
Li

Bug Bounty Bootcamp

Vickie Li

Bug Bounty Bootcamp
The Guide to Finding and Reporting

Web Vulnerabilities

San Francisco

B U G B O U N T Y
B O O T C A M P

T h e G u i d e t o F i n d i n g a n d
R e p o r t i n g We b V u l n e r a b i l i t i e s

Vickie L i

BUG BOUNTY BOOTCAMP. Copyright © 2021 by Vickie Li.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Second printing

26 25 24 23 22 2 3 4 5 6

ISBN-13: 978-1-7185-0154-6 (print)
ISBN-13: 978-1-7185-0155-3 (ebook)

Publisher: William Pollock
Production Manager: Rachel Monaghan
Production Editors: Miles Bond and Dapinder Dosanjh
Developmental Editor: Frances Saux
Cover Design: Rick Reese
Interior Design: Octopod Studios
Technical Reviewer: Aaron Guzman
Copyeditor: Sharon Wilkey
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: James Fraleigh

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch
Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com

Names: Li, Vickie, author.
Title: Bug bounty bootcamp : the guide to finding and reporting web
 vulnerabilities / Vickie Li.
Description: San Francisco : No Starch Press, [2021] | Includes index. |
Identifiers: LCCN 2021023153 (print) | LCCN 2021023154 (ebook) | ISBN
 9781718501546 (print) | ISBN 9781718501553 (ebook)
Subjects: LCSH: Web sites--Security measures. | Penetration testing
 (Computer security) | Debugging in computer science.
Classification: LCC TK5105.8855 .L523 2021 (print) | LCC TK5105.8855
 (ebook) | DDC 025.042--dc23
LC record available at https://lccn.loc.gov/2021023153
LC ebook record available at https://lccn.loc.gov/2021023154

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

About the Author
Vickie Li is a developer and security researcher experienced in finding and
exploiting vulnerabilities in web applications. She has reported vulnerabilities
to firms such as Facebook, Yelp, and Starbucks and contributes to a number
of online training programs and technical blogs. She can be found at https://
vickieli.dev/, where she blogs about security news, techniques, and her latest
bug bounty findings.

About the Tech Reviewer
Aaron Guzman is co-author of IoT Penetration Testing Cookbook and product
security lead with Cisco Meraki. He spends his days building security into
IoT products and crafting designs that keep users safe from compromise.
A co-chair of Cloud Security Alliance’s IoT Working Group and a techni-
cal reviewer for several published security books, he also spearheads many
open-source initiatives, raising awareness about IoT hacking and proac-
tive defensive strategies under OWASP’s IoT and Embedded Application
Security projects. He has extensive public speaking experience, delivering
conference presentations, training, and workshops globally. Follow Aaron
on Twitter @scriptingxss.

https://vickieli.dev/
https://vickieli.dev/
https://twitter.com/scriptingxss

25
A U T O M A T I C V U L N E R A B I L I T Y
D I S C O V E R Y U S I N G F U Z Z E R S

Whenever I approach a new target, I prefer
to search for bugs manually. Manual testing

is great for discovering new and unexpected
attack vectors. It can also help you learn new

security concepts in depth. But manual testing also
takes a lot of time and effort, so as with automating
reconnaissance, you should strive to automate at least
part of the process of finding bugs. Automated testing
can help you tease out a large number of bugs within
a short time frame.

In fact, the best-performing bug bounty hunters automate most of
their hacking process. They automate their recon, and write programs that
constantly look for vulnerabilities on the targets of their choice. Whenever
their tools notify them of a potential vulnerability, they immediately verify
and report it.

370 Chapter 25

Bugs discovered through an automation technique called fuzzing, or
fuzz testing, now account for a majority of new CVE entries. While often asso-
ciated with the development of binary exploits, fuzzing can also be used for
discovering vulnerabilities in web applications. In this chapter, we’ll talk
a bit about fuzzing web applications by using two tools, Burp intruder and
Wfuzz, and about what it can help you achieve.

What Is Fuzzing?
Fuzzing is the process of sending a wide range of invalid and unexpected data
to an application and monitoring the application for exceptions. Sometimes
hackers craft this invalid data for a specific purpose; other times, they gener-
ate it randomly or by using algorithms. In both cases, the goal is to induce
unexpected behavior, like crashes, and then check if the error leads to an
exploitable bug. Fuzzing is particularly useful for exposing bugs like memory
leaks, control flow issues, and race conditions. For example, you can fuzz
compiled binaries for vulnerabilities by using tools like the American Fuzzy
Lop, or AFL (https://github.com/google/AFL/).

There are many kinds of fuzzing, each optimized for testing a specific
type of issue in an application. Web application fuzzing is a technique that
attempts to expose common web vulnerabilities, like injection issues, XSS,
and authentication bypass.

How a Web Fuzzer Works
Web fuzzers automatically generate malicious requests by inserting the pay-
loads of common vulnerabilities into web application injection points. They
then fire off these requests and keep track of the server’s responses.

To better understand this process, let’s take a look at how the open
source web application fuzzer Wfuzz (https://github.com/xmendez/wfuzz/)
works. When provided with a wordlist and an endpoint, Wfuzz replaces all
locations marked FUZZ with strings from the wordlist. For example, the fol-
lowing Wfuzz command will replace the instance of FUZZ inside the URL
with every string in the common_paths.txt wordlist:

$ wfuzz -w common_paths.txt http://example.com/FUZZ

You should provide a different wordlist for each type of vulnerability
you scan for. For instance, you can make the fuzzer behave like a directory
enumerator by supplying it with a wordlist of common filepaths. As a result,
Wfuzz will generate requests that enumerate the paths on example.com:

http://example.com/admin
http://example.com/admin.php
http://example.com/cgi-bin
http://example.com/secure
http://example.com/authorize.php
http://example.com/cron.php
http://example.com/administrator

https://github.com/google/AFL/
https://github.com/xmendez/wfuzz/

Automatic Vulnerability Discovery Using Fuzzers 371

You can also make the fuzzer act like an IDOR scanner by providing it
with potential ID values:

$ wfuzz -w ids.txt http://example.com/view_inbox?user_id=FUZZ

Say that ids.txt is a list of numeric IDs. If example.com/view_inbox is the
endpoint used to access different users’ email inboxes, this command will
cause Wfuzz to generate a series of requests that try to access other users’
inboxes, such as the following:

http://example.com/view_inbox?user_id=1
http://example.com/view_inbox?user_id=2
http://example.com/view_inbox?user_id=3

Once you receive the server’s responses, you can analyze them to see
if there really is a file in that particular path, or if you can access the email
inbox of another user. As you can see, unlike vulnerability scanners, fuzzers
are quite flexible in the vulnerabilities they test for. You can customize them
to their fullest extent by specifying different payloads and injection points.

The Fuzzing Process
Now let’s go through the steps that you can take to integrate fuzzing into
your hacking process! When you approach a target, how do you start fuzz-
ing it? The process of fuzzing an application can be broken into four steps.
You can start by determining the endpoints you can fuzz within an applica-
tion. Then, decide on the payload list and start fuzzing. Finally, monitor the
results of your fuzzer and look for anomalies.

Step 1: Determine the Data Injection Points
The first thing to do when fuzzing a web application is to identify the ways a
user can provide input to the application. What are the endpoints that take
user input? What are the parameters used? What headers does the applica-
tion use? You can think of these parameters and headers as data injection
points or data entry points, since these are the locations at which an attacker
can inject data into an application.

By now, you should already have an intuition of which vulnerabilities you
should look for on various user input opportunities. For example, when you
see a numeric ID, you should test for IDOR, and when you see a search bar,
you should test for reflected XSS. Classify the data injection points you’ve
found on the target according to the vulnerabilities they are prone to:

Data entry points to test for IDORs

GET /email_inbox?user_id=FUZZ
Host: example.com

372 Chapter 25

POST /delete_user
Host: example.com

(POST request parameter)
user_id=FUZZ

Data entry points to test for XSS

GET /search?q=FUZZ
Host: example.com

POST /send_email
Host: example.com

(POST request parameter)
user_id=abc&title=FUZZ&body=FUZZ

Step 2: Decide on the Payload List
After you’ve identified the data injection points and the vulnerabilities that
you might be able to exploit with each one, determine what data to feed to
each injection point. You should fuzz each injection point with common
payloads of the most likely vulnerabilities. Feeding XSS payloads and SQL
injection payloads into most data entry points is also worthwhile.

Using a good payload list is essential to finding vulnerabilities with fuzz-
ers. I recommend downloading SecLists by Daniel Miessler (https://github.com/
danielmiessler/SecLists/) and Big List of Naughty Strings by Max Woolf
(https://github.com/minimaxir/big-list-of-naughty-strings/) for a pretty comprehen-
sive payload list useful for fuzzing web applications. Among other features,
these lists include payloads for the most common web vulnerabilities, such
as XXS, SQL injection, and XXE. Another good wordlist database for
both enumeration and vulnerability fuzzing is FuzzDB (https://github.com/
fuzzdb-project/fuzzdb/).

Besides using known payloads, you might try generating payloads ran-
domly. In particular, create extremely long payloads, payloads that contain
odd characters of various encodings, and payloads that contain certain
special characters, like the newline character, the line-feed character, and
more. By feeding the application garbage data like this, you might be able
to detect unexpected behavior and discover new classes of vulnerabilities!

You can use bash scripts, which you learned about in Chapter 5, to auto-
mate the generation of random payloads. How would you generate a string
of a random length that includes specific special characters? Hint: you can
use a for loop or the file /dev/random on Unix systems.

Step 3: Fuzz
Next, systematically feed your payload list to the data entry points of the
application. There are several ways of doing this, depending on your needs
and programming skills. The simplest way to automate fuzzing is to use the
Burp intruder (Figure 25-1). The intruder offers a fuzzer with a graphical

https://github.com/danielmiessler/SecLists/
https://github.com/danielmiessler/SecLists/
https://github.com/minimaxir/big-list-of-naughty-strings/
https://github.com/fuzzdb-project/fuzzdb/
https://github.com/fuzzdb-project/fuzzdb/

Automatic Vulnerability Discovery Using Fuzzers 373

user interface (GUI) that seamlessly integrates with your Burp proxy.
Whenever you encounter a request you’d like to fuzz, you can right-click it
and choose Send to Intruder.

In the Intruder tab, you can configure your fuzzer settings, select your
data injection points and payload list, and start fuzzing. To add a part of the
request as a data injection point, highlight the portion of the request and
click Add on the right side of the window.

Figure 25-1: The Burp intruder payload position selection

Then either select a predefined list of payloads or generate payload lists
in the Payloads tab (Figure 25-2). For example, you could generate list of
numbers or randomly generated alphanumeric strings.

Figure 25-2: Selecting the payload list in Burp intruder

Burp intruder is easy to use, but it has a downside: the free version of
Burp limits the fuzzer’s functionality, and time-throttles its attacks, mean-
ing that it slows your fuzzing and limits the number of requests you can
send over a certain period of time. You’ll be able to send only a certain
number of requests per minute, making the intruder a lot less efficient than
a non-time-throttled fuzzer. Unless you need a GUI or have the professional

374 Chapter 25

version of Burp, you’re better off using an open source fuzzer like OWASP
ZAP’s fuzzer or Wfuzz. You’ll learn how to fuzz a target with Wfuzz in
“Fuzzing with Wfuzz” later on this page.

Note that sometimes throttling your fuzzers will be necessary to pre-
vent disruption to the application’s operations. This shouldn’t be an issue
for bigger companies, but you could accidentally launch a DoS attack on
smaller companies without scaling architectures if you fuzz their applica-
tions without time throttling. Always use caution and obtain permission
from the company when conducting fuzz testing!

Step 4: Monitor the Results
Analyze the results your fuzzer returned, looking for patterns and anoma-
lies in the server responses. What to look for depends on the payload set
you used and the vulnerability you’re hoping to find. For example, when
you’re using a fuzzer to find filepaths, status codes are a good indicator of
whether a file is present. If the returned status code for a pathname is in
the 200 range, you might have discovered a valid path. If the status code is
404, on the other hand, the filepath probably isn’t valid.

When fuzzing for SQL injection, you might want to look for a change
in response content length or time. If the returned content for a certain
payload is longer than that of other payloads, it might indicate that your
payload was able to influence the database’s operation and change what it
returned. On the other hand, if you’re using a payload list that induces time
delays in an application, check whether any of the payloads make the server
respond more slowly than average. Use the knowledge you learned in this
book to identify key indicators that a vulnerability is present.

Fuzzing with Wfuzz
Now that you understand the general approach to take, let’s walk through
a hands-on example using Wfuzz, which you can install by using this
command:

$ pip install wfuzz

 Fuzzing is useful in both the recon phase and the hunting phase: you
can use fuzzing to enumerate filepaths, brute-force authentication, test for
common web vulnerabilities, and more.

Path Enumeration
During the recon stage, try using Wfuzz to enumerate filepaths on a server.
Here’s a command you can use to enumerate filepaths on example.com:

$ wfuzz -w wordlist.txt -f output.txt --hc 404 --follow http://example.com/FUZZ

Automatic Vulnerability Discovery Using Fuzzers 375

The -w flag option specifies the wordlist to use for enumeration. In this
case, you should pick a good path enumeration wordlist designed for the
technology used by your target. The -f flag specifies the output file loca-
tion. Here, we store our results into a file named output.txt in the current
directory. The --hc 404 option tells Wfuzz to exclude any response that has
a 404 status code. Remember that this code stands for File Not Found. With
this filter, we can easily drop URLs that don’t point to a valid file or direc-
tory from the results list. The --follow flag tells Wfuzz to follow all HTTP
redirections so that our result shows the URL’s actual destination.

Let’s run the command using a simple wordlist to see what we can find
on facebook.com. For our purposes, let’s use a wordlist comprising just four
words, called wordlist.txt:

authorize.php
cron.php
administrator
secure

Run this command to enumerate paths on Facebook:

$ wfuzz -w wordlist.txt -f output.txt --hc 404 --follow http://facebook.com/FUZZ

Let’s take a look at the results. From left to right, a Wfuzz report has
the following columns for each request: Request ID, HTTP Response Code,
Response Length in Lines, Response Length in Words, Response Length in
Characters, and the Payload Used:

**
* Wfuzz 2.4.6 - The Web Fuzzer *
**

Target: http://facebook.com/FUZZ
Total requests: 4

===
ID Response Lines Word Chars Payload

===

000000004: 200 20 L 2904 W 227381 Ch "secure"

Total time: 1.080132
Processed Requests: 4
Filtered Requests: 3
Requests/sec.: 3.703250

You can see that these results contain only one response. This is because
we filtered out irrelevant results. Since we dropped all 404 responses, we
can now focus on the URLs that point to actual paths. It looks like /secure
returned a 200 OK status code and is a valid path on facebook.com.

376 Chapter 25

Brute-Forcing Authentication
Once you’ve gathered valid filepaths on the target, you might find that
some of the pages on the server are protected. Most of the time, these pages
will have a 403 Forbidden response code. What can you do then?

Well, you could try to brute-force the authentication on the page. For
example, sometimes pages use HTTP’s basic authentication scheme as
access control. In this case, you can use Wfuzz to fuzz the authentication
headers, using the -H flag to specify custom headers:

$ wfuzz -w wordlist.txt -H "Authorization: Basic FUZZ" http://example.com/admin

The basic authentication scheme uses a header named Authorization to
transfer credentials that are the base64-encoded strings of username and
password pairs. For example, if your username and password were admin and
password, your authentication string would be base64("admin:password"), or
YWRtaW46cGFzc3dvcmQ=. You could generate authentication strings from com-
mon username and password pairs by using a script, then feed them to your
target’s protected pages by using Wfuzz.

Another way to brute-force basic authentication is to use Wfuzz’s --basic
option. This option automatically constructs authentication strings to
brute-force basic authentication, given an input list of usernames and pass-
words. In Wfuzz, you can mark different injection points with FUZZ, FUZ2Z,
FUZ3Z, and so on. These injection points will be fuzzed with the first, second,
and third wordlist passed in, respectively. Here’s a command you can use to
fuzz the username and password field at the same time:

$ wfuzz -w usernames.txt -w passwords.txt --basic FUZZ:FUZ2Z http://example.com/admin

The usernames.txt file contains two usernames: admin and administrator.
The passwords.txt file contains three passwords: secret, pass, and password. As
you can see, Wfuzz sends a request for each username and password combi-
nation from your lists:

**
* Wfuzz 2.4.6 - The Web Fuzzer *
**

Target: http://example.com/admin
Total requests: 6

===
ID Response Lines Word Chars Payload
===

000000002: 404 46 L 120 W 1256 Ch "admin – pass"
000000001: 404 46 L 120 W 1256 Ch "admin – secret"
000000003: 404 46 L 120 W 1256 Ch "admin – password"
000000006: 404 46 L 120 W 1256 Ch "administrator – password"

Automatic Vulnerability Discovery Using Fuzzers 377

000000004: 404 46 L 120 W 1256 Ch "administrator – secret"
000000005: 404 46 L 120 W 1256 Ch "administrator – pass"

Total time: 0.153867
Processed Requests: 6
Filtered Requests: 0
Requests/sec.: 38.99447

Other ways to bypass authentication by using brute-forcing include
switching out the User-Agent header or forging custom headers used for
authentication. You could accomplish all of these by using Wfuzz to brute-
force HTTP request headers.

Testing for Common Web Vulnerabilities
Finally, Wfuzz can help you automatically test for common web vulnerabili-
ties. First of all, you can use Wfuzz to fuzz URL parameters and test for vul-
nerabilities like IDOR and open redirects. Fuzz URL parameters by placing
a FUZZ keyword in the URL. For example, if a site uses a numeric ID for chat
messages, test various IDs by using this command:

$ wfuzz -w wordlist.txt http://example.com/view_message?message_id=FUZZ

Then find valid IDs by examining the response codes or content length
of the response and see if you can access the messages of others. The IDs that
point to valid pages usually return a 200 response code or a longer web page.

You can also insert payloads into redirect parameters to test for an open
redirect:

$ wfuzz -w wordlist.txt http://example.com?redirect=FUZZ

To check if a payload causes a redirect, turn on Wfuzz’s follow (--follow)
and verbose (-v) options. The follow option instructs Wfuzz to follow redi-
rects. The verbose option shows more detailed results, including whether
redirects occurred during the request. See if you can construct a payload
that redirects users to your site:

$ wfuzz -w wordlist.txt -v –-follow http://example.com?redirect=FUZZ

Finally, test for vulnerabilities such as XSS and SQL injection by fuzzing
URL parameters, POST parameters, or other user input locations with com-
mon payload lists.

When testing for XSS by using Wfuzz, try creating a list of scripts that
redirect the user to your page, and then turn on the verbose option to
monitor for any redirects. Alternatively, you can use Wfuzz content filters to
check for XSS payloads reflected. The --filter flag lets you set a result filter.
An especially useful filter is content~STRING, which returns responses that
contain whatever STRING is:

$ wfuzz -w xss.txt --filter "content~FUZZ" http://example.com/get_user?user_id=FUZZ

378 Chapter 25

For SQL injection vulnerabilities, try using a premade SQL injection
wordlist and monitor for anomalies in the response time, response code,
or response length of each payload. If you use SQL injection payloads that
include time delays, look for long response times. If most payloads return a
certain response code but one does not, investigate that response further to
see if there’s a SQL injection there. A longer response length might also be
an indication that you were able to extract data from the database.

The following command tests for SQL injection using the wordlist sqli.txt.
You can specify POST body data with the -d flag:

$ wfuzz -w sqli.txt -d "user_id=FUZZ" http://example.com/get_user

More About Wfuzz
Wfuzz has many more advanced options, filters, and customizations that you
can take advantage of. Used to its full potential, Wfuzz can automate the
most tedious parts of your workflow and help you find more bugs. For more
cool Wfuzz tricks, read its documentation at https://wfuzz.readthedocs.io/.

Fuzzing vs. Static Analysis
In Chapter 22, I discussed the effectiveness of source code review for dis-
covering web vulnerabilities. You might now be wondering: why not just
perform a static analysis of the code? Why conduct fuzz testing at all?

Static code analysis is an invaluable tool for identifying bugs and improper
programming practices that attackers can exploit. However, static analysis has
its limitations.

First, it evaluates an application in a non-live state. Performing code
review on an application won’t let you simulate how the application will
react when it’s running live and clients are interacting with it, and it’s very
difficult to predict all the possible malicious inputs an attacker can provide.

Static code analysis also requires access to the application’s source code.
When you’re doing a black-box test, as in a bug bounty scenario, you probably
won’t be able to obtain the source code unless you can leak the application’s
source code or identify the open source components the application is using.
This makes fuzzing a great way of adding to your testing methodology, since
you won’t need the source code to fuzz an application.

Pitfalls of Fuzzing
Of course, fuzzing isn’t a magic cure-all solution for all bug detection. This
technique has certain limitations, one of which is rate-limiting by the server.
During a remote, black-box engagement, you might not be able to send in
large numbers of payloads to the application without the server detecting
your activity, or you hitting some kind of rate limit. This can cause your test-
ing to slow down or the server might ban you from the service.

https://wfuzz.readthedocs.io/

Automatic Vulnerability Discovery Using Fuzzers 379

In a black-box test, it can also be difficult to accurately evaluate the
impact of the bug found through fuzzing, since you don’t have access to the
code and so are getting a limited sample of the application’s behavior. You’ll
often need to conduct further manual testing to classify the bug’s validity
and significance. Think of fuzzing as a metal detector: it merely points you
to the suspicious spots. In the end, you need to inspect more closely to see if
you have found something of value.

Another limitation involves the classes of bugs that fuzzing can find.
Although fuzzing is good at finding certain basic vulnerabilities like XSS
and SQL injection, and can sometimes aid in the discovery of new bug
types, it isn’t much help in detecting business logic errors, or bugs that
require multiple steps to exploit. These complex bugs are a big source of
potential attacks and still need to be teased out manually. While fuzzing
should be an essential part of your testing process, it should by no means be
the only part of it.

Adding to Your Automated Testing Toolkit
Automated testing tools like fuzzers or scanners can help you discover
some bugs, but they often hinder your learning progress if you don’t take
the time to understand how each tool in your testing toolkit works. Thus,
before adding a tool to your workflow, be sure to take time to read the
tool’s documentation and understand how it works. You should do this for
all the recon and testing tools you use.

Besides reading the tool’s documentation, I also recommend reading
its source code if it’s open source. This can teach you about the methodolo-
gies of other hackers and provide insight into how the best hackers in the
field approach their testing. Finally, by learning how others automate hack-
ing, you’ll begin learning how to write your own tools as well.

Here’s a challenge for you: read the source code of the tools Sublist3r
(https://github.com/aboul3la/Sublist3r/) and Wfuzz (https://github.com/xmendez/
wfuzz/). These are both easy-to-understand tools written in Python. Sublist3r
is a subdomain enumeration tool, while Wfuzz is a web application fuzzer.
How does Sublist3r approach subdomain enumeration? How does Wfuzz
fuzz web applications? Can you write down their application logic, starting
from the point at which they receive an input target and ending when they
output their results? Can you rewrite the functionalities they implement
using a different approach?

Once you’ve gained a solid understanding of how your tools work, try to
modify them to add new features! If you think others would find your feature
useful, you could contribute to the open source project: propose that your
feature be added to the official version of the tool.

Understanding how your tools and exploits work is the key to becoming
a master hacker. Good luck and happy hacking!

https://github.com/aboul3la/Sublist3r/
https://github.com/xmendez/wfuzz/
https://github.com/xmendez/wfuzz/

	Part IV: Expert Techniques
	Chapter 25: Automatic Vulnerability Discovery Using Fuzzers
	What Is Fuzzing?
	How a Web Fuzzer Works
	The Fuzzing Process
	Step 1: Determine the Data Injection Points
	Step 2: Decide on the Payload List
	Step 3: Fuzz
	Step 4: Monitor the Results

	Fuzzing with Wfuzz
	Path Enumeration
	Brute-Forcing Authentication
	Testing for Common Web Vulnerabilities
	More About Wfuzz

	Fuzzing vs. Static Analysis
	Pitfalls of Fuzzing
	Adding to Your Automated Testing Toolkit

