbook –i hosts migrate.yml

A sample of the playbook execution output is as shown in the following screenshot:

https://github.com/os-admin-with-ansible/os-admin-with-ansible
https://github.com/os-admin-with-ansible/os-admin-with-ansible

Chapter 6

[91]

Summary
It's nice to have completed yet another chapter covering real-life OpenStack
administrative duties. The more you create playbooks and roles, the faster you will
be able to create a new code just by simply reusing the code created earlier for other
purposes. Before this book is over, you will have a nice collection of playbooks/roles
to reference for future Ansible automation.

Taking a moment to recap this chapter, you will recall that we covered what an
instance migration is and why you might want to use this functionality, we reviewed
the two possible migration methods—traditional and live-migration—learned how
to manually migrate an instance, and also a work-around on how to use traditional
migration to migrate an instance to a specific compute node. Lastly, we created the
Ansible playbook and role to automate that work-around approach.

Migrating Instances

[92]

The next chapter is near and dear to my heart, as it required me to spend hours
perfecting it for a customer I was working with at the time. It even granted me a
Hands-on Labs talk slot at the OpenStack Summit that was hosted in Vancouver.
While it may not be a traditional OpenStack administrative task asked of you, it
will help demonstrate the functional power OpenStack natively has around being
able to strictly isolate tenants consuming your clouds resources. In the next chapter,
we will cover the steps required to implement multi-isolation within your cloud
and demonstrate why automating such a complex administrative task is extremely
important. Grab another cup of coffee, have a quick stretch, and let's start with
Chapter 7, Setting up Isolated Tenants.

	Chapter 06_Migrating Instances.pdf
	Migrating Instances
	Instance migration
	Manually migrating instances
	Migrating an instance to a specific compute node
	Automation considerations
	Coding the playbook and roles
	Playbook and role review
	Summary

