<packt

Defending APlIs

Uncover advanced defense techniques to craft secure
application programming interfaces

COLIN DOMNMONEY

Foreword by Chris Wysopal, Veracode co-founder and CTO,
and Isabelle Mauny, 42Crunch co-founder and CTO



Defending APIs

Uncover advanced defense techniques to craft secure
application programming interfaces

Colin Domoney



Defending APIs
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Prachi Sawant

Book Project Manager: Ashwin Dinesh Kharwa
Senior Editor: Isha Singh

Technical Editor: Nithik Cheruvakodan

Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Vijay Kamble

DevRel Marketing Coordinator: Marylou De Mello

First published: February, 2024
Production reference: 112012024

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-80461-712-0

www.packtpub.com


http://www.packtpub.com

13

Implementing an
APl Security Strategy

This booK’s final chapter focuses on applying the knowledge you've gained over the last 12 chapters
to create a comprehensive API security strategy for your organization. Your strategy will depend on
your current position and your security goals and will largely be influenced by your organizational
structure, particularly who owns APIs and their security. In the first section, we will examine typical
organizational stakeholders and how their roles and responsibilities must be aligned as part of your
strategy. We will then examine the 42Crunch API security maturity model to understand the six domains
of API security and what maturation looks like for each domain. After, we'll dive into rolling out your
API security strategy, firstly by planning your objectives against the current state and capabilities and,
secondly, by running your strategy as part of your daily process. Finally, we’ll conclude this chapter
- and this book - by looking at your ongoing personal API security journey.

In a nutshell, this chapter is going to cover the following main topics:

o Ownership of API security

o The 42Crunch maturity model
« Planning your program

« Running your program

o Your personal API security journey

Ownership of APl security

Your API security strategy cannot exist in isolation from your organization’s API business and
development strategy. As a security leader, you must understand the other stakeholders responsible
for API strategy and delivery to ensure that your security strategy aligns with their objectives.



324 Implementing an API Security Strategy

Ownership of APIs tends to vary from one organization to another, and there is no hard and fast rule
regarding how it is assigned. In the Further reading section, there is a reference to a blog post from
MuleSoft that describes a typical pattern for API ownership; we will use this to frame our discussion.
This is shown visually in Figure 13.1:

IT Owned APIs Shared Ownership Business Owned APIs

* Shared system of record * Systems of integration * System of engagement
* IT operations APIs * Business infrastructure * Monetized products
* Infrastructure provisioning APIs (HR, finance) * Business partnerships

IT Owned APIs
Business Owned APIs

System APIs Process APls Engagement APls

Figure 13.1 — APl ownership model

There are three main API owners in this model:

o IT-owned APIs: This ownership model aligns most closely with traditional IT systems where
the IT department wholly owns the resources. These are core services such as infrastructure
provisioning or operations such as ServiceNow or Salesforce platforms. These are often called
system-of-record APIs, which favor stability and accuracy over features and functionality.



Ownership of API security

o Business-owned APIs: This ownership model reflects the rise of APIs-as-a-product organizations
(a typical example is Twilio, where the API is their product) that derive their business value
through APIs, which are their system of engagement. Here, innovation and agility are key in
monetizing existing services to new markets or in delivering new business partnerships. The
APIs are owned by the business units, together with their development teams.

« Shared ownership APIs: Sitting in the middle ground between these two models is the shared
ownership model, which is mostly used to integrate systems such as HR, finance, or inventory
systems. The IT department will still exert some control over the operation of these APIs, but
their ultimate ownership may reside with other organizational departments.

It is important to understand the ownership of APIs when it comes to kicking off an API security
initiative since the ownership will determine the business risk appetite. For systems of record, where
data integrity is paramount, the owners will likely have a low-risk appetite and engage fully with an API
security initiative. They will appreciate the value that such an initiative brings toward producing more
dependable APIs that match their objectives. Additionally, many IT security teams may report to the
head of IT and have a common senior manager, which will help with the adoption of such an initiative.

The situation is different in the case of the business-owned APIs functioning as a system of engagement.
Here, the focus is on innovation and agility and an API security initiative will possibly be regarded as
an inhibitor to rapid innovation or short release cycles. The risk appetite will likely be higher in this
case; in many cases, the business is doing a quick proof of concept that’s limited in scope and is less
concerned about the consequences of lax security. If this is the case, you will have additional challenges
in gaining traction with your initiative. The key recommendation is to form a working relationship
with the business unit and reassure them that you are not there to slow them down but rather to aid
as an accelerant for innovation while also improving the security posture of their portfolio. These two
objectives are not mutually exclusive, given a collaborative working arrangement.

Understanding your stakeholders

Now that we understand the different ownership models, let’s look at the various personas across the
IT, API, operations, security, and business units to understand their perspectives on API security.

Table 13.1 shows the typical roles in the security domain, along with their key responsibilities:

Role Description
CISO They are responsible for information security in an organization
Head of AppSec They are responsible for the AppSec program and activities in

the organization

DevSecOps team This team is responsible for the integration and operation of security
tools within the automated SDLC environment

325



326 Implementing an API Security Strategy

Role Description

Pentest/red team This team is responsible for offensive testing of product releases
using black box techniques

Risk and compliance team This team is responsible for managing risk and compliance in the
organization based on applicable operating environments

Table 13.1 - Typical roles in the security domain

Table 13.2 shows the typical roles in the business or development domain, along with their
key responsibilities:

Role Description
CIO They are responsible for the IT operations of a business unit
Product owner They are responsible for the product management of a business

unit’s offerings

Technical lead They are responsible for managing the technical team on a
given product

Solution architect They are responsible for supporting and evangelizing the product
to the customer

DevOps team This team is responsible for the operation of the build and release
process through automation

Table 13.2 —Typical roles in the business or development domain

Table 13.3 shows the typical roles in the API product domain, along with their key responsibilities:

Role Description

API product owner They are responsible for the product management of a set of APIs
offered as a product

API platform owner They are the owner of the central API platforms (API gateways and
management portals) and API Paa$ infrastructure

APT architect They are responsible for the overall API strategy (authentication,
authorization, and architecture) in the organization

Table 13.3 - Typical roles in the API product domain



Ownership of API security

The reason for deliberately and explicitly enumerating this array of stakeholders is to illustrate that
ownership of API security potentially resides with several organizational units. For example, the API
platform owner may be responsible for applying appropriate API gateway policies, the API architect
may be responsible for the overall authentication strategy, the head of AppSec may be responsible for
SAST/DAST scans, and the CISO is ultimately responsible for the security of the APL

To avoid duplication of responsibilities (or worse still, neglect of responsibility), the roles and
responsibilities should be clearly defined.

Roles and responsibilities

In Chapter 1, What Is API Security?, we saw the typical DevOps cycle in Figure 1.3. The cycle has eight
SDLC phases: plan, code, build, test, release, deploy, operate, and monitor. In an ideal world, security
touchpoints across all eight stages of the SDLC will be encapsulated perfectly by the “shift-left, shield-
right” mantra used in this book.

Unfortunately, in reality, many organizations have relatively immature security processes typically
characterized by late-stage monitoring of IT systems via an SIEM and SOC. This monitoring typically
only identifies attacks or threats as they occur and is a reactive security practice. This monitoring is
usually performed by the IT security team, with the CISO being accountable, and is shown in the
SDLC in Figure 13.2:

SDLC phase CODE BUILD TEST RELEASE | DEPLOY ‘ OPERATE |MONITOR

Responsible IT Security

Accountable CIsO

Figure 13.2 - Monitoring in the SDLC

With the growing awareness of application security as a necessary pre-emptive control, more mature
organizations have sought to introduce SAST/DAST scanning into the release and deploy cycle. These
tools are usually integrated with the help of the DevSecOps team, and the CISO is still accountable
for managing the risk identified in this process, as shown in the SDLC in Figure 13.3:

SDLC phase CODE BUILD TEST RELEASE ‘ DEPLOY ‘ OPERATE | MONITOR|

Responsible DevSecOps team IT Security

Accountable CIsO

Figure 13.3 - Monitoring and scanning in the SDLC

327



328

Implementing an API Security Strategy

The benefits of shifting security left, or earlier in the SDLC, have been widely accepted in the industry
over the last decade. Typically, this involves co-opting development teams into the security conversation
as they take measures to ensure that they are producing secure code by using secure libraries,
understanding risks and threats, using secure coding patterns, testing for secure vulnerabilities in
the development phases, and more. Furthermore, the accountability for security is shifted from the
CISO to the business or product owners, who increasingly regard a secure product as a differentiating
feature in the marketplace. An example shift-left SDLC is shown in Figure 13.4:

SDLC phase CODE BUILD TEST RELEASE | DEPLOY |0PERATE |MONITOR

Responsible Developers DevSecOps team IT Security

Accountable Product owner CISO

Figure 13.4 - Shift-left in the SDLC

While this shift-left pattern makes great steps toward producing more secure code, it can be improved
further by incorporating security right at the design stage to ensure security is considered part of
the design before any code is written. As an example, in an API security context, this may relate to
decisions about managing identities and roles within an API product. A fully integrated secure SDLC
is shown in Figure 13.5:

SDLC phase CODE BUILD TEST RELEASE | DEPLOY | OPERATE | MONITOR

Responsible Architect Developers DevSecOps team IT Security

Accountable Product owner CISO

Figure 13.5 - Fully integrated secure SDLC

These examples illustrate that the ownership of both APIs and API security is a complex topic and
that often, this ownership will be distributed across two or more organizational units. A distributed
ownership model has benefits since it allows domain experts to focus on their specialism: the CISO
ensures the APIs are monitored optimally in the SIEM and SOC, and the product owner ensures that
the APIs are well-architected and secure by design.



The 42Crunch maturity model

The 42Crunch maturity model

In my time as a technical evangelist at 42Crunch, I formulated a six-domain API security maturity
model that has proved to be popular with customs in determining both their current security posture
and their roadmap toward a more secure posture.

The maturity model features a set of activities for each domain, which may exist to varying degrees
based on maturity. For this discussion, we will bucket the activities as non-existent, emerging,
or established.

Inventory

An up-to-date and accurate inventory is key to maintaining visibility into the exposed risk and
attack surface.

The adage “you can’t protect what you can’t see” applies perfectly to API security. As APIs grow
exponentially, fueled by business demand, it is increasingly difficult for security teams to maintain
visibility of what APIs exist and what risks they expose.

Three elements are key:

o How new APIs are introduced and tracked in the organization

« Discovering the API inventory by introspecting the source code repositories to discover hidden
API artifacts

« Runtime discovery of APIs (via network traffic inspection, and so on)

At the lowest maturity level, only a basic inventory (usually, APIs deemed critical for the business)
is maintained via spreadsheet or manual tracking. There is no management of shadow/zombie APIs.

At the emerging maturity level, an inventory is maintained via API management or a centralized
platform. A standard process is used for new API development. For an established level of maturity, the
inventory is actively tracked via a centralized platform, and shadow and zombie APIs are deprecated
and upgraded.

Design

It is significantly more cost-effective to address security issues at the design phase rather than later in
the life cycle - a shift-left approach is key.

A solid API design practice is the foundation of usable, scalable, documented, and secure APIs. Here
are some of the key elements of secure API design:

« Authentication methods

o Authorization models and access control

329



330 Implementing an API Security Strategy

« Data privacy requirements

« Data exposure (explicit/least content/fit for purpose) requirements
o Compliance requirements

« Account reset mechanisms

« Use and abuse cases

o Key and token issue and revocation methods

+ Rate limiting and quota enforcement

Additionally, API design teams should perform threat modeling exercises to understand their threat
environment and attack surface.

At the lowest maturity level, no formal API design process is in place; instead, a code-first method is used.
There is usually no upfront consideration of security concerns, threats, compliance, and data privacy.

At the emerging maturity level, APIs are developed using a design-first approach based on OAS
definitions. Security concerns are addressed on an ad hoc basis with no standard process. For an
established level of maturity, security is a first-class element of API design that includes standard
patterns/practices such as threat modeling.

Development

This vital stage is where the rubber meets the road — developers should ensure they follow security
best practices to avoid introducing vulnerabilities into APIs.

A crucial element of secure APIs is the development process, where specifications are implemented
in live APIs. Some key considerations here are as follows:

o Choice of languages, libraries, and frameworks

o Correct configuration of frameworks to ensure security best practices are followed

o Defensive coding — do not trust user input and handle all unexpected failures

o Use central points of enforcement of authentication and authorization — avoid “spaghetti code”

o Think like an attacker!

At the lowest maturity level, developers are largely unaware of security concerns in API development
or approaches to secure code in general.

At the emerging maturity level, developers are familiar with security considerations and use secure
coding practices, albeit sporadically. For an established level of maturity, developers are fully versed in
secure code and API security topics and proactively seek to use best practices and defensive coding.



The 42Crunch maturity model

Testing

Without adequate API security testing, an organization runs the risk of deploying insecure APIs - test
early, test often, test everywhere.

API security testing is vital to ensure that APIs are verified as secure before deployment. Security
testing should be tightly integrated into the CI/CD process and should avoid any manual effort. Tests
should be able to “break the build” in the event of failure. The following aspects should be tested:

o Authentication and authorization bypass

o Excessive data or information exposure

« Handling invalid request data correctly

o Verifying response codes for success and failures
« Implementation of rate-limiting and quotas

« Changes in configuration in production environments from their desired target state (so-called
configuration drift)

At the lowest maturity level, there is no specific API security testing, with only functional testing in place.

At the emerging maturity level, API security testing largely uses manual testing and lacks automation
and CI/CD integration. For an established level of maturity, API security testing is tightly integrated
into all stages of the SDLC, and failures can block releases.

Protection

A defense-in-depth approach is the foundation of risk reduction - regardless of how well-designed
your APIs are, they will still be attacked by persistent and skilled adversaries.

Despite the best efforts during the preceding phases of the SDLC, APIs will still come under attack
and should be protected via dedicated API protection mechanisms.

API protection should include the following:

o JWT validation

o Secure transport options

o Brute-force protection

o Invalid path or operation access
o Rejection of invalid request data

« Filtering of response data

331



332

Implementing an API Security Strategy

Protection logs should be ingested into standard SIEM/SOC platforms to ensure visibility of API
security operations.

At the lowest maturity level, no specific API runtime protection is implemented; standard firewalls
or WAFs are the only protection in place.

At the emerging maturity level, some protection is provided, typically using API gateways to provide
basic enforcement of rate-limiting, token validation, and more. For an established level of maturity,
dedicated API firewalls are implemented to provide localized protection at the API transaction level.

Governance

Trust but verify - a robust governance process is essential to ensure that API development observes
organizational methodologies.

The final domain of API security is the overall governance process, which ensures that APIs are
designed, developed, tested, and protected according to the organization’s process.

Governance covers the following principles:

o APIs are consistent — that is, they use standard patterns for authentication and authorization

o Standard processes, including testing and remediation requirements, are followed to develop
new and updated APIs

« Data privacy and compliance requirements are met

o A process is observed for APIs at their end of life to eliminate insecure zombie APIs
o Stakeholders are enabled on API-specific security topics

o Enablement is updated based on emerging threats

o API development is largely ungoverned, with business units each using their own process with
no central oversight

At the lowest maturity level, governance addresses only the basic requirements of compliance and
regulatory requirements.

At the emerging maturity level, governance is proactive, and APIs are developed to a standard process.
For an established level of maturity, deviations are tracked, and discrepancies are addressed.

Planning your program

Now that you have examined the key topics of API and API security ownership and have the foundations
of a maturity model, it is time for the rubber to hit the road as you begin to plan your program.



Planning your program

Establishing your objectives

Simon SineK’s seminal TED talk Start with Why inspires leaders and organizations to understand their
motivation for what they do and the importance of the “why” they do what they do. The same can be
said for establishing an API security program — without clear objectives or raison detre, your program
may flounder and fail. You need to understand the compelling reason(s) for implementing a change
program of scale. Perhaps you process medical records and cannot risk an API breach disclosing
patient data. Or maybe you are a payment processor that is bound by strict regulatory requirements.
Or perhaps you are an “API-first” company whose very business succeeds (or fails) on the strength
of their APIs and their security.

Find your why, use that to determine your requirements, and plan your program accordingly.

One of the biggest blockers to starting a software security initiative is feeling overwhelmed when
establishing the first steps on the journey, particularly if you are responsible for a large estate. With
so many applications or APIs, where do we even start? Unfortunately, this hesitancy can undo many
initiatives since they fail to even get started, or if they do, the effort is wasted on lesser important assets.

In Chapter 1, What Is API Security?, I introduced a basic approach to a risk-based methodology to
prioritize the most important APIs based on your business’s security objectives. Use this method to
identify your highest priority cohort of APIs, enroll them into your program, and then spread the
selection criteria wider to the next cohort and then the next. Avoid the temptation to take on your
entire portfolio in one fell swoop as this can lead to early failure when no progress is apparent.

Assessing your current state

You may be working in a greenfield environment regarding API security where nothing is in place,
and you are building from ground zero. Or - more likely — you have a brownfield environment where
some API security measures are already in place, and you are seeking to improve or mature these. In
this case, you must get a good estimate of your current state before making changes.

The first task is to estimate your inventory. This can be done in several ways:

« Scan your Git repositories for identifiers that indicate API code (OAS definitions, route
controllers in source code, and more)

o Ingest network traffic and use tooling to identify API-specific traffic
o Ifyou are running an API gateway, extract their inventory of proxies and use this as a starting point
Once you have identified the APIs, use your organizational knowledge to determine ownership of

the API, and then use discovery meetings to map their current capabilities to a maturity model (such
as the 42Crunch model or more general-purpose models such as OpenSAMM or the NIST SSDF).

333



334

Implementing an API Security Strategy

Lastly, decide what controls, processes, and procedures are required to attain your security requirements.
Build consensus and awareness with all stakeholders and bake in review, updates, and enablement to
ensure longevity and relevance.

Building a landing zone for APIs

In recent years, one of the more useful paradigms that has emerged from the DevSecOps movement is
the concept of so-called guardrails or landing zones. The concept is simple: build a zone (comprising
elements from across the eight phases of the SDLC) with security tooling baked into the fabric of the
zone. The only thing the application development team needs to do is contribute their code; the rest
of their environment is already configured optimally for their development process and, of course,
for secure development and deployment.

These landing zones can become unwieldy for large, complex, heterogeneous applications requiring
many languages, toolkits, SDKs, environments, and so on. However, for APIs, the story is a little simpler.
An organization can realistically standardize one or two landing zones and coax development teams
to use these secure landing zones to achieve greater API security. It becomes a compelling proposition
for security and development teams alike:

Design &
Development

/:Q@\/QO\/ r I
2

AN AN /

1 Q

logz.io

Build & Test Release, Deploy, & Operate

o

Monitor

Figure 13.6 — Sample secure APl development landing zone



Running your program

In the sample secure API development landing zone shown in Figure 13.6, the following key components
are provided:

o A design and development zone based around a VS Code editing experience, with 42Crunch
providing OAS definition auditing and instantaneous API testing in the editor

e A build and test zone based on GitHub and its Actions component for automation, and Postman
to run automated API testing using a command-line interface (CLI)

o A release, deploy, and operate zone based on a DigitalOcean tenant (this could be any similar
cloud provider) with Kubernetes as a deployment orchestrator using a Kong API gateway as
the main ingress from the outside world

« A monitoring zone that uses Azure Sentinel as the SIEM, Grafana as the telemetry and
instrumentation dashboard, and Logz . 10 as the logging facility

This is purely an illustrative example; the specific details will vary according to your organization. The
key takeaway is that you build out a landing zone with the required elements and then secure that by
providing secure defaults and hardened configurations. A developer should be able to go from code
to a secured API without having to concern themselves with any intermediate steps.

Running your program

Once you have established your program’s goals and identified your stakeholders, you can start running
your program. To do that, first and foremost, you need a team composed of the right people for the
job. The trick is to find the right people; let’s look at some approaches.

Building your teams

First up, you need to build your own team who will work to achieve your objectives. Adam Shostack
has written an excellent blog on the topic (see Further reading), and his perspectives reflect my reality
of having built several large-scale AppSec programs. The key point is the hardest one to grasp: to build
an AppSec team, you do not need a team of AppSec specialists. Shostack expresses it perfectly: “by
using exceptional talents doing over-specialization.” While securing software has an obvious technical
element to it, by far, the biggest challenges are human-centric. You will, above all else, require the
buy-in and cooperation of your development teams; after all, it is these teams who need to make
changes to their processes or fix their code to improve security. What is needed most are diplomats
who can lead with empathy and negotiate change. Deep technical specialists are often too inclined to
want to solve the problem themselves rather than empowering others to solve their problems. Teams
of deep technical specialists will not scale.

335



336

Implementing an API Security Strategy

Speaking anecdotally from my experience (see the YouTube talk in Further reading), I assumed I
needed both InfoSec skills (with qualifications such as CISSP and others) and pentest skills when
building my team in my first role. Instead, I was assigned a team of generalists with very diverse skills
and backgrounds, and we shaped this into a very successful AppSec team.

The other way to approach the scaling issue with AppSec teams is to delegate or outsource much of the
day-to-day operation to security-minded members of the application development teams themselves.
This is the now popular security champions approach, where the champions are responsible for
activities such as evangelizing security, developing security standards and policies, running events
and activities, doing threat modeling, performing code reviews, and using security testing tools. Think
of the security champion as a local extension of your team. Clarity is essential to determine who has
ultimate accountability for security decisions. OWASP offers excellent guidance on this topic (see
Further reading).

Tracking your progress

As your program proceeds, you will need to demonstrate progress. This is best done by selecting a
variety of key performance indicators (KPIs) that reflect the objectives of your program.

Understanding your KPIs
For each metric chosen, several metadata properties indicate the metric’s nature:

« Data source: This indicates how the metric is measured. Possible values include the 42Crunch
platform, platform metrics (GitHub, CI/CD, and so on), SIEM/SOC, the API gateway, and
surveys, which are the least accurate as they tend to be subjective.

« Classification: This indicates whether the value should increase or decrease to reflect an
improvement. Metrics with a decreasing value are good since a value of zero indicates no
further improvement is needed, or metrics measured as a percentage with an increasing value
are good since 100% indicates no further improvement. For open-ended metrics, a baseline
should be established based on the organization’s goals and objectives.

« Unit of measurement: The units of measurement can be one of the following: a count (a numeric
value), percentage, duration (a time or date value), or a Boolean (a yes/no value).

o Trend: This specifies whether the metric is increasing or decreasing to indicate improvement.
Flaw count is a good example of a decreasing metric, while code coverage is a good example
of an increasing metric.

 Reliability: This indicates the approximate reliability of the metric. Some metrics that are
measured from platforms (42Crunch, GitHub, and so on) can be precise with high reliability,
while others can be less reliable, such as detected threats. Others are entirely subjective, such
as the cost to remediate.



Running your program

o Leading or trailing: This indicates whether the metric shows the impact of past behaviors
(trailing) or that future KPIs should improve based on the measurement based on correlation
(leading). Education, enablement, and engagement are examples of leading indicators. Scan
results and bug bounty reports are examples of trailing indicators.

Ensure that you understand the nature of your KPIs to determine sensible target values and timescales
as these will likely be necessary to achieve them.

Selecting your KPIs

As part of the research in my role as a technical evangelist, I have collated nearly 200 KPIs for API
security and made these available in spreadsheet form in this book’s GitHub repository.

The KPIs are sorted according to the phase of the SDLC. The typical KPI types are as follows:

o Plan: Security definitions metrics, transport security metrics, input validation and parameter
security metrics, output and response security metrics, error handling and information disclosure
metrics, compliance metrics, and threat modeling metrics

o Code: Pull request review metrics, pull request integration metrics, code review metrics, code
scanning metrics, and dynamic testing metrics

o Build: Dependency and component security, tooling and automation metrics, development,
and remediation efficiency metrics

o Test: API security testing

o Operate: Vulnerability metrics, threat intelligence metrics, performance metrics, and security
incident metrics

o Monitor: Security monitoring metrics, traffic metrics, and cost metrics

To start with, pick a half dozen or so of the key metrics (and possibly ones you know you can improve),
use these as a yardstick for your program, and then expand as your program gathers momentum. From
my experience, I would pick metrics based on the measurement of authentication and authorization
in the development phase and then coverage metrics for testing.

Integrating with your existing AppSec program

In the Roles and responsibilities section, we discussed how most organizations will likely have some
form of DevSecOps team performing security testing and scanning activities (see Figure 13.3). As you
build out an API security initiative, aligning your efforts and activities with those of the DevSecOps
team is wise.

337



338

Implementing an API Security Strategy

Integrate API testing methods

For each of the common security testing types, particular touchpoints applicable to API security
are worthy of focus, either by creating specific rules, adjusting the severity categories, or providing
remediation advice. For example, here are some suggestions:

o Static application security testing (SAST): For SAST scans, pay particular attention to issues
that have been identified relating to injection vulnerabilities since APIs are prone to injection
attacks via external payloads. Also, be aware of findings related to data processing, such as
XML external entity (XXE) based attacks.

« Dynamic application security testing (DAST): For DAST scans, identify endpoints that are not
configured correctly with TLS or fail under high load conditions or with large payloads. These
endpoints may be fragile and susceptible to denial-of-service attacks and should be hardened
or protected with rate-limiting solutions.

« Software composition analysis (SCA): For SCA testing, identify packages or components critical
to APIs (frameworks such as Connexion or FastAPI in a Python application, for example) and
ensure that the versions that are used are not affected by open vulnerabilities.

Work closely with your AppSec team to leverage their efforts and, in particular, learn from their
hard-learned lessons.

Understand your APl dependencies

We have already discussed the importance of managing and maintaining your software dependencies
to ensure that you are not inheriting risk from vulnerable software. It is also important to understand
the provenance of your upstream APIs:

« Do you know if these APIs are built using secure software development methodologies?
« Do you know if these APIs are tested for vulnerabilities?

« In the event of vulnerabilities being discovered, do you have an agreement in place with your
supplier to remediate these vulnerabilities?

It is highly advisable to map out a dependency tree of your API infrastructure to identify all contributing
elements, including software components or third-party APIs. Use this dependency map to build out
a view of your risk profile.

Your personal APl security journey

We are now at the end of this book, but that does not mean that your personal API security journey
has concluded. I would like to think it has only just started. APIs and API security are rapidly evolving
domains, with new technologies (such as GraphQL) posing new risks to organizations. Hopefully, this



Summary

book has given you a solid foundation in the basics of API security, how to attack APIs, and, most
importantly, how to defend them.

To keep up to date on all breaking news relating to API security, including breaches, views and opinions,
tools, and techniques, I would recommend the bi-weekly newsletter I curate at APISecurity.io (https://
apisecurity.io/).

If you prefer a more tactile, hands-on approach to learning, then the good folks at APISecurity
University have several online training courses on various API security topics (https://www.
apisecuniversity.com/).

Happy learning!

Summary

This brief chapter covered the very important topic of building an API security strategy and saw the
theory we have learned about API security applied to real-world API development. Understanding
who owns your APIs is important in understanding how to drive the messaging around the need
for API security. A broad-based approach involving the CISO or IT security organization and their
colleagues in the API product development teams is likely to produce the best results since this will
include API security touchpoints across all phases of the SDLC.

First, we learned how to plan an API security initiative by understanding our objectives (the “why”)
and then understanding our current state to form our strategy. We then looked at running a program,
focusing on the critical step of building our team and selecting our KPIs to gauge our progress.

Finally, your own continued learning is important for staying on top of emerging threats and changes
in technology landscapes.

This chapter brings our journey together to a conclusion. In hindsight, we have covered a lot more
material than I might have anticipated when I started with the first chapter nearly 18 months ago.
The journey has taken us from the very fundamentals of API requests using HTTP, through to a solid
understanding of the core building blocks and then the top vulnerabilities affecting APIs. We then
learned how to think like an attacker in understanding how our APIs could be attacked.

The last part of this book honed in on the key topic of defending APIs and took us on a journey of
methods and techniques to use throughout the SDLC. A good API security strategy covers touch
points from the start of the SDLC (the so-called shift-left approach) to the API runtime (the so-called
shield-right approach). Hopefully, at this point, you are inspired and motivated to start securing your
organization’s APIs.

As mentioned previously, your learning journey is only just beginning, so please do keep in touch,
either with me or via this book’s dedicated resources, namely the GitHub repository or the YouTube
“Code in Action” channel. As I conclude this book, I am happy to report the great success of my
first full-day workshop accompanying this book — be sure to keep an eye open for future workshops
coming to a venue near you.

339


https://apisecurity.io/
https://apisecurity.io/
https://www.apisecuniversity.com/
https://www.apisecuniversity.com/

	Cover
	Title Page
	Copyright and Credits
	Chapter 13: Implementing an 
API Security Strategy
	Ownership of API security
	Understanding your stakeholders
	Roles and responsibilities

	The 42Crunch maturity model
	Inventory
	Design
	Development
	Testing
	Protection
	Governance

	Planning your program
	Establishing your objectives
	Assessing your current state
	Building a landing zone for APIs

	Running your program
	Building your teams
	Tracking your progress
	Integrating with your existing AppSec program

	Your personal API security journey
	Summary
	Further reading




