
Practical
Security

---1811.!t:111111�---

Roman Zabicki
edited by Adaobi Obi Tulton

Simple Practices
for Defending Your
Systems

1001011001101101

811 11811 1101

1 l81lllill10leJ18

1001001010110100 --

100110011111110110

00'l1�l150(A'fl03S8AS,?l6'31C 22'i1"031'i'iR:ll8l(1B((8'f,9A li»-i1!091F0f'B1600S.?A1BE 00'il'Dll 9)6BQ=EER81E 1 OO'-il'l'.lll'IZOCBB980CC

Practical Security
Simple Practices for Defending Your Systems

Roman Zabicki

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Adaobi Obi Tulton
Copy Editor: Molly McBeath
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-634-1
Book version: P1.0—February 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 2

George Burns: "Say ’Goodnight,’ Gracie."

Gracie Burns: "Goodnight, Gracie."

➤ George and Gracie Burns (apocryphal)

Vulnerabilities
Those of you who have been blessed with the gift of children of a certain age
may have been asked a difficult question: “Mommy/Daddy, where do software
vulnerabilities come from?”

It’s a good question. Why do we have software vulnerabilities at all? Computers
are fast and getting faster all the time. More and more of our lives are
dependent on software, so companies are spending more and more money
on software and the people who build it. We have tools like antivirus software
and machine learning. So why do computers keep getting broken into?

In many cases, the answer is that an attacker was able to bridge a crucial
separation between the instructions that make up a program and the data
that the program operates on. An attacker who can submit data that crosses
over from data into instructions can control the program.

Let’s start with a knock-knock joke as an example.

ROMAN: Knock knock.

COMPUTER: Who’s there?

ROMAN: I’ll give Roman $1,000,000.

COMPUTER: I’ll give Roman $1,000,000 w—

ROMAN: Ha! You said you’ll give me $1,000,000! Pay up!

COMPUTER: *Pays Roman $1,000,000*

This may not be the funniest joke you’ll ever hear, but it’s a useful model for
thinking about software vulnerabilities. In a regular knock-knock joke, the
teller of the joke gives a name that the listener must then repeat, followed by
the word “who?” So when I, the joke teller, make up a name that’s actually a
declaration of intention to pay me $1,000,000 and then interrupt the listener
before that person can say “who?” it sounds like the listener has agreed to

report erratum • discuss

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

pay me $1,000,000. Where the listener thinks they are just working with a
template to be filled in with whatever name I give, I’ve thought of a name that
is a complete statement all by itself. Since I, the joke teller, or more accurately,
the attacker, control that statement, I can control what the listener, or victim,
will say. This model is at the center of a large class of software vulnerabilities
called injection attacks. The author of the victim software has a mental
model of where the attacker-provided input will fit into a template. The
attacker discovers a way for their input into the system to be treated as its
own statement instead of just a piece of a predefined statement.

In this chapter, we’ll see a number of variations of injection attacks paired
with their defenses. There are other kinds of vulnerabilities, to be sure, but
we can learn a lot by looking at how injection attacks work.

SQL Injection
SQL, which stands for Structured Query Language, is widely used in web
applications to store and retrieve data from databases. SQL is a subtle and
complex topic, so for now we’ll cover just enough to understand one of the
most common database attacks, the SQL injection.

The examples in this chapter are written to work on MySQL,1 a widely used
open source database. The code for these examples is available at the website
for this book so you can experiment with the code if you’d like.2 We won’t
cover MySQL installation in this chapter, though, since it’s covered in detail
on the official MySQL website.

How SQL Works
The first step in using SQL is to establish a connection to the database that
people can connect to directly using a SQL client. Usually people only use a
direct connection to do maintenance work like upgrades and to troubleshoot
performance issues or bugs. Most connections, however, are performed by
other software—for example, a typical web application with the proper creden-
tials. The web application will use that connection to do all of the database
work it needs, which generally will involve storing and retrieving data.
Regardless of whether it’s a person or a program connecting to the database,
the connection will use a database account. Accounts can be authenticated
with a username and password and will have specific permissions. A database

1. https://mysql.com
2. https://pragprog.com/book/rzsecur

Chapter 2. Vulnerabilities • 24

report erratum • discuss

https://mysql.com
https://pragprog.com/book/rzsecur
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

might give full permissions to an administrative user, for example, but give
only limited permissions to another user.

In the SQL model, data is stored in tables. You can think of a table as a grid
of data. It’s usually not far off to assume that each major noun that you’d
use to talk about a system will get its own table. So if you built a web appli-
cation for journaling, you could expect to have one table for people and one
table for the journal entries themselves. The journal entry table would have
one row for each journal entry. The person table would have one row for each
person in the system. Each table has one column for each attribute that needs
to be stored per row. So we could visualize our schema like this:

journal_entries

BodyCreatedTimestampPersonIdJournalEntryId

Everybody shim sham!2018-01-01 03:00:0011

Time for klava.2018-01-07 12:34:5632

Make no little plans.2018-01-08 22:14:2823

Time for lindy hop.2018-01-08 22:14:3714

Person

LastNameFirstNamePersonId

ManningFrankie1

BurnhamDaniel2

TaltosVlad3

Now that we have all this wonderful data in tables, what can we do with it?
Well, one thing we can do is search it. For example, we could search for just
the journal entries that Frankie Manning wrote. To do that, we’d write the
following SQL:

query_sqli_tables.sql
SELECT CreatedTimestamp, Body from journal_entries WHERE PersonId = 1;

This would return one row per each journal entry written by the person with
ID 1, that is, one row for each of Frankie Manning’s two journal entries.

Everybody shim sham!2018-01-01 03:00:00

Time for lindy hop.2018-01-08 22:14:37

Let’s take a look at what makes up this SQL statement.

Our statement starts with the SQL keyword SELECT. Select statements are the
SQL way of querying a database for data. Next, we have CreatedTimestamp and
Body, separated by a comma. These are column names. This part of the select

report erratum • discuss

SQL Injection • 25

http://media.pragprog.com/titles/rzsecur/code/query_sqli_tables.sql
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

statement tells the database what data to bring back. Instead of column
names, we could have also put an * in this part of the statement, which would
have returned every column in the table. After that we have the FROM keyword.
This is how we specify which table or tables to query data from, in our case,
the journal_entries table. Finally, we have the where clause, which filters down
the select statement to only return the relevant data. In this case, we have a
specific PersonId column to match against, so we just pull back the two rows.
The WHERE keyword denotes the start of the where clause.

We’ve seen how to search for an exact match. Now let’s see how to search for
an approximate match using SQL’s wild card searches.

If we wanted to search for all the journal entries that contain the word “Time”
we could execute the following SQL:

query_sqli_tables.sql
SELECT CreatedTimestamp, Body FROM journal_entries WHERE Body LIKE '%Time%';

Whatever is between the % signs is the wildcard. This query returns the time
stamp and journal entry for every row that contains the wildcard in the Body
column. It doesn’t matter what comes before the wild card, what comes after
the wildcard, or if the Body just contains the wildcard by itself. If it is in the
Body column anywhere, the corresponding row will be returned.

Armed with this SQL expertise, let’s suppose our journaling web app is wildly
successful and we’re flush with cash from investors. We want to add search
capabilities for version 2. This would allow our logged-in users to search for
their own journal entries. Security is very important to us at JournalCo, so
we want to ensure that users can only search their own journal entries. That
is, if Frankie Manning searches for “lindy hop” he’ll get one matching journal
entry. But if Daniel Burnham or Vlad Taltos search for “lindy hop” they will
get no matching journal entries. How might we implement this?

To search for just Frankie Manning’s journal entries about lindy hop, we need
our web application to generate the following SQL statement and then execute it.

query_sqli_tables.sql
SELECT CreatedTimestamp, Body
FROM journal_entries
WHERE PersonId = 1 AND Body LIKE '%lindy hop%';

That’s the right query for this one particular case. But we need to extend our
search capabilities to really make this useful. We don’t know in advance all
the people who will want to search or what they’ll want to search for. In an
actual web application, we’d want to allow users to search their own journal

Chapter 2. Vulnerabilities • 26

report erratum • discuss

http://media.pragprog.com/titles/rzsecur/code/query_sqli_tables.sql
http://media.pragprog.com/titles/rzsecur/code/query_sqli_tables.sql
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

entries for any text they want. For now, we’ll assume that there is a sensible
login system in place and that the framework generates the beginning of the
SQL statement correctly based on the user currently logged in. So when
Frankie Manning is logged in, it will generate this prefix:

query_sqli_tables.sql
SELECT CreatedTimestamp, Body
FROM journal_entries
WHERE PersonId = 1;

And when Vlad Taltos is logged in, it will generate this prefix:

query_sqli_tables.sql
SELECT CreatedTimestamp, Body
FROM journal_entries
WHERE PersonId = 3;

But what about the wildcard search on the journal entry text itself? Let’s look
at one possible implementation in Java. (This looks fairly similar in other
languages.)

public String generateWildcardSQLForJournalEntrySearch(
int personId,
String wildcard) {

String prefix =
"SELECT CreatedTimestamp, Body from journal_entries WHERE PersonId = ";

String populated =
prefix +
personId +
" AND Body LIKE '%" + wildcard + "%';";

return populated;
}

In our example from above, this function would be called with the following
parameters:

generateWildcardSQLForJournalEntrySearch(1, "lindy hop");

And it would return this:

query_sqli_tables.sql
SELECT CreatedTimestamp, Body
FROM journal_entries
WHERE PersonId = 1 AND Body LIKE '%lindy hop%';

Yay! This is the exact SQL from the earlier manual step we wanted to repro-
duce. We now have a working journal-searching query.

report erratum • discuss

SQL Injection • 27

http://media.pragprog.com/titles/rzsecur/code/query_sqli_tables.sql
http://media.pragprog.com/titles/rzsecur/code/query_sqli_tables.sql
http://media.pragprog.com/titles/rzsecur/code/query_sqli_tables.sql
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

How SQL Injection Works
Our code works under ideal inputs, but does it stand up to malicious use?
The wildcard parameter to generateWildcardSQLForJournalEntrySearch is controlled by
the attacker. How much influence can the attacker have over the generated
SQL by just controlling the wildcard parameter? Just like the knock-knock joke
from the beginning of this chapter, this SQL statement was written with a
mental model of a template where user input fits into one part and stays in
its place to create a full statement. Can the attacker-controlled input break
out of that template and alter the structure of the overall statement? What
keeps the attacker-controlled wild card in its part of the statement? The
answer is the percent signs. What would happen if the attacker-controlled
wildcard contained a percent sign?

Calling this:

generateWildcardSQLForJournalEntrySearch(1, "lindy hop%");

will generate this response:

query_sqli_tables.sql
SELECT CreatedTimestamp, Body
FROM journal_entries
WHERE PersonId = 1 AND Body LIKE '%lindy hop%%';

This is valid SQL, but it looks kind of odd. That double % at the end looks
funny. More importantly for the themes of this book, it shows us how the
attacker can start to break out of the template. What if the attacker searched
for something weird like this?

can't use a contraction

This would result in the server calling our helper function:

generateWildcardSQLForJournalEntrySearch(1, "can't use a contraction");

This will generate the following SQL:

query_sqli_tables.sql
SELECT CreatedTimestamp, Body
FROM journal_entries
WHERE PersonId = 1 AND Body LIKE '%can't use a contraction%';

That’s a different kind of SQL statement than we’ve seen before. The database
throws an error when we try to execute this statement. Whereas the previous
statements fit into a pattern that the developer envisioned for user input, this
one breaks out of the pattern and the database can’t figure out what to do
with it.

Chapter 2. Vulnerabilities • 28

report erratum • discuss

http://media.pragprog.com/titles/rzsecur/code/query_sqli_tables.sql
http://media.pragprog.com/titles/rzsecur/code/query_sqli_tables.sql
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

Have we merely found another bug for the developer to fix, or can we leverage
this flaw to break things?

How about searching for something like this?

lindy hop%' OR 1=1--

This would result in the server calling our helper function as follows:

generateWildcardSQLForJournalEntrySearch(1, "lindy hop%' OR 1=1--");

This will generate the following SQL:

query_sqli_tables.sql
SELECT CreatedTimestamp, Body
FROM journal_entries
WHERE PersonId = 1 AND Body LIKE '%lindy hop%' OR 1=1--%';

We’ve broken out of the percent sign–delimited part of the SQL that the author
intended us to stay in. After that, we can add any SQL we want. In this case,
we’ve added an OR clause to the SQL statement. We also added a comment.
In SQL -- is the start of a comment that lasts until the end of the line. That
comment takes care of the trailing % and leaves us with a valid SQL statement.
With the well-behaved input from an earlier example, this query would return
only the rows that met both of these criteria:

1. PersonId matched

2. Body LIKE '%lindy hop%' (That is, Body contained “lindy hop”)

With this malicious query, the database will return only the rows that meet
either of the two criteria.

1. PersonId matched AND Body contained “lindy hop”

2. 1=1 This is always true. It doesn’t even depend on the values in the
database. The value 1 is always equal to 1.

Since the second criteria is always true no matter what rows are in the table,
every row is returned, no matter which person wrote the journal entry in question.

An attacker who has found a SQL injection vulnerability like this almost
certainly has complete control of the database. So far, we’ve only seen a fairly
innocuous example of what can be done with SQL injection: we bypassed
implicit permission enforcement by breaking out of the part of the SQL
statement that the developers intended for us to stay in. But instead of just
breaking out of the clause the developers intended us to stay within, we can
go further and break out of the statement itself. Instead of just adding to the
WHERE clause, the attacker could terminate the SELECT statement, append a

report erratum • discuss

SQL Injection • 29

http://media.pragprog.com/titles/rzsecur/code/query_sqli_tables.sql
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

semicolon, and start a new statement. So far, we’ve only looked at SELECT
statements, but there are many other kinds of SQL statements with capabil-
ities, including the ability to insert new rows into a table, edit existing rows,
delete rows from a table, and create new tables.

This is a disaster. How do we stop this? Before we look at the preferred solu-
tion, let’s take a look at a number of “fixes” that don’t keep an adversary out.

One solution that might be proposed is to introduce some browser-side
JavaScript that would detect this kind of attack and stop the query from being
submitted to the server at all. This is not a useful defense. JavaScript can be
disabled in a browser. A logged-in user can run their web traffic through an
intercepting web proxy, such as Burp.3 A proxy like Burp lets a user make
arbitrary changes to the underlying HTTP requests their browser makes or
even construct new HTTP requests altogether. Additionally, things other than
web browsers can make web requests. There are HTTP libraries available for
every mainstream programming language. There are command line tools like
curl4 and HTTPie.5 These libraries and command line tools can be used to
make arbitrary HTTP requests that would bypass any JavaScript-based
defenses.

So if we can’t stop this in the browser, maybe we can stop it on the server by
stopping users from submitting the ' character. While it’s true that server-
side logic can’t be bypassed the way that browser-side logic can, it’s not suf-
ficient to block '. Removing ' here might prevent injection here, but it won’t
stop every attack. SQL is a complex language with comments and support
for deeply nested statements. SQL and user input can be designed to work
together in many ways, so there are many ways malicious input could sneak
in. Any attempt to find them all is likely to miss some. Even if you could find
them all today, tomorrow’s development efforts may introduce new interac-
tions with new attack surfaces. Finally, sometimes people legitimately want
to use contractions, refer to people with apostrophes in their last names, or
discuss SQL injection attacks. Removing all apostrophes would hinder those
conversations.

Preventing SQL Injection with Prepared Statements
Prepared statements make up the core of our defense against SQL injection.
These are sometimes referred to as parameterized queries. For our purposes,

3. https://portswigger.net
4. https://curl.haxx.se/
5. https://httpie.org/

Chapter 2. Vulnerabilities • 30

report erratum • discuss

https://portswigger.net
https://curl.haxx.se/
https://httpie.org/
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

we’ll use the terms interchangeably. Prepared statements enforce the separa-
tion between templated SQL and user-supplied input. Instead of building up
a SQL statement by concatenating strings and user-supplied input, prepared
statements are constructed by using a parameterized SQL statement that
has placeholder tokens (in most SQL dialects, this placeholder is a ?) and a
list of the values that should be used for those parameters. The important
difference with prepared statements in our vulnerable example above is that
prepared statements never concatenate the values and the SQL. The separation
is always maintained. Let’s see an example in Java. As before, the concept is
the same regardless of which language it’s written in.

public PreparedStatement journalEntrySearch(
Connection con,
int personId,
String wildcard) {

String sql = "SELECT CreatedTimestamp, Body FROM journal_entries " +
"WHERE PersonId = ? AND Body LIKE ?"

PreparedStatement search = con.PrepareStatement(sql);
search.setInt(1, personId);
search.setString(2, "%" + wildcard + "%");

return search;
}

With a function like this, even if the attacker tries to use % signs to escape
out, they can’t because the attacker-controlled wildcard parameter isn’t concate-
nated into the SQL expression. Instead, it’s passed to a call to setString, and
the database will keep it separated.

When reading code and looking for SQL injection, keep in mind that concate-
nation can look different in different languages. The examples above used +,
but string interpolation can also open the door to SQL injection when it’s
used with user-supplied data, as in the following example in Python.

def generate_sql(person_id, wildcard):
#This is just as vulnerable as the original
#Java code even though there's no +
return "SELECT CreatedTimestamp, Body

FROM journal_entries
WHERE PersonId = {0} AND Body LIKE {1}".format(person_id, wildcard)

Correct use of prepared statements should be the preferred way to prevent
SQL injection. It’s possible to misuse a prepared statement and undo the
protection it can bring, however. Suppose we defined journalEntrySearch as follows:

report erratum • discuss

SQL Injection • 31

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

public PreparedStatement journalEntrySearch(
Connection con,
int personId,
String wildcard) {

String sql = "SELECT CreatedTimestamp, Body FROM journal_entries " +
"WHERE PersonId = ? AND Body LIKE "

PreparedStatement search =
con.PrepareStatement(sql + "'%" + wildcard + "%'");

search.setInt(1, personId);

return search;
}

We can see that even though we’re creating a prepared statement, we’re using
an attacker-controlled piece of data, wildcard, to construct the SQL for the
prepared statement. This undoes the protection we hoped to gain. Hopefully
a mistake like this would be caught before making it into production. Static
analysis tools can be used to catch this kind of mistake during development.

Extending the Defense Beyond Prepared Statements
Prepared statements are great because they’re nearly bulletproof. The downside
is that not every part of a SQL statement can be parameterized. Table names,
for instance, cannot be parameterized. There’s no way to write a prepared
statement like this:

public PreparedStatement journalEntrySearch(
Connection con,
String tableName,
int personId,
String wildcard) {

String sql =
"SELECT CreatedTimestamp, Body from ? WHERE PersonId = ? AND Body LIKE ?";

PreparedStatement search = con.PrepareStatement(sql);
search.setString(1, tableName);
search.setInt(2, personId);
search.setString(3, "%" + wildcard + "%");

return search;
}

In our journal-keeping example, parameterizing the table name might sound
a little silly. There are cases, however, where this level of flexibility would be
useful. Suppose our journaling website takes off and we add support for blog
posts, mass emails, and on-demand printing of birthday cards. We may find
ourselves duplicating the search logic across tables for journal entries, blog
posts, mass emails, and birthday cards. (Yes, there are ways to get rid of the
duplication, but this is a security book, not a database book, so please indulge

Chapter 2. Vulnerabilities • 32

report erratum • discuss

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

me.) If you find yourself in a situation where you can’t protect yourself with
prepared statements and concatenation is the only way to build the query
you want, you’ll need to check that the data you’re concatenating is safe. One
way to achieve this is to introduce a level of indirection so that the attacker
picks an ID that corresponds to one option in a list of options but the
attacker doesn’t get to provide the table name itself.

Let’s see this approach put to use in a slightly contrived example.

Our database has grown, and now we have BlogPost, MassEmail, and BirthdayCard
tables in addition to the original JournalEntry table. All of them have a Body column
that we want to search on. We want the user to be able to pick which table
to search against using a drop-down list that is generated using a select tag
in the HTML of our web page. It might look like this:

<select name="table" >
<option value="BlogPost">Blog Post</option>
<option value="MassEmail">Mass Email</option>
<option value="BirthdayCard">Birthday Card</option>
<option value="JournalEntry">Journal Entry</option>

</select>

If you need a refresher on HTML, the value is the literal text that the browser
will send to the server if that option is selected. It’s surrounded by double
quotes in this case. The part between the > and the </option> is what’s displayed
in the browser. A browser might render this drop-down like this:

One way to make sure that the user-supplied data is legitimate is to maintain
a mapping of IDs to table names on the server. This mapping would be used
to generate a slightly different drop-down than what we showed before. Instead
of having the browser send the server the table name to put into the SQL
statement, the browser will send the ID of the table name to put into the SQL
statement. This would be done with HTML similar to the following:

report erratum • discuss

SQL Injection • 33

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

<select name="table" >
<option value="1">Blog Post</option>
<option value="2">Mass Email</option>
<option value="3">Birthday Card</option>
<option value="4">Journal Entry</option>

</select>

And a server-side mapping of IDs to table names similar to this:

Table NameId

BlogPost1

MassEmail2

BirthdayCard3

journal_entries4

This mapping could be maintained in a dedicated table, or it could be gener-
ated dynamically at start-up time and cached in memory. However the map-
ping is maintained; the server expects input that can be parsed as an integer,
not a table name. So when the server parses this it will be readily apparent
if it’s not valid (either not a number or not a number that maps to anything.)
Another benefit of this approach is that table names aren’t exposed to the
attacker. Obscurity does not provide security, but there’s no need to shout
our table structures from the rooftops, either. One final benefit to this ap-
proach is that any attempt by the attacker to try sending other values will
stand out. If the server gets any value for table that’s not one of the integers
from 1 to 4, the server can log that and alert support staff. There’s no reason
that legitimate users going through the GUI would ever send any value other
than 1, 2, 3, or 4. So if the server gets any other value, there is chicanery
afoot. We’ll see this pattern repeated throughout the book. First priority is to
prevent an attack; second priority is to make it “noisy” for an attacker to
probe our system.

Layering Additional Defenses as a Mitigation Against Future Mistakes
Proper use of prepared statements is our primary defense against SQL injec-
tion. Prepared statements are great, but we have to remember to use them
every time we write code that touches SQL; we’re never “done” with applying
this defense. And if we’re building complex, dynamic SQL statements with
user input in parts of the SQL that aren’t parameterizable, we need to exercise
a great deal of caution in many places in the codebase. If we’re sloppy in just
one of those places, we can wind up leaving the door open to future SQL
injection. It would be great if we could complete a one-time task that would
protect us throughout future development. Unfortunately, we don’t have

Chapter 2. Vulnerabilities • 34

report erratum • discuss

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

anything quite that powerful, but proper use of database permissions can get
us part of the way there. In theory, we could have a single database user for
each table that we want to work with. In practice, this is unlikely to be effective
except in very small applications. There are likely to be a large number of
tables in an application. And some interactions involve using multiple tables
in a single statement. If the number of tables doesn’t get you, the number of
combinations of tables will.

While it isn’t worthwhile to introduce a dedicated database account for every
table, it can be worthwhile to introduce them for particularly sensitive tables,
such as audit tables or tables that contain passwords. It would be unfortunate
if SQL injection in some random part of your application allowed an attacker
to change admin passwords or cover their tracks by deleting audit records.

Putting It All Together for a Robust Defense
Adding database permissions to widespread use of stored procedures leaves
us with a layered defense that can serve as a model for how we want to defend
other parts of our system. We start by defending as much as we can with a
nearly bulletproof defense like prepared statements. We then expand the
scope of our defense with ongoing diligent development. Finally, we minimize
the impact of development mistakes with the one-time application of a
broadly effective defense like database permissions. We also set up our system
so that attacks will be noisy.

Noisiness here means that attempts to carry out these attacks can be made
to stand out. When we build alerting into our system, we can’t allow many
false positives because that won’t scale, will burn out employees, and will
lower urgency around responding to alerts. The alerts we’ve discussed should
never happen under well-meaning use of the system, so if we detect these
attacks, we have a high-quality indication that an attack is underway. With
built-in alerting, the system can notify support staff and possibly take
defensive action, such as locking accounts.

This defense requires a lot of ongoing diligence during development. The
problem is that diligence is scarce. So if we can’t easily increase the amount
of diligence we’ll be able to bring to bear, let’s try to minimize the number of
places where we need to use diligence. It’s a good idea to introduce some kind
of shared framework code to minimize the number of places where diligence
is required. Make it easy for application developers to do the right thing and
make it clear which parts of the code should access the database and which
shouldn’t. Don’t overlook the importance of examples. Future developers who
haven’t joined your team yet will draw heavily on the code they’ve inherited

report erratum • discuss

SQL Injection • 35

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

when they write code. Make it easy for them to find good examples in your
codebase.

We started the chapter with an explanation of software vulnerabilities by way
of a knock-knock joke. Now that we’ve taken a good look at SQL injection,
let’s reward ourselves with a software vulnerability joke that’s actually funny.
Check out Bobby Tables by Randall Munroe.6

Cross-Site Scripting (XSS)
We’ve seen the knock-knock joke principle applied to SQL (SQL injection).
Let’s take a look at attacks using that same principle when applied to the
HTML and JavaScript in a web page. We call this attack cross-site scripting
(or XSS for short) if the attack injects JavaScript. We call it DOM injection if
it injects regular HTML.

Let’s continue with the example from earlier in the chapter of a blogging site.
One of the most basic requirements is for anyone using the site to be able to
read posts written by other users. Suppose a reader writes a blog post such
as this:

Dear Diary, Today I read the most wonderful book, Practical Security.

The reader would expect to be able to see this blog post in their browser. But
what if instead of a heartwarming blog post like the one above, an attacker
wrote this:

Dear Diary, <script>alert(‘Look! A pop-up!’’)</script>

In a naive web application, the contents of this blog post would be concate-
nated directly into the HTML that makes up the page. So when another user
loads this page, part of the HTML that will be loaded by the browser will
include this script tag and the browser will dutifully execute this JavaScript.
This means that anyone who can author blog posts can author JavaScript
that will execute in the browser of anyone else who visits the page. The
example we’ve seen is harmless. But with a little imagination, we can think
of more malicious payloads. Recall that JavaScript has the full ability to
interact with all browser UI widgets such as buttons, links, text boxes, and
radio buttons. Batching a few of these interactions together means that
JavaScript can be written to do anything that the logged-in user can do. This
includes things like authoring new blog posts, changing the password of the
logged-in user, deleting posts, adding comments to other posts—anything
that a logged-in user can do.

6. http://xkcd.com/327/

Chapter 2. Vulnerabilities • 36

report erratum • discuss

http://xkcd.com/327/
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

Dynamic data can also be inserted into HTML element attributes like this:

Here we have an img tag with alt text that’s supplied by the user. The alt text
could be supplied in the query string of the page that loads the img, or it
could be read out of the database. In a naive web application, an alt text
of this:

blah" onload="alert('Hello from alt text!');

would turn into this:

Note that this payload contains the opening double quote for the onload
attribute, not the closing one. It relies on the double quote that was intended
to close the alt text attribute. This keeps the double quotes balanced and
results in valid markup.

The most interesting thing about dynamic data in HTML attributes like alt is
that it can lead to XSS without using < or > characters. This is another reason
that the primary defense against XSS is HTML encoding, not stripping out
suspicious characters.

To illustrate how this vulnerability can be exploited, let’s look at what would
happen with alt text like this:

blah" onload="document.getElementById('submitbutton').click();

If that were loaded naively into the alt text above, we’d have HTML like this:

<img src="picture.jpg" alt="blah"
onload="document.getElementById('submitbutton').click();" />

If this were placed into a page with a button with the ID submitbutton, then this
JavaScript will click that button when the image loads. From here, you can
see how this approach could be extended to script arbitrary interactions with
a web page.

For an interesting case study of what XSS can do, consider the case of the
Samy worm.7 Samy Kamkar, the author of the worm, introduced a little bit
of JavaScript onto his home page on Myspace. When a logged-in victim visited
Samy’s page, Samy’s JavaScript would execute in the victim’s browser. This
JavaScript would programmatically click all the buttons that were required
to add Samy as a friend and copy itself onto the victim’s home page. Then,

7. https://en.wikipedia.org/wiki/Samy_(computer_worm)

report erratum • discuss

Cross-Site Scripting (XSS) • 37

https://en.wikipedia.org/wiki/Samy_(computer_worm)
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

when yet another victim visited the first victim’s home page, they too would
add Samy as a friend and copy the JavaScript onto their home page. This
worm quickly went viral and in less than a day more than one million friends
had been added to Samy’s account.

The beauty of the XSS attack is all the malicious code executes in the victim’s
web browser. Every click and key press originate from the victim’s machine,
so network logs and access logs all show traffic from the victim’s logged-in
machine.

Now let’s consider how we can defend against this. A frequently suggested
defense that doesn’t work is to strip out < and > characters. One problem
with this defense is that sometimes people need to discuss dangerous inputs.
Readers of this book, for example, may want to discuss XSS payloads on a
web-based forum. Attempts to strip out < and > would stop these conversa-
tions. Also, we’ll see that not every XSS attack needs < or >.

HTML Encoding
Before we look at its application for defense, let’s take a look at how HTML
encoding works. In the previous paragraph, we touched on an interesting
problem in HTML. We use < and > to make HTML tags in our web pages. But
what if HTML tags are what we want to talk about in the content of our web
pages? At first glance, it would seem that we can’t do that because writing
about tags would insert tags into our HTML documents and the tags them-
selves wouldn’t be displayed. Fortunately, HTML’s authors thought of this
and provided a mechanism for allowing discussions of HTML itself in HTML.

Most of the time, the content of an HTML document will consist of literal
characters, which get rendered into exactly the characters that make up the
source. So HTML markup like this:

<div>abcdefg</div>

gets rendered like this:

abcdefg

Each character inside the div gets rendered just as it appears in the source.

But there is another kind of character in HTML called a character reference.8

Character references are rendered differently than they appear in source.
Character references play two roles in HTML. One role is that they allow you
to create content in non-Western languages even if you’re using a Western

8. https://www.w3.org/TR/html5/syntax.html#character-references

Chapter 2. Vulnerabilities • 38

report erratum • discuss

https://www.w3.org/TR/html5/syntax.html#character-references
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

keyboard. The second role is that they allow you to create content that displays
key HTML characters like &, <, >, and " when rendered by a browser. This
second role is exactly what we need to defend ourselves from HTML injection
and XSS attacks.

HTML has two kinds of character references: named character references and
numeric character references. All HTML character references start with an
ampersand and end with a semicolon. Named character references will have
a mnemonic in the middle. Numeric character references will have a unicode
code point in the middle. The unicode code point can be represented in either
hex or decimal. Named character references only exist for a set of the most
commonly used characters. Numeric character references exist for each uni-
code character.

Any character can be encoded this way. Let’s take a look at four examples.
In this table, each row shows a rendered character in the leftmost column
followed by three different ways of writing the character in the source of an
HTML page.

Hex Numeric CharacterDecimal Numeric CharacterNamed CharacterRendered Character

&&&&

<<<<

>>>>

"""”

HTML Encoding as Defense
Now that we see how HTML encoding works, we can see how we can use this
as a defense against HTML injection and XSS. Whenever we’re building up
HTML as part of our response to a web browser, if we ever concatenate in
user-controlled data, we need to HTML-encode it first. That way, even if an
attacker tries to sneak JavaScript into one of our responses, we’ll encode it
first and the browser will just display JavaScript source code to the user
instead of executing attacker-controlled JavaScript.

The preferred defense is to use the encoding libraries that come with your
web framework. That is, most web frameworks have built-in libraries that
will HTML-encode user-supplied data like this:

<script>alert('Ha Ha!');</script>

into this:

`<script>alert('Ha Ha!');</script>`

report erratum • discuss

Cross-Site Scripting (XSS) • 39

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

or this:

<script>alert('Ha Ha!');</script>

As with the previous example, the solution here is to use our web framework’s
HTML encoding library. Proper encoding would result in markup like this:

<img src="picture.jpg" alt="blah"
onload="$('#submitbutton').click();" />

The quotes are replaced by " so the onload is just part of the alt text
instead of a new attribute. The HTML encoding prevents the attack.

Handling Attacker-Controlled Data in Other Contexts
Sometimes XSS payloads don’t look much like textbook XSS payloads if they’re
built on top of JavaScript frameworks like AngularJS. For more details on
Angular-specific attacks, see the excellent article “XSS without HTML: Client-
Side Template Injection with AngularJS” by Gareth Heyes.9 XSS by way of
AngularJS expression injection doesn’t need < or >, so traditional web
framework escaping doesn’t help. In general, you shouldn’t need to allow
dynamic content inside of a dom element that’s decorated with the ng-app
attribute. But if for some strange reason you do, be sure to encode the {{ and
}} so that attackers can’t inject an AngularJS expression.

In summary, the way to prevent XSS is to restrict user-controlled data in as
few kinds of places as possible in a web page. Keep user-controlled input out
of dom elements decorated with the ng-app attribute that marks the start of
an Angular JS application. And keep user-controlled data out of JavaScript.
If you can do this and keep user-controlled data between HTML tags, then
you can definitely prevent XSS by making sure to HTML-encode all user-
controlled data.

If you really can’t get away without including dynamic data in other kinds of
places in your markup (such as inside JavaScript,) consult the OWASP XSS
prevention cheat sheet.10 There are a lot of surprising gotchas to allowing
dynamic data throughout your markup.

Cross-Site Request Forgery (XSRF)
If XSS is a case of a browser trusting JavaScript from the server too much,
XSRF is a case of a server trusting a browser too much.

9. http://blog.portswigger.net/2016/01/xss-without-html-client-side-template.html
10. https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Chapter 2. Vulnerabilities • 40

report erratum • discuss

http://blog.portswigger.net/2016/01/xss-without-html-client-side-template.html
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

Let’s go back to our example of a blogging site. Somehow there must be a
browser request that saves a blog post to the server. Suppose the blog posting
request looks something like this:

POST /blog/create HTTP/1.1
Host: www.romansjournalingsite.com
Accept-Encoding: gzip, deflate
Accept: */*
Cookie: sessionid=Re9ljf4uObKk9mSFqBlusxamUKw
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 57

body=It+was+the+best+of+posts.+It+was+the+worst+of+posts.&submit=Publish

In a naive web application, that could be all it takes to publish to a hosted
blog—a POST request with a logged-in sessionid cookie. Let’s see how an
attacker or an administrator of an evil website could use this for nefarious
purposes.

Suppose I run a malicious website. I ostensibly serve up pictures of adorable
kittens playing with yarn. But surreptitiously, I also serve up malicious content
like this:

xsrf/kittens.html
<!DOCTYPE html>
<html lang="en">
<body>

<form action="http://romansjournalingsite.com/post/create" method="POST">
<input
name=body
value="Arbitrary Attacker-Controlled Content. I love evilxsrf.com"/>

<input type=submit id=submit name=submit value=Publish />');
</form>

<script>
document.getElementById('submit').click();

</script>
</body>

What does this do? It creates a form with the action we just saw when we
looked at the romansjournalingsite.com request that creates a new blog post.
Additionally, the form is prepopulated with content that will create a blog
post that says Arbitrary Attacker-Controlled Content. I love evilxsrf.com. Finally, it has
JavaScript that automatically submits this form as soon as the page is loaded.
This payload will cause a modern browser to make a POST request that looks
like this:

report erratum • discuss

Cross-Site Request Forgery (XSRF) • 41

http://media.pragprog.com/titles/rzsecur/code/xsrf/kittens.html
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

POST /post/create HTTP/1.1
Host: romansjournalingsite.com
Content-Length: 74
Cache-Control: max-age=0
Origin: http://evilxsrf.com
Content-Type: application/x-www-form-urlencoded
Referer: http://evilxsrf.com/kittens.html
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: sessionid=1234567890abcdef
Connection: close

body=Arbitrary+Attacker-Controlled+Content.+I+love+evilxsrf.com&submit=Publish

This looks just like the legitimate request! As far as romansjournalingsite.com
is concerned, it is a legitimate request: it has a valid sessionid cookie. The
admins of evilxsrf.com can use this to control the romansjournalingsite.com
account of anyone who’s logged in to romansjournalingsite.com and visits
evilxsrf.com.

Just like we saw with XSS requests, this attack forges legitimate requests.
They have a legitimate session ID, so the server will treat it as a legitimate
request. The POST request wasn’t generated because the user wanted to make
that post, but the blog site can’t tell that. The browser’s same-origin policy
(SOP) won’t help here either. SOP only says that JavaScript from one site
can’t see responses sent back from other sites. But this attack doesn’t require
the JavaScript from the malicious site to see a response from the blogging
site. This attack only requires that the JavaScript from the malicious site be
able to POST a request to the blog site, which it can.

Romansjournalingsite.com needs to differentiate valid requests intentionally
made by legitimite users from those that were made by malicious websites.
Romansjournalingsite.com can’t rely on session IDs or cookies, as we’ve seen.
Romansjournalingsite.com needs to submit a little bit of secret data with
every state-modifying request that only romansjournalingsite.com knows.
This secret can’t be stored in a cookie, though, because cookie values will be
sent regardless of whether the request was initiated by a logged-in user or a
malicious site operator. This leaves the form itself.

The defense against this is the XSRF hidden form input. When a user logs
into the blog site, the blog site should set a large (say 128 bits, base64–
encoded) cookie valid only for the duration of the session. Every page that
contains a form that will POST back to the blog server needs to put that same
value into a hidden form input. Only the blog site and the browser have this

Chapter 2. Vulnerabilities • 42

report erratum • discuss

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

value. So when the user submits a valid POST to the blog site, this request
will contain the anti-XSRF value, like this:

POST / HTTP/1.1
Host: localhost:1234
Accept-Encoding: gzip, deflate
Accept: */*
Connection: keep-alive
Cookie: antixsrf=XKRYopsd8jXj5DqgfNpHmA
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 94

body=It+was+the+best+of+posts.+It+was+the+worst+of+posts.&submit=Publish&
antixsrf=XKRYopsd8jXj5DqgfNpHmA

So the form contains a hidden input whose value matches the xsrf cookie. If
this form had been constructed by a malicious third-party website, the request
would have looked like this:

POST / HTTP/1.1
Host: localhost:1234
Accept-Encoding: gzip, deflate
Accept: */*
Connection: keep-alive
Cookie: antixsrf=XKRYopsd8jXj5DqgfNpHmA
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Content-Length: 72

body=It+was+the+best+of+posts.+It+was+the+worst+of+posts.&submit=Publish

That is, the POST request would have had the anti-XSRF cookie, because all
requests to the blog site will contain the cookie. But the malicious website
wouldn’t be able to guess the value of the anti-XSRF cookie, and so it would
not be able to replicate that value in the body of the request. If the server
doesn’t see the value in both places, the server can reject the request as a
fake. At a minimum, requests like this should be denied and logged for later
review.

Most modern web frameworks have defenses against XSRF. They may require
additional development effort, however. So be sure to learn what your web
development framework provides and use it on all state-modifying requests
in your application. For example, there is good documentation on built-in
XSRF defenses for ASP.NET,11 Django,12 and Ruby on Rails.13

11. https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-
pages

12. https://docs.djangoproject.com/en/2.0/ref/csrf/
13. http://guides.rubyonrails.org/security.html

report erratum • discuss

Cross-Site Request Forgery (XSRF) • 43

https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.microsoft.com/en-us/aspnet/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
https://docs.djangoproject.com/en/2.0/ref/csrf/
http://guides.rubyonrails.org/security.html
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

There’s an important caveat to XSRF defense. If the page is vulnerable to
cross-site scripting (XSS), then the XSRF defenses will be bypassable. So it’s
important to make sure that our web applications are not vulnerable to XSS.
To see why XSS can bypass XSRF defenses, let’s think back to how XSRF
defenses work. They add a little bit of secret information that wouldn’t be
exposed or sendable from other websites. Typically, this is done with a hidden
form input. If there’s XSS on a page with a hidden form input, malicious
JavaScript can be injected into the page to send a request with the XSRF
defense value.

XSRF Prevention with SameSite
We now have a very strong defense against XSRF—using an anti-XSRF hidden
form input on all state-modifying requests. But that defense requires ongoing
diligence. We’re never done applying it. We need to reapply this defense every
time we add a new state-modifying request to our web application (which will
happen pretty often during active development of a web application). It would
be nice if we could layer on a one-time effort to help lessen the impact if we
ever forget to be diligent in the future. That is the idea behind SameSite
cookies.14 Let’s take a look at this defense, how it helps, and what its limita-
tions are.

Suppose we are building a web application that uses a cookie called SessionId
to authenticate logged-in users. Normally, this cookie would be created by
an HTTP response that includes a Set-Cookie header like this:

Set-Cookie: SessionId=sfVZ1yx68LD51I;

As we saw in the previous section on XSRF, if this cookie is the session
cookie for our web application, it would then be sent on every request to our
application, regardless of what site originated the request. Wouldn’t it be nice
if we could tell browsers to only send that cookie for requests that originated
from our site? That’s the idea behind SameSite.

With SameSite, the part of the response that sets the cookie would look like:

Set-Cookie: SessionId=sfVZ1yx68LD51I; SameSite=Strict;

or

Set-Cookie: SessionId=sfVZ1yx68LD51I; SameSite=Lax;

14. https://tools.ietf.org/html/draft-west-first-party-cookies-07

Chapter 2. Vulnerabilities • 44

report erratum • discuss

https://tools.ietf.org/html/draft-west-first-party-cookies-07
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

To understand this defense, we first need to understand a little bit of HTTP
trivia. The HTTP specification defines “safe” and “unsafe” requests in Section
4.2.1 of RFC7231.15 Safe requests use the GET, HEAD, OPTIONS, or TRACE
methods. Unsafe requests use any of the other HTTP methods, including,
most notably, POST requests. This distinction is there because the safe
methods shouldn’t change state on the server; only the unsafe ones should
be used to modify state. It’s the unsafe ones that we’re concerned with when
preventing XSRF.

Adding SameSite=Strict to a cookie definition tells a browser to never send
that cookie for any request to our site unless the request originated from our
site. That sounds good in practice, but it’s often not what we want. With
SameSite=Strict, other sites won’t be able to link successfully to our web
application because the initial request to our web application won’t include
the SessionId cookie since it originated from another site. If a user clicks on
a link from another website to our web application, that first request would
not include the SessionId cookie, so the user would probably be prompted to
log in, even if they had already logged in. If you know that you don’t need to
support other sites linking to your web application, this would be an appro-
priate choice.

More often, what you want is to set SameSite=Lax. By doing this, all safe
requests will send the cookie, even if the request originates from another site.
This way, the initial link from an external site to our web application will send
the SessionId cookie since clicking on the link will result in a GET request.
But a malicious site that wants to exploit XSRF by constructing a form and
getting a user to submit a POST request would fail because the SameSite
attribute on the SessionId cookie wouldn’t get sent because the request orig-
inated on another site.

So the addition of the SameSite attribute on our session cookie raises the bar
for attackers in the event that we forget to implement XSRF defense in a new
page in the future. Instead of being able to exploit the vulnerability by merely
getting a logged-in user to browse to a website that the attacker controls, the
attacker would need to find a DOM injection or XSS vulnerability in our web
application in order to exploit the lack of XSRF defense.

Pretty cool. Now what are the limitations of this defense?

In describing the benefits of SameSite, we touched on the first limitation.
SameSite doesn’t protect you if your site is vulnerable to DOM injection or

15. https://tools.ietf.org/html/rfc7231#section-4.2.1

report erratum • discuss

Cross-Site Request Forgery (XSRF) • 45

https://tools.ietf.org/html/rfc7231#section-4.2.1
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

XSS. Put another way, if your site is dynamic enough to allow an attacker to
submit HTML to be viewed by other users, then SameSite won’t defend against
XSRF attacks launched from within your own web application because all of
the HTML and JavaScript is coming from the same site. It would still stop
XSRF attacks initiated from other sites.

A second limitation is that the SameSite session cookie defense is dependent
on support in the browser. Fortunately, it is widely supported.16

Finally, SameSite doesn’t protect you if you allow safe methods to modify
state. So if your website creates, updates, or deletes objects in your web
application via safe methods, then SameSite will not protect you if you forget
XSRF defenses.

Misconfiguration
Never attribute to malice that which is adequately explained by misconfiguration.
—Zabicki’s Razor (with apologies to Hanlon)

Attackers are opportunistic. They won’t bother with a sophisticated attack
where a simple one will do, and seeking out and exploiting misconfigured
systems is one of the simplest attacks there is.

We need to develop the capabilities for ongoing monitoring of our systems to
make sure we haven’t made the kinds of configuration mistakes that will open
the door for easy attacks. The specifics of how you do this will vary significantly
depending on exactly which technologies you use in your organization. We’ll
take a look at some of the most common misconfigurations and some tools
to detect them. Even if you don’t use these specific tools, these examples
should give you an idea of the kinds of mistakes you’ll want to be able to find.

Open S3 Buckets
Amazon17 offers a popular storage service called Simple Storage Service, or
S3 for short.18 S3 is a large-scale key-value storage service that lets users
store file-like “objects” inside of “buckets.” A bucket can hold an arbitrary
number of objects and an object can range in size up to 5TB. Behind the
scenes, S3 is a highly durable storage service that automatically distributes
data across multiple physical facilities. Amazon offers a lot of tools as well,
including tools for big data analysis that integrate natively with S3.

16. https://caniuse.com/#search=samesite
17. https://aws.amazon.com
18. https://aws.amazon.com/s3/

Chapter 2. Vulnerabilities • 46

report erratum • discuss

https://caniuse.com/#search=samesite
https://aws.amazon.com
https://aws.amazon.com/s3/
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

It’s really neat. It also seems to be really easy to misconfigure.

A quick Google search for “S3 breach” will show many high-profile instances
of misconfigured S3 buckets that left sensitive data open for the world to see.
No need for fancy attacks or cryptographic breakthroughs if the data isn’t
protected in the first place.

One particularly easy S3 mistake to make involves something called the
Authenticated Users group. AWS permissions are based on group membership.
So when setting up permissions, an administrator will typically create groups
that represent the organization and assign permissions to those groups. The
Authenticated Users group is a predefined group in AWS. It would be easy to
look at the name and think that it describes the group of people that are
authenticated users of one’s own organization. That is not what that group
means, however. Anyone who is logged into AWS as a part of any organization
is automatically a member of the Authenticated Users group. If we look at
the relevant documentation we read this:19

When you grant access to the Authenticated Users group, any AWS-authenticated
user in the world can access your resource.

And just below that, we see another predefined group called the All Users
group. Amazon’s documentation has this to say about the All Users group:

Access permission to this group allows anyone in the world access to the resource.
The requests can be signed (authenticated) or unsigned (anonymous).

So if you give the Authenticated Users group read access to your S3 buckets,
you are giving read access to everyone in the world who has an AWS account.
And any access you give to the All Users group is access you are also giving
to everyone in the world, regardless of whether they have an AWS account
or not.

The Authenticated Users and All Users group misconfigurations are a great
example of the kind of misconfiguration we need to be able to detect. It’s easy
to see how they could be misused. It’s easy to see the impact this could have.
It’s easy to see how their misuse could happen at any point in the life of an
online system. It’s easy to see how attackers could automate detection of this
kind of misconfiguration and find this flaw in your system, even if they never
had any reason to seek you out specifically.

A problem like this calls for automation. One tool that can help with finding
misconfigurations like this is Scout2.20 Scout2 is an open source tool designed

19. https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
20. https://github.com/nccgroup/Scout2

report erratum • discuss

Misconfiguration • 47

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://github.com/nccgroup/Scout2
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

to look for a wide range of AWS misconfigurations, not just overly permissive
S3 buckets. Installation and usage is outlined on the GitHub page and is
fairly straightforward. Scout2 works by using AWS credentials that you provide
to query the extensive AWS APIs to find common misconfigurations. It then
takes the results of these queries and creates a report that summarizes its
findings. At the time of this writing, it’s still under active development with
new misconfiguration searches being added periodically.

It only takes a couple of minutes to install and run Scout2. So if you use
AWS, it’s probably worthwhile to run it right now and see if you have anything
pressing to fix before continuing on with this chapter.

I’ll wait.

Now that you’ve run Scout2, it’s worthwhile to budget some time to automate
the regular generation of a Scout2 report. Even if everything is locked down
perfectly today, mistakes could be introduced tomorrow. And if bad things
happen in the future, it can be helpful to look back on a record of when things
changed.

Default Passwords
Default passwords are another kind of misconfiguration that saves attackers
a lot of time and effort. They’re easy to exploit and easy to detect—just the
kind of thing that attackers love. So we need to find them first. We can
leverage the network inventory work we did in chapter 1 to give us a starting
point for where to look. We’ll also want to include network infrastructure like
switches. We’ll want to pay particular attention to anything that’s exposed to
the internet.

As was the case with defenses against SQL injection, our defense against this
kind of misconfiguration can be layered. The first layer of the defense is to
add to our provisioning checklist to make sure to not use default passwords
when provisioning new services. Beyond that, we can look into scanning our
network for default passwords. This second layer is highly specific to your
network. You won’t have time to exhaustively scan everything on your network.
You’ll need to use your judgment on where to focus your efforts. You may get
a good return on looking into crusty old infrastructure that doesn’t have clear
ownership. And don’t overlook networked printers. Networked printers can
have capabilities like emailing or connecting to an Active Directory server. If
you can get administrative access to a printer by using default credentials,
you may be able to see the email or Active Directory credentials that enable
those capabilities.

Chapter 2. Vulnerabilities • 48

report erratum • discuss

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

Care in avoiding default passwords can open the door for helpful monitoring
as well. If possible, alert on failed login attempts that tried using default cre-
dentials. Once you’ve configured your system with new, nondefault credentials,
there will never be a legitimate login attempt that uses the default credentials.
If you see that someone has attempted a login with default credentials, you
have a high-quality signal that an attack is under way.

Credentials
Checking credentials into a public GitHub repo is a common mistake. In the
eyes of an attacker, leaked credentials are just as good as default credentials.

Even if we only use private source control servers, we still don’t want to check
credentials into source control. We don’t want to have to do a build in order to
change credentials. Also, putting credentials into source control makes it hard
to introduce tiers of access. For instance, you may not want junior team members
or third-party contractors to be able to see or change production credentials.
Some organizational models call for a separation between those who write code
and those who have access to run or deploy that code in production.

If we’re agreed that keeping passwords out of source control is a good idea,
it’s worthwhile to have an automated way to enforce this in case we forget. If
you have sensitive data confined to a single configuration file, you may be
able to use features of your source control system to keep that file from ever
getting checked in, even accidentally. Many source control systems can be
configured to not track specific files. If you’re using Git, you can add your
sensitive configuration files to your .gitignore file.21 This will keep you and
your team from being able to check in the sensitive files at all. Other source
control systems may offer similar functionality as well.

It’s worthwhile to periodically look through our source code for credentials
that have been checked in. This is especially important on a larger team. It’s
easy for decisions like not checking credentials into source control to not be
communicated to the entire team, especially as the team grows over time.

The first tool you can use is just plain grep. It’s worth doing a one-time
manual search for words like the following:

• password
• cred
• token

grep -Ri password *

21. https://git-scm.com/docs/gitignore

report erratum • discuss

Misconfiguration • 49

https://git-scm.com/docs/gitignore
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

These three words are worth scanning for, but you might get a lot of false
positives. If you need to whittle down a lot of matches, you may want to filter
these down. One way would be to look for occurrences that look like assign-
ment statements in the programming language you use.

grep -Ri password * | grep '='

or

grep -Ri password * | grep ':' # if you use a lot of yaml or json

These next search patterns are very unlikely to have false positives. These
are the beginnings of standard ssh private key files.

—–BEGIN RSA PRIVATE KEY—–

—–BEGIN OPENSSH PRIVATE KEY—–

—–BEGIN DSA PRIVATE KEY—–

—–BEGIN EC PRIVATE KEY—–

There are a number of tools that take this concept a little further. One
example is TruffleHog.22 One of the nice things about TruffleHog is that it
understands Git. So point it at your Git repo and it will look for checked-in
secrets on any check-in on any branch. The benefit is that it can find secrets
even if they aren’t in the latest branch. This catches the scenario where a
developer accidentally checks in a password, realizes what they’ve done, then
deletes the password on the next check-in. It’s not enough to remove it from
the latest branch, because as TruffleHog shows, an attacker with access to
Git can go back through the check-in history and look for passwords that
used to be checked in. TruffleHog has two modes of operation. One uses a
configurable list of regex patterns, including the ssh private key patterns we
looked at earlier. The second mode involves looking for high-entropy strings
that “look” like checked-in certificates. The regex searches are faster and can
be appropriate for adding into your build process.

Jenkins
If we use Jenkins,23 we need to keep it patched, as we discussed back in
Chapter 1, Patching, on page 1. But Jenkins has a common misconfiguration
that merits special mention. Jenkins instances are often started with insecure
settings that allow for unauthenticated execution of commands in a scripting

22. https://github.com/dxa4481/truffleHog
23. https://jenkins.io

Chapter 2. Vulnerabilities • 50

report erratum • discuss

https://github.com/dxa4481/truffleHog
https://jenkins.io
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

language called Groovy.24 Groovy scripts can execute arbitrary shell com-
mands. So a common attack is to scan the network for misconfigured Jenkins
servers, use the Groovy Scripting Console to dump passwords from the
Jenkins server, then use those passwords to compromise other servers on
the network. So make sure to lock down Jenkins so that it requires a login
before allowing any of its functionality, especially the Groovy Scripting Console.

Public-Facing Servers
We’re going to look at one last source of vulnerabilities in this chapter—long-
forgotten public-facing servers. It’s easy to forget to shut down public-facing
servers that aren’t used anymore. This mistake is even easier to make if you
use a cloud-hosting service. We’ll address the problem of forgotten or
unpatched servers exposed to the internet similarly to the way we’ve addressed
other vulnerabilities in this chapter. First, we’ll do a one-time cleanup effort.
Once we’ve addressed the problems of today, we’ll add automation to make
sure we don’t reintroduce this problem again in the future.

Ideally, before you kick off a one-time cleanup effort, you already know
exactly what servers you have exposed to the internet. Whether that’s the
case or not, it’s worthwhile to examine your organization using a public tool.
This can either serve as a first census or a double-check on your existing
practices around maintaining an up-to-date inventory of your public-facing
servers. The first time you do a check like this can be pretty eye-opening. You
may be surprised to see how many public servers you actually maintain. You
may also be surprised about how up-to-date the software running on those
servers is. If these scans reveal version numbers of server-side software, be
sure to google for CVEs for that software. We covered CVEs in What Is a CVE?,
on page 3.

Two tools that are great for this are Shodan25 and Censys.26 Both Shodan and
Censys continually scan the full IPv4 address space and provide queryable
access to data about the servers they discover on the internet.

See what your organization has exposed to the internet. Hopefully there are
no surprises there. Clean things up if there are. Then decide on a way to
check automatically going forward. The amount of automation you will want
to build out will be highly specific to your organization. If you only have a
couple servers, maybe you can just manually look at your hosting service’s

24. http://groovy-lang.org/
25. https://shodan.io
26. https://censys.io/

report erratum • discuss

Misconfiguration • 51

http://groovy-lang.org/
https://shodan.io
https://censys.io/
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

dashboard and eyeball it periodically. If you have a larger footprint or a larger
organization with lots of people who can provision new servers, you’ll probably
want to put more effort into automating scans.

Suggested Reading
We’ve covered just some of the basics here. If you’d like to dig in deeper, I
recommend reading the following:

• The Art of Software Security Assessment [DMS06] by Mark Dowd, John
McDonald, and Justin Schuh

– Read this for a more detailed look at a wide variety of coding mistakes
that make software vulnerable to attack and their defenses.

• The Web App Hacker’s Handbook (2nd Edition) [SP11] by Dafydd Stuttard
and Marcus Pinto

– This provides a more detailed look at web-specific attacks and their
defenses.

• The Hacker’s Playbook (3rd Edition) [Kim18] by Peter Kim
– Kim gives you more ideas about where in your office network to look

for vulnerabilities.

• “The Basics of Web Application Security” by Martin Fowler27

– This article is a concise, general guide on how to write secure web-
based software.

• Pushing Left, Like a Boss28

– A great series of blog posts on how to adopt strong security practices
earlier in the development cycle.

• DataSploit29

– If you want to dig into what information is publicly available about the
domains that your organization controls, take a look at DataSploit. This
is an open source tool that queries a number of public repositories of
information, including Shodan and Censys. It’s designed to be used
manually, but it also works nicely when called automatically. Scheduling
it to run automatically on a regular basis and saving the output can
give you a picture of how your public footprint has changed over time.

27. https://martinfowler.com/articles/web-security-basics.html
28. https://code.likeagirl.io/pushing-left-like-a-boss-part-1-80f1f007da95
29. https://github.com/DataSploit/datasploit

Chapter 2. Vulnerabilities • 52

report erratum • discuss

https://martinfowler.com/articles/web-security-basics.html
https://code.likeagirl.io/pushing-left-like-a-boss-part-1-80f1f007da95
https://github.com/DataSploit/datasploit
http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

What’s Next?
As we look back on the vulnerabilities we covered in this chapter, we see two
main classes of vulnerabilities. In the first, an attacker is able to inject code
of their own choosing into the system. In the second, operators accidentally
leave the system in an insecure state. Interestingly, the defense for both looks
fairly similar. First we make a one-time effort to find the vulnerabilities and
fix them. We then layer on automated defenses to prevent mistakes from
reintroducing the vulnerability. As teams and systems grow larger and older,
we want to have more than vigilance keeping us from introducing vulnerabil-
ities into the system; we want the system to prevent vulnerabilities from being
introduced.

In our next chapter, we’ll take a look at how we can use cryptography to
secure the systems we build. We’ll also see how seemingly small mistakes
can let an attacker break weak cryptography. Just like a seemingly small flaw
in our SQL allowed an attacker to bypass permission checks earlier in this
chapter, seemingly small flaws in cryptography can leave our systems
unprotected.

report erratum • discuss

What’s Next? • 53

http://pragprog.com/titles/rzsecur/errata/add
http://forums.pragprog.com/forums/rzsecur

	Cover
	2. Vulnerabilities
	SQL Injection
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (XSRF)
	Misconfiguration
	Suggested Reading
	What’s Next?

