
Arnaud Lauret

ISBN-13: 978-1-61729-510-2
ISBN-10: 1-61729-510-8

A
n API frees developers to integrate with an application
without knowing its code-level details. Whether you’re
using established standards like REST and OpenAPI

or more recent approaches like GraphQL or gRPC, master-
ing API design is a superskill. It will make your web-facing
services easier to consume and your clients—internal and
external—happier.

Drawing on author Arnaud Lauret’s many years of API design
experience, this book teaches you how to gather requirements,
how to balance business and technical goals, and how to adopt
a consumer-fi rst mindset. It teaches effective practices using
numerous interesting examples.

What’s Inside
● Characteristics of a well-designed API
● User-oriented and real-world APIs
● Secure APIs by design
● Evolving, documenting, and reviewing API designs

Written for developers with minimal experience building and
consuming APIs.

A software architect with extensive experience in the banking
industry, Arnaud Lauret has spent 10 years using, designing,
and building APIs. He blogs under the name of API Handy-
man and has created the API Stylebook website.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/the-design-of-web-apis

$44.99 / Can $59.99 [INCLUDING eBOOK]

The Design of Web APIs

WEB DEVELOPMENT/API
Lauret

M A N N I N G

The Design of W
eb APIs

MANN I N G

“Assembles the fundamental
building blocks of API design
in an easy-to-access way, and
walks you through the vast
landscape in a friendly and

comfortable manner.”
—From the Foreword by Kin Lane

“Answers nagging and
complicated questions with

a simple philosophy, but
never tries to hide anything

from you. A fantastic
 introduction to the fi eld.”—Bridger Howell, SoFi.com

“An excellent guidebook
for establishing a path to

RESTful APIs.”—Shawn Smith
Penn State University

“Combines real-world
examples with diffi cult

 abstract ideas.”—Shayn Cornwell
XeroOne Systems

M A N N I N G

See first page

Arnaud Lauret
Foreword by Kin Lane

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781617295102
Printed in the United States of America

	 Development editor:	 Jenny Stout
	 Technical development editor:	 Michael Lund
	 Review editor:	 Ivan Martinović
	 Production editor:	 Deirdre Hiam
	 Copy editor:	 Frances Buran
	 Proofreader:	 Melody Dolab
	 Technical proofreader:	 Paul Grebenc
	 Typesetter:	 Happenstance Type-O-Rama
	 Cover designer:	 Marija Tudor

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

	 299Choosing an API style according to the context

11.3	 Choosing an API style according to the context
When you’ve mastered or are used to using a tool like a hammer, it’s very tempting to
treat all problems like nails. This is a cognitive bias called the law of the instrument,
the law of the hammer, or Maslow’s law (https://en.wikipedia.org/wiki/Law_of_the_
instrument). Such a bias can also have another effect: screwdriver users might think
that a screwdriver is a better tool than a hammer, while hammer users might think the
opposite. This could be called the fannish folk law.

But a hammer will not solve all problems, and a screwdriver is not better than a ham-
mer; each tool is as useful as the other, but in different contexts. This book is about
web API design, not carpentry or woodworking, but the same concerns apply in the
tech industry too. Choosing which tool(s) you will use to design a remote API must not
be done based on what you are used to, what is fashionable, or your personal prefer-
ence; it must be done according to the context. And being able to choose the right tool
requires you to know more than one.

Web APIs can easily be reduced to unitary and synchronous request/response +
REST + HTTP 1.1 + JSON web APIs, which is nowadays one of the most commonly used
ways to enable software-to-software communication in order to expose goals fulfilling
targeted users' needs. Therefore, API designers could be tempted to use this set of tools
in all situations, in all contexts. In this book, this toolset is only used to expose funda-
mental API design principles that you can use when designing other types of remote
APIs.

We’ve already discovered some other tools that can be added to our toolboxes to be
used in the appropriate contexts. In section 6.2.1, for example, you saw that JSON was
not the only possible data format for APIs; you can use XML, CSV, PDF, or many other
formats. You also saw in section 11.2.1 that sometimes it might even be counterproduc-
tive to use JSON in a context where consumers are used to an existing standardized
XML format. In section 10.3.6, you learned that REST APIs are not the only option
when creating web APIs. Using a query language might bring more flexibility when
requesting data (but less caching possibilities). In section 11.1, you discovered that a
synchronous request/response consumer-to-provider mechanism is not the only way
of enabling communication between two systems. We can create asynchronous goals,
notify consumers of events, stream data, and even process multiple elements in one
call. And in section 10.2.1, you learned that HTTP 2 can be used instead of the good old
HTTP 1.1 protocol.

We already know that context plays an important role in the choice of tools, and we
already know about several different tools. But as API designers and software and sys-
tems designers, in general, we need to broaden our perspective in order to be sure to
avoid the law of the instrument. In order to do so, we will explore some alternatives to
REST APIs and web APIs in this section.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

https://en.wikipedia.org/wiki/Law_of_the_instrument
https://en.wikipedia.org/wiki/Law_of_the_instrument

300 Chapter 11  Designing an API in context

11.3.1	 Contrasting resource-, data-, and function-based APIs

At the time of this book’s writing, there are three main ways of creating web APIs:
REST, gRPC, and GraphQL. Will they still be there in five or 10 years? Will they still be
the same? Only time will tell.

Is one of them better than the others? No! It depends on needs and context. The
approaches shown in figure 11.10 represent three different visions of APIs: REST is
resource-oriented, gRPC is function-oriented, and GraphQL is data-oriented, and each
of these has its pros and cons.

You should know by now what a REST API is. As you have seen throughout this book,
and especially in section 3.5.1, a REST API—​or RESTful API—​is an API that conforms
(or at least tries to conform) to the REST architectural style introduced by Roy Field-
ing.4 Such an API is resource-based and takes advantage of the underlying protocol
(the HTTP protocol, in this case). Its goals are represented by the use of standard
HTTP methods on resources with the results being represented by standard HTTP
status codes.

In the Banking API, reading an account’s details could be represented by a GET /
owners/123 request, returning a 200 OK HTTP status along with all the customer’s data
if this 123 owner exists or a 404 Not Found HTTP status if not. Updating the same own-
er’s VIP status could be done with a PATCH /owners/123 request, whose body would
contain the new value.

Relying on an existing protocol favors consistency and makes APIs predictable, as
you saw in section 6.1. Indeed, upon seeing any resource, a consumer might try to use
the OPTIONS HTTP method to determine what can be done with it, or even try the GET

/accounts/{id}/transactions
GET

/accounts

/transactions/{id}
PATCH

listAccounts()

searchTransactions()

readAccounts()

categorizeTransaction()

/accounts

ACCOUNT

TRANSACTION

GET

GET

Data-based (GraphQL) Resource-based (REST)

{
 account(id) {
 balance
 transactions {
 id
 amount
 label
 }
 }
}

Function-based (gRPC)

GraphQL is
function-based

when not reading.

Standard
method

Selecting
data

PATCH
checkTransactions()

Data

Resource
Function

Figure 11.10   Contrasting resource-, data- and function-based APIs

4	 See his PhD dissertation “Architectural Styles and the Design of Network-Based Software Architec-
tures” at https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

	 301Choosing an API style according to the context

method to read it or PUT or PATCH to update it. Even the most obscure 4XX HTTP status
code will be understood as an error on the consumer’s end by any consumer. Such an
API can also take advantage of all the existing features of HTTP, such as caching and
conditional requests; designers do not have to reinvent the wheel. Server-to-consumer
streaming capabilities can be added too, using SSE (see section 11.1.3). But this does not
make the design of the API simple.

You have seen throughout this book that even if the HTTP protocol provides some
kind of framework, it does not magically prevent us from creating terrible REST APIs. It
is still up to designers to choose resource paths (/owner or /owners?) and to decide how
to represent data, provide informative feedback on errors or successes beyond HTTP
statuses, and more.

The gRPC framework was created by Google. The g stands for Google and RPC
stands for Remote Procedure Call. An RPC API simply exposes functions.

In a function-based API, reading the 123 owner could be done by calling the read-
Owner(123) function, and updating that owner’s VIP status could be done by calling
updateOwner(123, { "vip": true }). The gRPC framework uses the HTTP 1.1 or 2
protocol as a transport layer, without using its semantics. It does not provide any stan-
dard caching mechanism. Note that it can take advantage of the HTTP 2 protocol to
propose bidirectional and streaming communication. It can also use the Protocol Buf-
fer data format, which is less verbose than XML or JSON (you can also use this format
in a REST API).

Whereas in a resource-based API case, the underlying protocol provides some kind
of framework, especially to describe what kind of action is being taken and what the
result is, in a function-based API, it is usually up to the designers to choose their own
semantics for almost everything. So, how would you represent a goal such as list owners?
Should it be a listOwners(), readOwners(), or retrieveOwners() function? The
same goes when it comes to modifying data. Should the API provide a saveOwner() or
updateOwner() function?

For errors, the gRPC framework provides a standard error model including a few
standard codes that map to HTTP status codes (https://cloud.google.com/apis/
design/errors). For example, when calling readOwner(123), a NOT_FOUND code (map-
ping to a 404 Not Found HTTP status) can be returned along with an Owner 123 does
not exist message. The error model can be completed with additional data in order
to provide more informative feedback. As with a REST API, it is up to the designers to
choose how to do that (see section 5.2.3) and also how to represent data.

We covered GraphQL briefly in section 10.3.6; it’s a query language for APIs created
by Facebook. A GraphQL API basically provides access to a data schema allowing con-
sumers to retrieve exactly the data they want. It is protocol-agnostic, meaning that any
protocol that lets us send requests and get responses could be used; but because the
HTTP protocol is the most widely adopted, it usually is the chosen one.

Like gRPC, GraphQL does not provide any standard caching mechanism. A POST
/graphql request with the { "query": "{ owner(id:123) { vip } }" } query in
its body would only return owner 123’s VIP status. And when it comes to creating or

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

https://cloud.google.com/apis/design/errors
https://cloud.google.com/apis/design/errors

302 Chapter 11  Designing an API in context

updating data, GraphQL behaves like any RPC API. It uses functions that are called
mutations. Updating owner 123’s VIP status would require us to call the updateOwner
mutation, which takes the owner’s ID and an owner object containing the new VIP
status.

GraphQL also comes with a standard error model that can be extended. Listings 11.9
and 11.10 show a query and a response with a standard error, respectively.

Listing 11.9   A GraphQL query

{
 owner(id: 123) {
 vip
 accounts {
 id
 balance
 name
 }
 }
}

Listing 11.10   A GraphQL response with an error

{
 "errors": [
 {
 "message": "No balance available for account with ID 1002.",
 "locations": [{ "line": 6, "column": 7 }],
 "path": ["owner", "accounts", 1, "balance"]
 }
],
 "data": {
 "owner": {
 "vip": true,
 "accounts": [
 {
 "id": "1000",
 "balance": 123.4
 "name": "James account"
 },
 {
 "id": "1002",
 "balance": null,
 "name": "Enterprise account"
 }
]
 }
 }
}

The query shown in listing 11.9 requests owner 123’s VIP status and account IDs, bal-
ances, and names. Unfortunately, as shown in listing 11.10, the balance could not be
retrieved for the second account. The standard error model contains, for each error,

Points to
error in

query

Indicates the result property
affected by the error

The actual property
affected by the error

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

	 303Choosing an API style according to the context

a human-readable message, the possible sources of the error in the GraphQL query
in locations (balance is on the sixth line and starts at the seventh character of the
query), and the optional path of the affected property in the returned data (the null
balance is in data.owner.accounts[1].balance).

Such an error seems to be the provider’s fault and not the consumer’s, but this is not
indicated. It’s up to the designers to choose how to add information to this standard
error model in order to provide fully informative feedback. And obviously, like in REST
and gRPC APIs, it’s up to the designers to choose how to design the data model.

From a design perspective, we can see that these three different ways of creating APIs
have three different ways of envisioning representations of an API’s goals: resources
(REST), functions (gRPC and also creations and modifications in GraphQL), and data
(reads in GraphQL). Fundamentally, representing any read goal is possible in any of
these API styles. When it comes to create, modify, delete, or do goals, they can be rep-
resented by a resource/method couple or a function. Each approach comes with more
or less standardized elements favoring consistency and, hence, facilitating usability and
design.

NOTE   An API strictly following the underlying protocol’s rules is the most con-
sistent one out of the box.

But whatever the provided framework, designers still have a lot of work to do in
order to design decent APIs. Regardless of the API style they choose, designers still
have to identify users, goals, inputs, outputs, and errors, and choose the best possible
consumer-oriented representations while avoiding the provider’s perspective.

From a technical perspective, we have three different API tools or technologies
that can be used over the HTTP protocol. The use of the HTTP protocol is important
because it is widely accepted, and you usually do not need many, if any, modifications
to your infrastructure to host or use an HTTP-based API. There are some differences
between the three tools, however.

REST APIs rely on the HTTP protocol and can benefit from features such as content
negotiation, caching, and conditional requests. GraphQL and gRPC do not provide
such mechanisms but have some other interesting features. Thanks to the use of HTTP 2
and the ProtoBuf data format, gRPC-based APIs can provide high performance. They
also provide streaming and bidirectional communication between consumer and pro-
vider. (Note that REST APIs can provide one-way streaming from provider to consumer
with SSE.) And as seen in section 10.3.6, GraphQL’s querying capabilities let consumers
get all the data they want, and only the data they want, in a single request, but at the
expense of caching capabilities.

Concerning the provider’s context and especially the implementation, you obviously
don’t have much control over the queries that could be made by consumers in a data-
based API. In non-infinitely-scalable systems, too many complex requests could result in
a load higher than the underlying systems can support and terribly long response times
if the implementation is not ready to prevent that. With a resource- or function-based

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

304 Chapter 11  Designing an API in context

API, it is quite easy to avoid such problems. Because each goal’s behavior is usually
predictable, the solicited systems are known, and rate limiting can be used to protect
the underlying systems. You can specify that each consumer cannot make more than x
requests per second on the API, and even specialize this rate limiting by consumer and/
or goal.

For data-based APIs, you could limit the number of queries or their size, but that
would be pointless because it would not prevent unexpectedly complex queries from
being made. You could limit the number of nodes in a request (containing one or more
queries) or accept only preregistered requests, but that would be done at the expense
of flexibility, making the data-based API choice almost useless. In all cases (REST, gRPC,
GraphQL), a good practice would be to limit the number of items returned by default
in lists.

So, which approach should you use? Such a choice cannot be made prior to analyzing
your context and needs. Once you know who your consumers are and understand their
contexts, the goals they need, and how they will be used, and you understand the pro-
vider’s context, you can choose what kind of API will be the most appropriate. Although
each context will be different, nowadays the rule of thumb is to choose REST by default.
If there are very specific needs that cannot be fulfilled by a well-designed REST API, you
might want to try GraphQL or gRPC.

Choosing REST by default could be seen as an example of the law of the instrument
or fannish folk law, but the REST approach is capable of fulfilling most needs. It is the
most widely adopted way of creating APIs, and most developers are used to it (remem-
ber section 11.2.1). Choose GraphQL for private APIs in mobile environments only if
a well-designed REST API hosted in a well-configured environment is not possible (see
section 10.2), and if

¡	You actually need advanced querying capabilities.
¡	You do not plan to make your API public or share it with partners.
¡	You do not care about caching.
¡	You are sure to be able to protect the underlying systems through the implemen-

tation or through infinite scalability.

Finally, choose gRPC APIs for internal-application-to-internal-application communi-
cation only if milliseconds really matter, if you do not care about caching or you are
willing to handle it without relying on HTTP, and if you do not plan to make the API
public or share it with partners. Also bear in mind that this choice might not be exclu-
sive. You have already seen in section 10.3.8 that different layers of an API can fulfill
different needs. Building a mobile BFF exposing a GraphQL API or a more specialized
REST API is totally legit. An application can also expose a gRPC interface for internal
consumers and a REST interface for external ones.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

