
1

1Securing DevOps

This chapter covers
¡	Getting to know DevOps and its impact on

building cloud services

¡	Using continuous integration, continuous
delivery, and infrastructure as a service

¡	Evaluating the role and goals of security in a
DevOps culture

¡	Defining the three components of a DevOps
security strategy

Connected applications that make little parts of our life easier are the technological
revolution of the twenty-first century. From helping us do our taxes, share photos
with friends and families, and find a good restaurant in a new neighborhood, to
tracking our progress at the gym, applications that allow us to do more in less time
are increasingly beneficial. The growth rates of services like Twitter, Facebook, Insta
gram, and Google show that customers find tremendous value in each application,
either on their smartphones’ home screen or in a web browser.

Part of this revolution was made possible by improved tooling in creating and oper-
ating these applications. Competition is tough on the internet. Ideas don’t stay new

2 Chapter 1  Securing DevOps

for long, and organizations must move quickly to collect market shares and lock in users
of their products. In the startup world, the speed and cost at which organizations can
build an idea into a product is a critical factor for success. DevOps, by industrializing the
tools and techniques of the internet world, embodies the revolution that made it possi-
ble to run online services at a low cost, and let small startups compete with tech giants.

In the startup gold rush, data security sometimes suffers. Customers have shown
their willingness to trust applications with their data in exchange for features, leading
many organizations to store enormous amounts of personal information about their
users, often before the organization has a security plan to handle the data. A compet-
itive landscape that makes companies take risks, mixed with large amount of sensitive
data, is a perfect recipe for disaster. And so, as the number of online services increases,
the frequency of data breaches increases as well.

Securing DevOps is about helping organizations operate securely and protect the data
their customers entrust them with. I introduce a model I refer to as “continuous secu-
rity,” which focuses on integrating strong security principles into the various compo-
nents of a DevOps strategy. I explain culture, architectural principles, techniques, and
risk management with the goal of going from no security to a mature program. This
book is primarily about principles and concepts, but throughout the chapters we’ll use
specific tools and environments as examples.

DevOps can mean many different things, depending on which part of information
technology (IT) it’s being applied to. Operating the infrastructure of a nuclear plant is
very different from processing credit card payments on websites, yet both equally bene-
fit from DevOps to optimize and strengthen their operations. I couldn’t possibly cover
all of DevOps and IT in a single book, and decided to focus on cloud services, an area
of IT dedicated to the development and operations of web applications. Throughout
the book, I invite the reader to develop, operate, secure, and defend a web application
hosted in the cloud. The concepts and examples I present best apply to cloud services,
in organizations that don’t yet have a dedicated security team, yet an open-minded
reader could easily transfer them into any DevOps environment.

In this first chapter, we’ll explore how DevOps and security can work together, allow-
ing organizations to take risks without compromising the safety of their customers.

1.1	 The DevOps approach
DevOps is the process of continuously improving software products through rapid
release cycles, global automation of integration and delivery pipelines, and close
collaboration between teams. The goal of DevOps is to shorten the time and reduce
the cost of transforming an idea into a product that customers use. DevOps makes
heavy use of automated processes to speed up development and deployment. Fig-
ure 1.1 shows a comparison of a traditional software-building approach at the top, with
DevOps at the bottom.

¡	In the top section, the time between conceptualization and availability to customers is eight
days. Deploying the infrastructure consumes most of that time, as engineers need

	 3The DevOps approach

to create the components needed to host the software on the internet. Another
big time-consumer is the testing-and-reviewing step between deployments.

¡	In the bottom section, the time between conceptualization and delivery is reduced to two
days. This is achieved by using automated processes to handle the infrastructure
deployment and software test/review.

Code
repository

Code
repository

Idea
0 1 2 3 4 5 6 7 8

Continuous
delivery

Live infrastructure
Availability to customers

Live
infrastructure

availability
to customers

Develop-
ment

Manual unit testing
Peer review

Peer
review

Manual
deployment

review

Continuous
integration

(unit tests, ...)

Infrastructure deployment
Create servers

Configure network
Deploy application

Traditional ops
DevOps

Days

Figure 1.1   DevOps reduces the time between feature conception and its availability to customers.

An organization able to build software four times faster than its competitor has a signif-
icant competitive advantage. History shows that customers value innovative products
that may be incomplete at first but improve quickly and steadily. Organizations adopt
DevOps to reduce the cost and latency of development cycles and answer their custom-
ers’ demands.

With DevOps, developers can release new versions of their software, test them, and
deploy them to customers in as little as a few hours. That doesn’t mean versions are
always released that quickly, and it can take time to do proper quality assurance (QA),
but DevOps provides the ability to move quickly if needed. Figure 1.2 zooms into the
bottom section of figure 1.1 to detail how the techniques of continuous integration,
continuous delivery, and infrastructure as a service are used together to achieve fast
release cycles.

The key component of the pipeline in figure 1.2 is the chaining of automated steps
to go from a developer’s patch submission to a service deployed in a production envi-
ronment in a completely automated fashion. Should any of the automated steps fail
along the way, the pipeline is stopped, and the code isn’t deployed. This mechanism
ensures that tests of all kinds pass before a new version of the software can be released
into production.

4 Chapter 1  Securing DevOps

Continuous integration
Check the code

works as intended

Developer sends
patch to code
repository

Code
repository

Automated
unit/integration

tests

Developer
peer review

Continuous delivery
Check the code is robust and

deploy it to a live server

Automated
deployment

Quality assurance (load
tests, user acceptance)

Infrastructure as a service
Host the application

in the cloud

Database

Application server

Load balancer

Automated
security

tests

Figure 1.2   Continuous integration (CI), continuous delivery (CD), and infrastructure as a service
(IaaS) form an automated pipeline that allows DevOps to speed up the process of testing and deploying
software.

1.1.1	 Continuous integration

The process of quickly integrating new features into software is called continuous inte-
gration (CI). CI defines a workflow to implement, test, and merge features into soft-
ware products. Product managers and developers define sets of small features that are
implemented in short cycles. Each feature is added into a branch of the main source
code and submitted for review by a peer of the developer who authored it. Automated
tests happen at the review stage to verify that the change doesn’t introduce any regres-
sions, and that the quality level is maintained. After review, the change is merged into
the central source-code repository, ready for deployment. Quick iterations over small
features make the process smooth and prevent breakage of functionalities that come
with large code changes.

1.1.2	 Continuous delivery

The automation of deploying software into services available to customers is called
continuous delivery (CD). Rather than managing infrastructure components by hand,
DevOps recommends that engineers program their infrastructure to handle change
rapidly. When developers merge code changes into the software, operators trigger
a deployment of the updated software from the CD pipeline, which automatically
retrieves the latest version of the source code, packages it, and creates a new infrastruc-
ture for it. If the deployment goes smoothly, possibly after the QA team has manually
or automatically reviewed it, the environment is promoted as the new staging or pro-
duction environment. Users are directed to it, and the old environment is destroyed.

	 5The DevOps approach

The process of managing servers and networks with code alleviates the long delays
usually needed to handle deployments.

1.1.3	 Infrastructure as a service

Infrastructure as a service (IaaS) is the cloud. It’s the notion that the data center, net-
work, servers, and sometimes systems an organization relies on, are entirely operated
by a third party, controllable through APIs and code, and exposed to operators as a ser-
vice. IaaS is a central tool in the DevOps arsenal because it plays an important role in
the cost reduction of operating infrastructures. Its programmable nature makes IaaS
different from traditional infrastructure and encourages operators to write code that
creates and modifies the infrastructure instead of performing those tasks by hand.

Operating in-house
Many organizations prefer to keep their infrastructure operated internally for a variety
of reasons (regulation, security, cost, and so on). It’s important to note that adopting an
IaaS doesn’t necessarily mean outsourcing infrastructure management to a third party.
An organization can deploy and operate IaaS in-house, using platforms like Kubernetes
or OpenStack, to benefit from the flexibility those intermediate management layers bring
over directly running applications on hardware.

For the purposes of this book, I use an IaaS system operated by a third party—AWS—pop-
ular in many organizations for reducing the complexity of managing infrastructure and
allowing them to focus on their core product. Yet, most infrastructure security concepts I
present apply to any type of IaaS, whether you control the hardware or let a third party do
it for you.

Managing the lower layers of an infrastructure brings a whole new set of problems, like
network security and data-center access controls, that you should be taking care of. I
don’t cover those in this book, as they aren’t DevOps-specific, but you shouldn’t have
trouble finding help in well-established literature.

Amazon Web Services (AWS), which will be used as our example environment through-
out the book, is the most emblematic IaaS. Figure 1.3 shows the components of AWS
that are managed by the provider, at the bottom, versus the ones managed by the oper-
ator, at the top.

CI, CD, and IaaS are fundamental components of a successful DevOps strategy.
Organizations that master the CI/CD/IaaS workflow can deploy software to end users
rapidly, possibly several times a day, in a fully automated fashion. The automation of
all the testing and deployment steps guarantees that minimal human involvement is
needed to operate the pipeline, and that the infrastructure is fully recoverable in case
of disaster.

Beyond the technical benefits, DevOps also influences the culture of an organiza-
tion, and in many ways, contributes to making people happier.

6 Chapter 1  Securing DevOps

Virtual-machines hosts

Database

Virtual machinesLogical
file storage

Managed by AWS

Managed by operator

Internet

Router Firewall Switch

Figure 1.3   AWS is an IaaS that reduces the operational burden by handling the management of core
infrastructure components. In this diagram, equipment in the lower box is managed entirely by Amazon,
and the operator manages the components in the upper box. In a traditional infrastructure, operators
must manage all the components themselves.

1.1.4	 Culture and trust

Improved tooling is the first phase of a successful DevOps approach. Culture shifts
accompany this change, and organizations that mature the technical aspects of DevOps
gain confidence and trust in their ability to bring new products to their users. An inter-
esting side effect of increased trust is the reduced need for management as engineers
are empowered to deliver value to the organization with minimal overhead. Some
DevOps organizations went as far as experimenting with flat structures that had no
managers at all. Although removing management entirely is an extreme that suits few
organizations, the overall trend of reduced management is evidently linked to mature
DevOps environments.

Organizations that adopt and succeed at DevOps are often better at finding and
retaining talent. It’s common to hear developers and operators express their frustra-
tion with working in environments that are slow and cluttered. Developers feel annoyed
waiting for weeks to deploy a patch to a production system. Operators, product manag-
ers, and designers all dislike slow iterations. People leave those companies and turnover
rates can damage the quality of a product. Companies that bring products to market
faster have a competitive advantage, not only because they deliver features to their
users faster, but also because they keep their engineers happy by alleviating operational
complexity.

DevOps teaches us that shipping products faster makes organizations healthier and
more competitive, but increasing the speed of shipping software can make the work of

	 7Security in DevOps

security engineers difficult. Rapid release cycles leave little room for thorough security
reviews and require organizations to take on more technological risks than in a slower
structure. Integrating security in DevOps comes with a new set of challenges, starting
with a fundamental security culture shift.

1.2	 Security in DevOps

“A ship is safe in harbor, but that’s not what ships are built for.”

—John A. Shedd

To succeed in a competitive market, organizations need to move fast, take risks, and
operate at a reasonable cost. The role of security teams in those organizations is to be
the safety net that protects the company’s assets while helping it to succeed. Security
teams need to work closely with the engineers and managers who build the company’s
products. When a company adopts DevOps, security must change its culture to adopt
DevOps as well, starting with a focus on the customer.

DevOps and its predecessors—the Agile Manifesto (http://agilemanifesto.org/)
and Deming’s 14 principles (https://deming.org/explore/fourteen-points)—have
one trait in common: a focus on shipping better products to customers faster. Every suc-
cessful strategy starts with a focus on the customer (http://mng.bz/GN43):

“We’re not competitor obsessed, we’re customer obsessed. We start with what the customer
needs and we work backwards.”

—Jeff Bezos, Amazon

In DevOps, everyone in the product pipeline is focused on the customer:

¡	Product managers measure engagement and retention ratios.
¡	Developers measure ergonomics and usability.
¡	Operators measure uptime and response times.

The customer is where the company’s attention is. The satisfaction of the customer is the
metric everyone aligns their goals against.

In contrast, many security teams focus on security-centric goals, such as

¡	Compliance with a security standard
¡	Number of security incidents
¡	Count of unpatched vulnerabilities on production systems

When the company’s focus is directed outward to its customers, security teams direct
their focus inward to their own environment. One wants to increase the value of the
organization, while the other wants to protect its existing value. Both sides are nec-
essary for a healthy ecosystem, but the goal disconnect hurts communication and
efficiency.

In organizations that actively measure goals and performance of individual teams to
mete out bonuses and allocate rewards, each side is pressured to ignore the others and

http://agilemanifesto.org/
https://deming.org/explore/fourteen-points
http://mng.bz/GN43

8 Chapter 1  Securing DevOps

focus on its own achievements. To meet a goal, developers and operators ignore secu-
rity recommendations when shipping a product that may be considered risky. Security
blocks projects making use of unsafe techniques and recommends unrealistic solutions
to avoid incidents that could hurt their bottom line. In situations like these, both sides
often hold valid arguments, and are well intended, but fail to understand and adapt to
the motivation of the other.

As a security engineer, I’ve never encountered development or operational teams
that didn’t care about security, but I have met many frustrated with the interaction and
goal disconnects. Security teams that lack the understanding of the product strategy,
organize arbitrary security audits that prevent shipping features, or require complex
controls that are difficult to implement are all indicators of a security system that’s
anything but agile. Seen from the other side, product teams that ignore the experi-
ence and feedback of their security team are a source of risk that ultimately hurts the
organization.

DevOps teaches us that a successful strategy requires bringing the operational side
closer to the development side and breaking the communication barrier between var-
ious developers and operators. Similarly, securing DevOps must start with a close inte-
gration between security teams and their engineer peers. Security needs to serve the
customer by being a function of the service, and the internal goals of security teams
and DevOps teams need to be aligned.

When security becomes an integral part of DevOps, security engineers can build
controls directly into the product rather than bolting them on top of it after the fact.
Everyone shares the same goals of making the organization succeed. Goals are aligned,
communication is improved, and data safety increases. The core idea behind bringing
security into DevOps is for security teams to adopt the techniques of DevOps and switch
their focus from defending only the infrastructure to protecting the entire organiza-
tion by improving it continuously.

Throughout the book, I call this approach continuous security. In the following sec-
tion, you’ll see how to implement continuous security gradually, starting with simple
and easy-to-implement security controls, and progressively maturing the security strat-
egy to cover the entire organization.

1.3	 Continuous security
Continuous security is composed of three areas, outlined in the gray boxes of figure
1.4. Each area focuses on a specific aspect of the DevOps pipeline. As customer feed-
back spurs organizational growth that drives new features, the same is true of contin-
uous security. This book has three parts; each covers one area of continuous security:

¡	Test-driven security (TDS) —The first step of a security program is to define, imple-
ment, and test security controls. TDS covers simple controls like the standard
configuration of a Linux server, or the security headers that web applications
must implement. A great deal of security can be obtained by consistently imple-
menting basic controls and relentlessly testing those controls for accuracy. In

	 9Continuous security

good DevOps, manual testing should be the exception, not the rule. Security
testing should be handled the same way all application tests are handled in the
CI and CD pipelines: automatically, and all the time. We’ll cover TDS by applying
layers of security to a simple DevOps pipeline in part 1.

CI CD

(3)
Assessing risks and

maturing security

(2)
Monitoring and

responding to attacks

(1)
Test-driven security

Product

Application source code is managed in continuous
integration (CI), where automated tests guarantee
the quality and security of the software.

Continuous security

Customers

Customers use applications and provide feedback that influences future improvements.

IaaS

The organization
builds features
packaged into
products that
improve over
time.

Infrastructure as a service (IaaS)
exposes the underlying components
that run applications through APIs.

Continuous delivery (CD) deploys packaged
applications to staging environments, where
more tests are run prior to promoting the
changes to the production environment.

Figure 1.4   The three phases of continuous security protect the organization’s products and customers
by constantly improving security through feedback loops.

¡	Monitoring and responding to attacks —It’s the fate of online services that they will
get broken into eventually. When incidents happen, organizations turn to their
security teams for help, and a team must be prepared to react. The second phase
of continuous security is to monitor and respond to threats and protect the ser-
vices and data the organization relies on. In part 2, I talk about techniques like
fraud and intrusion detection, digital forensics, and incident response, with the
goal of increasing an organization’s preparedness for an incident.

¡	Assessing risks and maturing security —I talk about technology a lot in the first two
parts of the book, but a successful security strategy can’t succeed when solely
focused on technical issues. The third phase of continuous security is to go
beyond the technology and look at the organization’s security posture from a
high altitude. In part 3, I explain how risk management and security testing, both
internal and external, help organizations refocus their security efforts and invest
their resources more efficiently.

Mature organizations trust their security programs and work together with their
security teams. Reaching that point requires focus, experience, and a good sense of

10 Chapter 1  Securing DevOps

knowing when to take, or refuse to take, risks. A comprehensive security strategy mixes
technology and people to identify areas of improvement and allocate resources appro-
priately, all in rapid improvement cycles. This book aims to give you the tools you need
to reach that level of maturity in your organization.

With a model of continuous security in mind, let’s now take a detailed look at each of
its three components, and what they mean in terms of product security.

1.3.1	 Test-driven security

The myth of attackers breaking through layers of firewalls or decoding encryption
with their smartphones makes for great movies, but poor real-world examples. In most
cases, attackers go for easy targets: web frameworks with security vulnerabilities, out-of-
date systems, administration pages open to the internet with guessable passwords, and
security credentials mistakenly leaked in open source code are all popular candidates.
Our first goal in implementing a continuous security strategy is to take care of the
baseline: apply elementary sets of controls on the application and infrastructure of the
organization and test them continuously. For example:

¡	SSH root login must be disabled on all systems.
¡	Systems and applications must be patched to the latest available version within 30

days of its release.
¡	Web applications must use HTTPS, never HTTP.
¡	Secrets and credentials must not be stored with application code, but handled

separately in a vault accessible only to operators.
¡	Administration interfaces must be protected behind a VPN.

The list of security best practices should be established between the security team and
the developers and operators to make sure everyone agrees on their value. A list of
baseline requirements can be rapidly assembled by collecting those best practices and
adding some common sense. In part 1 of the book, I talk about various steps in secur-
ing applications, infrastructure, and CI/CD pipelines.

Application security

Modern web applications are exposed to a wide range of attacks. The Open Web Appli-
cation Security Project (OWASP) ranks the most common attacks in a top-10 list pub-
lished every three years (http://mng.bz/yXd3): cross-site scripting, SQL injections,
cross-site request forgery, brute-force attacks, and so on, seemingly endlessly. Thank-
fully, each attack vector can be covered using the right security controls in the right
places. In chapter 3, which covers application security, we’ll take a closer look at the
controls a DevOps team should implement to keep web applications safe.

Infrastructure security

Relying on IaaS to run software doesn’t exempt a DevOps team from caring about
infrastructure security. All systems have entry points that grant elevated privileges, like
VPNs, SSH gateways, or administration panels. When an organization grows, special
care must be taken to continuously protect the systems and networks while opening
new accesses and integrating more pieces together.

http://mng.bz/yXd3

	 11Continuous security

Pipeline security

The DevOps way of shipping products through automation is vastly different from tra-
ditional operations most security teams are used to. Compromising a CI/CD pipeline
can grant an attacker full control over the software that runs in production. Securing
the automated steps taken to deliver code to production systems can be done using
integrity controls like commit or container signing. I’ll explain how to add trust to the
CI/CD pipeline and guarantee the integrity of the code that runs in production.

Testing continuously

In each of the three areas I just defined, the security controls implemented remain
fairly simple to apply in isolation. The difficulty comes from testing and implementing
them everywhere and all the time. This is where test-driven security comes in. TDS is
a similar approach to test-driven development (TDD), which recommends developers
write tests that represent the desired behavior first, and then write the code that imple-
ments the tests. TDS proposes to write security tests first, representing the expected
state, and then implement the controls that pass the tests.

In a traditional environment, implementing TDS is difficult because tests must run
on systems that live for years. But in DevOps, every change to the software or infrastruc-
ture goes through the CI/CD pipeline and is a perfect place to implement TDS, as
shown in figure 1.5.

CD IaaS

DevOps team

Security team

Code
repository

Automated
deployment

CI

Security
tests

Security
tests

Security
tests

Public service

Figure 1.5   Test-driven security integrates into CI/CD to run security tests ahead of deployment in the
production infrastructure.

The TDS approach brings several benefits:

¡	Writing tests forces security engineers to clarify and document expectations.
Engineers can build products with the full knowledge of the required controls
rather than catching up post-implementation.

¡	Controls must be small, specific units that are easy to test. Vague requirements
such as “encrypt network communication” are avoided; instead, we use the

12 Chapter 1  Securing DevOps

explicit “enforce HTTPS with ciphers X, Y, and Z on all traffic,” which clearly
states what’s expected.

¡	Reusability of the tests across products is high, as most products and services
share the same base infrastructure. Once a set of baseline tests is written, the
security team can focus on more-complex tasks.

¡	Missing security controls are detected prior to deployment, giving developers
and operators an opportunity to fix the issues before putting customers at risk.

Tests in the TDS approach will fail initially. This is expected to verify their correctness
once they pass, after the feature is implemented. At first, security teams should help
developers and operators implement controls in their software and infrastructure, tak-
ing each test one by one and providing guidance on implementation, and eventually
transferring ownership of the tests to the DevOps teams. When a test passes, the teams
are confident the control is implemented correctly, and the test should never fail again.

An important part of TDS is to treat security as a feature of the product. This is
achieved by implementing controls directly into the code or the systems of the product.
Security teams that build security outside of the applications and infrastructure will
likely instigate a culture of distrust. We should shy away from this approach. Not only
does it create tensions between teams, it also provides poor security as controls aren’t
aware of the exact behavior of the application and miss things. A security strategy that
isn’t owned by the engineering teams won’t survive for long and will slowly degrade over
time. It’s critical for the security team to define, implement, and test, but it’s equally
critical to delegate ownership of key components to the right people.

TDS adopts the DevOps principles of automating the pipeline and working closely
with teams. It forces security folks to build and test security controls within the envi-
ronments adopted by developers and operators, instead of building their own separate
security infrastructure. Covering the security basics via TDS significantly reduces the
risk of a service getting breached but doesn’t remove the need for monitoring produc-
tion environments.

1.3.2	 Monitoring and responding to attacks

When security engineers get bored, we like to play games. A popular game we used
to play in the mid-2000s was to install a virtual machine with Windows XP completely
unpatched, plug it directly into the internet (no firewall, no antivirus, no proxy), and
wait. Can you guess how long it took for it to get hacked?

Scanners operated by malware makers would detect the system in no time and send
one of the many exploit codes Windows XP was vulnerable to. Within hours, the system
was breached and a backdoor was opened to invite more viruses to contaminate the sys-
tem. It was fun to watch, but more importantly, it helped teach an important lesson: all
systems connected to the internet will eventually get attacked—there are no exceptions.

Operating a popular service on the public internet is, in essence, similar to our Win-
dows XP experiment: at some point, a scanner will pick it up and attempt to break in.

	 13Continuous security

The attack might target specific users and try to guess their passwords, it might take the
service down and ask for a ransom, or it might exploit a vulnerability in the infrastruc-
ture to reach the data layer and extract information.

Modern organizations are complex enough that covering every angle at a reasonable
cost is often not possible. Security teams must pick priorities. Our approach to monitor-
ing and responding to attacks focuses on three areas:

¡	Logging and fraud detection
¡	Detecting intrusions
¡	Responding to incidents

Organization that can achieve these three items are prepared to face a security inci-
dent. Let’s take a high-level view of each of these phases.

Logging and detecting fraud

Generating, storing, and analyzing logs are areas that serve every part of the organi-
zation. Developers and operators need logs to track the health of services. Product
managers use them to measure the popularity of features or retention of users. With
regards to security, we focus on two specific needs:

¡	Detecting security anomalies
¡	Providing forensic capabilities when incidents are being investigated

Although ideal, log collection and analysis is rarely possible. The sheer amount of data
makes storing them impractical. In part 2 of this book, I talk about how to select logs
for security analysis and focus our efforts on specific parts of the DevOps pipeline.

We’ll explore the concept of a logging pipeline to process and centralize log events
from various sources. Logging pipelines are powerful because they provide a single tun-
nel where anomaly detection can be performed. It’s a simpler model than asking each
component to perform detection themselves but can be difficult to implement in a
large environment. Figure 1.6 shows an overview of the core components of a logging
pipeline, which I cover in detail in chapter 7. It has five layers:

¡	A collection layer to record log events from various components of the
infrastructure

¡	A streaming layer to capture and route the log events
¡	An analysis layer to inspect the content of logs, detect fraud, and raise alerts
¡	A storage layer to archive logs
¡	An access layer to allow operators and developers to access logs

A powerful logging pipeline gives a security team the core functionalities it needs to
keep an eye on the infrastructure. In chapter 8, I talk about how to build a solid analy-
sis layer in the logging pipeline and demonstrate various techniques that are useful for
monitoring systems and applications. It will set the foundations that we need to work
on intrusion detection in chapter 9.

14 Chapter 1  Securing DevOps

Database

Archive

Components across
the infrastructure
forward logs to a
central queue.

The message broker
routes log events
from producers to
consumers.

Log events are
processed by small
analysis workers
designed to handle
specific tasks.

Logs are stored in the
database for a short
time, and then
archived for longer.

Collection layer Streaming layer

Systems

Applications

Network flows

Third parties

Message
broker

(log event
queueing)

Analysis layer Storage layer

Operators can query raw logs
and visualize metrics using
dashboards and specific
terminals.

Access layer

Raw
storage

Monitoring

Anomalies
and fraud Alerts

Dashboard

Querying
terminal

Operator

Figure 1.6 A logging pipeline implements a standard tunnel where events generated by the infrastructure
are analyzed and stored.

Detecting intrusions

When breaking into an infrastructure, attackers typically follow these four steps:

1	 Drop a payload on the target servers. The payload is some kind of backdoor
script or malware small enough to be downloaded and executed without attract-
ing attention.

2	 Once deployed, the backdoor contacts the mother ship to receive further instruc-
tions using a command-and-control (C2) channel. C2 channels can take the form of
an outbound IRC connection, HTML pages that contain special keywords hidden in
the body of the page, or DNS requests with commands embedded in TXT records.

3	 The backdoor applies the instructions and attempts to move laterally inside the
network, scanning and breaking into other hosts until it finds a valuable target.

4	 When a target is found, its data must be exfiltrated, possibly through a channel
parallel to the C2 channel.

In chapter 9, I explain how every single one of these steps can be detected by a vigilant
security team. Our focus will be on watching and analyzing network traffic and system
events using these security tools:

¡	Intrusion detection system (IDS) —Figure 1.7 shows how an IDS can detect a C2 chan-
nel by continuously analyzing a copy of the network traffic and applying com-
plex logic to network connections to detect fraudulent activity. IDSs are great
at inspecting gigabytes of network traffic in real time for patterns of fraudulent
activity and, as such, have gained the trust of many security teams. We explore
how to use them in an IaaS environment.

	 15Continuous security

Command-and-
control server Compromised host

Router

C2 channel

Copy of
live traffic

Intrusion-detection
system

Internet

Figure 1.7   Intrusion-detection systems can detect compromised hosts calling home by finding patterns
of fraudulent activity and applying statistical analysis to outbound traffic.

¡	Connection auditing —Analyzing the entire network traffic going through an infra-
structure isn’t always a realistic approach. NetFlow provides an alternative to
audit network connections by logging them into the pipeline. NetFlow is a great
way to audit the activity of the network layer in an IaaS environment when low-
level access isn’t available.

¡	System auditing —Auditing the integrity of live systems is an excellent way to keep
track of what’s happening across the infrastructure. On Linux, the audit subsys-
tem of the kernel can log system calls performed on a system. Attackers often trip
on this type of logging when breaching systems, and sending audit events into
the logging pipeline can help detect intrusions.

Detecting intrusions is difficult and often requires security and operations teams to
work closely together. When done wrong, these systems can consume resources that
should be dedicated to operating production services. You’ll see how a progressive and
conservative approach to intrusion detection helps integrate it into DevOps effectively.

Incident response

Perhaps the most stressful situation any organization can find itself in is dealing with a
security breach. Security incidents create chaos and bring uncertainty that can severely
damage the health of even the most stable companies. As engineering teams scramble
to recover the integrity of their systems and applications, leadership must deal with
damage control and ensure the business will return to normal operations as quickly as
possible.

In chapter 10, I introduce the six-phases playbook organizations should follow when
reacting to a security incident. They are as follows:

¡	Preparation —Make sure you have the bare minimum processes to deal with an
incident.

¡	Identification —Decide quickly whether an anomaly is a security incident.
¡	Containment —Prevent the breach from going any further.

16 Chapter 1  Securing DevOps

¡	Eradication —Remove threats from the organization.
¡	Recovery —Bring the organization back to normal operations.
¡	Lessons learned —Revisit the incident after the fact to learn from it.

Every security breach is different, and organizations react to them in specific ways,
making it difficult to generalize actionable advice to the reader. In chapter 10, we’ll
approach incident response as a case study to demonstrate how a typical company goes
through this disruptive process, while using DevOps techniques as much as possible.

1.3.3	 Assessing risks and maturing security

A complete continuous-security strategy goes beyond the technical aspects of imple-
menting security controls and responding to incidents. Although present through-
out the book, the "people" aspect of continuous security is the most critical when
approaching risk management.

Assessing risks

For many engineers and managers, risk management is about making large spread-
sheets with colored boxes that pile up in our inbox. This is, unfortunately, too often
the case and has led many organizations to shy away from risk management. In part 3
of this book, I talk about how to break away from this pattern and bring lean and effi-
cient risk management to a DevOps organization.

Managing risk is about identifying and prioritizing issues that threaten survival and
growth. Colored boxes in spreadsheets can indeed help, but they’re not the main point.
A good risk-management approach must reach three targets:

¡	Run in small iterations, often and quickly. Software and infrastructure change
constantly, and an organization must be able to discuss risks without involving
weeks of procedures.

¡	Automate! This is DevOps, and doing things by hand should be the exception,
not the rule.

¡	Require everyone in the organization to take part in risk discussions. Making
secure products and maintaining security is a team effort.

A risk-management framework that achieves all three of these targets is presented in
chapter 11. When implemented properly, it can be a real asset to an organization and
become a core component of the product lifecycle that everyone in the organization
welcomes and seeks.

Security testing

Another core strength of a mature security program is the ability to evaluate how well
it’s doing on a regular basis through security testing. In chapter 12, we’ll examine
three important areas of a successful testing strategy that help mature the security of
an organization:

¡	Evaluating the security of applications and infrastructure internally, using
security techniques like vulnerability scanning, fuzzing, static code analysis, or

	 17Summary

configuration auditing. We’ll discuss various techniques that can be integrated
in a CI/CD pipeline and become part of the software development lifecycle
(SDLC) of a DevOps strategy.

¡	Using external firms to audit the security of core services. When targeted prop-
erly, security audits bring a lot of value to an organization and help bring fresh
ideas and new perspectives to a security program. We’ll discuss how to use exter-
nal audit and “red teams” efficiently and make the best use of their involvement.

¡	Establishing a bug bounty program. DevOps organizations often embrace open
source and publish large amounts of their source code publicly. These are great
resources for independent security researchers that, in exchange for a few thou-
sand dollars, will perform testing of your applications and report security find-
ings to you.

Maturing a continuous security program takes years, but the effort leads security teams
to become an integral part of the product strategy of an organization. In chapter 13,
we’ll end this book with a discussion on how to implement a successful security pro-
gram over a period of three years. Through close collaboration across teams, good
handling of security incidents, and technical guidance, security teams acquire the trust
they need from their peers to keep customers safe. At its core, a successful continuous
security strategy is about bringing security people, with their tools and knowledge, as
close as possible to the rest of DevOps.

Summary

¡	To truly protect customers, security must be integrated into the product and
work closely with developers and operators.

¡	Test-driven security, monitoring and responding to attacks, and maturing secu-
rity are the three phases that drive an organization to implement a continuous
security strategy.

¡	Techniques from traditional security, such as vulnerability scanning, intru-
sion detection, and log monitoring, should be reused and adapted to fit in the
DevOps pipeline.

	Securing DevOps: Security in the cloud
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	1 Securing DevOps
	1.1	The DevOps approach
	1.1.1	Continuous integration
	1.1.2 Continuous delivery
	1.1.3	Infrastructure as a service
	1.1.4	Culture and trust

	1.2	Security in DevOps
	1.3	Continuous security
	1.3.1	Test-driven security
	1.3.2	Monitoring and responding to attacks
	1.3.3	Assessing risks and maturing security

	Part 1: Case study: applying layers of security to a simple DevOps pipeline
	2 Building a barebones DevOps pipeline
	2.1	Implementation roadmap
	2.2	The code repository: GitHub
	2.3	The CI platform: CircleCI
	2.4	The container repository: Docker Hub
	2.5	The production infrastructure: Amazon Web Services
	2.5.1	Three-tier architecture
	2.5.2	Configuring access to AWS
	2.5.3	Virtual Private Cloud
	2.5.4	Creating the database tier
	2.5.5	Creating the first two tiers with Elastic Beanstalk
	2.5.6	Deploying the container onto your systems

	2.6	A rapid security audit

	3 Security layer 1: protecting web applications
	3.1	Securing and testing web apps
	3.2	Website attacks and content security
	3.2.1	Cross-site scripting and Content-Security Policy
	3.2.2	Cross-site request forgery
	3.2.3	Clickjacking and IFrames protection

	3.3	Methods for authenticating users
	3.3.1	HTTP basic authentication
	3.3.2	Password management
	3.3.3	Identity providers
	3.3.4	Sessions and cookie security
	3.3.5	Testing authentication

	3.4	Managing dependencies
	3.4.1	Golang vendoring
	3.4.2	Node.js package management
	3.4.3	Python requirements

	4 Security layer 2: protecting cloud infrastructures
	4.1	Securing and testing cloud infrastructure: the deployer app
	4.1.1	Setting up the deployer
	4.1.2	Configuration notifications between Docker Hub and the deployer
	4.1.3	Running tests against the infrastructure
	4.1.4	Updating the invoicer environment

	4.2	Restricting network access
	4.2.1	Testing security groups
	4.2.2	Opening access between security groups

	4.3	Building a secure entry point
	4.3.1	Generating SSH keys
	4.3.2	Creating a bastion host in EC2
	4.3.3	Enabling two-factor authentication with SSH
	4.3.4	Sending notifications on accesses
	4.3.5	General security considerations
	4.3.6	Opening access between security groups

	4.4	Controlling access to the database
	4.4.1	Analyzing the database structure
	4.4.2	Roles and permissions in PostgreSQL
	4.4.3	Defining fine-grained permissions for the invoicer application
	4.4.4	Asserting permissions in the deployer

	5 Security layer 3: securing communications
	5.1	What does it mean to secure communications?
	5.1.1	Early symmetric cryptography
	5.1.2	Diffie-Hellman and RSA
	5.1.3	Public-key infrastructures
	5.1.4	SSL and TLS

	5.2	Understanding SSL/TLS
	5.2.1	The certificate chain
	5.2.2	The TLS handshake
	5.2.3	Perfect forward secrecy

	5.3	Getting applications to use HTTPS
	5.3.1	Obtaining certificates from AWS
	5.3.2	Obtaining certificates from Let’s Encrypt
	5.3.3	Enabling HTTPS on AWS ELB

	5.4	Modernizing HTTPS
	5.4.1	Testing TLS
	5.4.2	Implementing Mozilla's Modern guidelines
	5.4.3	HSTS: Strict Transport Security
	5.4.4	HPKP: Public Key Pinning

	6 Security layer 4: securing the delivery pipeline
	6.1	Access control to code-management infrastructure
	6.1.1	Managing permissions in a GitHub organization
	6.1.2	Managing permissions between GitHub and CircleCI
	6.1.3	Signing commits and tags with Git

	6.2	Access control for container storage
	6.2.1	Managing permissions between Docker Hub and CircleCI
	6.2.2	Signing containers with Docker Content Trust

	6.3	Access control for infrastructure management
	6.3.1	Managing permissions using AWS roles and policies
	6.3.2	Distributing secrets to production systems

	Part 2: Watching for anomalies and protecting services against attacks
	7 Collecting and storing logs
	7.1	Collecting logs from systems and applications
	7.1.1	Collecting logs from systems
	7.1.2	Collecting application logs
	7.1.3	Infrastructure logging
	7.1.4	Collecting logs from GitHub

	7.2	Streaming log events through message brokers
	7.3	Processing events in log consumers
	7.4	Storing and archiving logs
	7.5	Accessing logs

	8 Analyzing logs
	8.1	Architecture of a log-analysis layer
	8.2	Detecting attacks using string signatures
	8.3	Statistical models for fraud detection
	8.3.1	Sliding windows and circular buffers
	8.3.2	Moving averages

	8.4	Using geographic data to find abuses
	8.4.1	Geo-profiling users
	8.4.2	Calculating distances
	8.4.3	Finding a user's normal connection area

	8.5	Detecting anomalies in known patterns
	8.5.1	User-agent signature
	8.5.2	Anomalous browser
	8.5.3	Interaction patterns

	8.6	Raising alerts to operators and end users
	8.6.1	Escalating security events to operators
	8.6.2	How and when to notify end users

	9 Detecting intrusions
	9.1	The seven phases of an intrusion: the kill chain
	9.2	What are indicators of compromise?
	9.3	Scanning endpoints for IOCs
	9.4	Inspecting network traffic with Suricata
	9.4.1	Setting up Suricata
	9.4.2	Monitoring the network
	9.4.3	Writing rules
	9.4.4	Using predefined rule-sets

	9.5	Finding intrusions in system-call audit logs
	9.5.1	The execution vulnerability
	9.5.2	Catching fraudulent executions
	9.5.3	Monitoring the filesystem
	9.5.4	Monitoring the impossible

	9.6	Trusting humans to detect anomalies

	10 The Caribbean breach: a case study in incident response
	10.1	The Caribbean breach
	10.2	Identification
	10.3	Containment
	10.4	Eradication
	10.4.1	Capturing digital forensics artifacts in AWS
	10.4.2	Outbound IDS filtering
	10.4.3	Hunting IOCs with MIG

	10.5	Recovery
	10.6	Lessons learned and the benefits of preparation

	Part 3: Maturing DevOps security
	11 Assessing risks
	11.1	What is risk management?
	11.2	The CIA triad
	11.2.1	Confidentiality
	11.2.2	Integrity
	11.2.3	Availability

	11.3	Establishing the top threats to an organization
	11.4	Quantifying the impact of risks
	11.4.1	Finances
	11.4.2	Reputation
	11.4.3	Productivity

	11.5	Identifying threats and measuring vulnerability
	11.5.1	The STRIDE threat-modeling framework
	11.5.2	The DREAD threat-modeling framework

	11.6	Rapid risk assessment
	11.6.1	Gathering information
	11.6.2	Establishing a data dictionary
	11.6.3	Identifying and measuring risks
	11.6.4	Making recommendations

	11.7	Recording and tracking risks
	11.7.1	Accepting, rejecting, and delegating risks
	11.7.2	Revisiting risks regularly

	12 Testing security
	12.1	Maintaining security visibility
	12.2	Auditing internal applications and services
	12.2.1	Web-application scanners
	12.2.2	Fuzzing
	12.2.3	Static code analysis
	12.2.4	Auditing Cloud Infrastructure

	12.3	Red teams and external pen testing
	12.4	Bug bounty programs

	13 Continuous security
	13.1	Practice and repetition: 10,000 hours of security
	13.2	Year 1: Integrating security into DevOps
	13.2.1	Don’t judge too early
	13.2.2	Test everything and make dashboards

	13.3	Year 2: Preparing for the worst
	13.3.1	Avoid duplicating infrastructure
	13.3.2	Build versus buy
	13.3.3	Getting breached

	13.4	Year 3: Driving the change
	13.4.1	Revisit security priorities
	13.4.2	Progressing iteratively

	index

