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White-box models

To build an interpretable AI system, we must understand the different types of
models that we can use to drive the AI system and techniques that we can apply to
interpret them. In this chapter, I cover three key white-box models—linear regres-
sion, decision trees, and generalized additive models (GAMs)—that are inherently
transparent. You will learn how they can be implemented, when they can be
applied, and how they can be interpreted. I also briefly introduce black-box mod-
els. You will learn when they can be applied and their characteristics that make

This chapter covers
 Characteristics that make white-box models 

inherently transparent and interpretable

 How to interpret simple white-box models such as 
linear regression and decision trees

 What generalized additive models (GAMs) are and 
their properties that give them high predictive power 
and high interpretability

 How to implement and interpret GAMs

 What black-box models are and their characteristics 
that make them inherently opaque
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them hard to interpret. This chapter focuses on interpreting white-box models, and
the rest of the book will be dedicated to interpreting complex black-box models. 

 In chapter 1, you learned how to build a robust, interpretable AI system. The pro-
cess is shown again in figure 2.1. The main focus of chapter 2 and the rest of the book
will be on implementing interpretability techniques to gain a much better under-
standing of machine learning models that cover both white-box and black-box mod-
els. The relevant blocks are highlighted in figure 2.1. We will apply these
interpretability techniques during model development and testing. We will also learn
about model training and testing, especially the implementation aspects. Because the
model learning, testing, and understanding stages are quite iterative, it is important to
cover all three stages together. Readers who are already familiar with model training
and testing are free to skip those sections and jump straight into interpretability. 

 When applying interpretability techniques in production, we also need to consider
building an explanation-producing system to generate a human-readable explanation
for the end users of your system. Explainability is, however, beyond the scope of this
book, and the focus will be exclusively on interpretability during model development
and testing.

2.1 White-box models
White-box models are inherently transparent, and the characteristics that make them
transparent are

 The algorithm used for machine learning is straightforward to understand, and
we can clearly interpret how the input features are transformed into the output
or target variable.

Model

Learned model

Validation

Evaluation

Deployed 
model

1

2

4

LEARNING

TESTING

DEPLOYING

Test

Development

Training and 
dev sets

Test set

New data

Production

Prediction

Interpretation

Interpretation Explanation

Monitoring

3 UNDERSTANDING

5 EXPLAINING

6 MONITORING

Historical data Training and cross-validation

Figure 2.1 The process to build a robust AI system, focusing mainly on interpretation



23White-box models

 We can identify the most important features to predict the target variable, and
those features are understandable. 

Examples of white-box models include linear regression, logistic regression, decision
trees, and generalized additive models (GAMs). Table 2.1 shows the machine learning
tasks to which these models can be applied.

In this chapter, we focus on linear regression, decision trees, and GAMs. In figure 2.2,
I have plotted these techniques on a 2-D plane with interpretability on the x-axis and
predictive power on the y-axis. As you go from left to right on this plane, the models
go from the low interpretability regime to the high interpretability regime. As you go
from bottom to top on this plane, the models go from the low predictive power
regime to the high predictive power regime. Linear regression and decision trees are
highly interpretable but have low to medium predictive power. GAMs, on the other
hand, have high predictive power and are highly interpretable as well. The figure also
shows black-box models in gray and italic. We cover those in section 2.6.

We start off with interpreting the simpler linear regression and decision tree models
and then go deep into the world of GAMs. For each of these white-box models, we
learn how the algorithm works and the characteristics that make them inherently
interpretable. For white-box models, it is important to understand the details of the
algorithm because it will help us interpret how the input features are transformed

Table 2.1 Mapping of a white-box model to a machine learning task

White-box model Machine learning task(s)

Linear regression Regression

Logistic regression Classification

Decision trees Regression and classification

GAMs Regression and classification
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into the final model output or prediction. It will also help us quantify the importance
of each input feature. You’ll learn how to train and evaluate all of the models in this
book in Python first, before we dive into interpretability. As mentioned earlier,
because the model learning, testing, and understanding stages are iterative, it is
important to cover all three stages together.

2.2 Diagnostics+—diabetes progression
Let’s look at white-box models in the context of a concrete example. Recall the Diag-
nostics+ AI example from chapter 1. The Diagnostics+ center would now like to deter-
mine the progression of diabetes in their patients one year after a baseline
measurement is taken, as shown in figure 2.3. The center has tasked you, as a newly
minted data scientist, to build a model for Diagnostics+ AI to predict diabetes progres-
sion one year out. This prediction will be used by doctors to determine a proper treat-
ment plan for their patients. To gain the doctors’ confidence in the model, it is
important not just to provide an accurate prediction but also to be able to show how
the model arrived at that prediction. How would you begin this task? 

First, let’s look at what data is available. The Diagnostics+ center has collected from
around 440 patients data that consists of patient metadata such as age, sex, body mass
index (BMI), and blood pressure (BP). Blood tests were also performed on these
patients, and the following six measurements were collected:

 LDL (bad cholesterol)
 HDL (good cholesterol)
 Total cholesterol
 Thyroid-stimulating hormone
 Low-tension glaucoma 
 Fasting blood glucose 

The data also contains the fasting glucose levels for all patients one year after the base-
line measurement was taken. This is the target for the model. How would you formu-
late this as a machine learning problem? Because labeled data is available, where you
are given 10 input features and one target variable that you have to predict, you can

Patient metadata Diagnostics+
AI 156

Fasting glucose level 
one year later

Doctor

Age Sex BMI BP
… …  … …

Input features

Six blood test
measurements

Target variable

Figure 2.3 Diagnostics+ AI for diabetes
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formulate this problem as a supervised learning problem. The target variable is real
valued or continuous, so it is a regression task. The objective is to learn a function f
that will help predict the target variable y given the input features x.

 Let’s now load the data in Python and explore how correlated the input features
are with each other and the target variable. If the input features are highly correlated
with the target variable, then we can use them to train a model to make the predic-
tion. If, however, they are not correlated with the target variable, then we will need to
explore further to determine whether there is some noise in the data. The data can be
loaded in Python as follows:

from sklearn.datasets import load_diabetes 
diabetes = load_diabetes() 
X, y = diabetes[‘data’], diabetes[‘target’] 

We will now create a Pandas DataFrame, which is a two-dimensional data structure
that contains all the features and the target variable. The diabetes dataset provided by
Scikit-Learn comes with feature names that are not easy to understand. The six blood
sample measurements are named s1, s2, s3, s4, s5, and s6, which makes it hard for us
to understand what each feature is measuring. The documentation provides this map-
ping, however, and we use that to rename the columns to something that is more
understandable, as shown here:

feature_rename = {'age': 'Age',  
'sex': 'Sex',  
'bmi': 'BMI',  
'bp': 'BP',  
's1': 'Total Cholesterol',  
's2': 'LDL',  
's3': 'HDL',  

       's4': 'Thyroid',  
          's5': 'Glaucoma',  
       's6': 'Glucose'}  

df_data = pd.DataFrame(X, 
columns=diabetes['feature_names'])

df_data.rename(columns=feature_rename, inplace=True)
df_data['target'] = y 

Now let’s compute the pairwise correlation of columns so that we can determine how
correlated each of the input features is with each other and the target variable. This
can be done easily in Pandas as follows:

corr = df_data.corr()

Imports the scikit-learn function 
to load the open diabetes dataset Loads the diabetes dataset

Extracts the features 
and the target variable

Mapping the feature names 
provided by Scikit-Learn to 
a more readable form

Loads all the 
features (x) into 
a DataFrame Uses the Scikit-Learn 

feature names as 
column names

Renames the Scikit-Learn 
feature names to a more 
readable formIncludes the target variable (y) 

as a separate column
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By default, the corr() function in pandas computes the Pearson or standard correla-
tion coefficient. This coefficient measures the linear correlation between two variables
and has a value between +1 and –1. If the magnitude of the coefficient is above 0.7,
that means it’s a really high correlation. If the magnitude of the coefficient is between
0.5 and 0.7, that indicates a moderately high correlation. If the magnitude of the coef-
ficient is between 0.3 and 0.5, that means a low correlation, and a magnitude less than
0.3 means there is little to no correlation. We can now plot the correlation matrix in
Python as follows:

import matplotlib.pyplot as plt  
import seaborn as sns 
sns.set(style=’whitegrid’)  
sns.set_palette(‘bright’)  

f, ax = plt.subplots(figsize=(10, 10)) 
sns.heatmap(  
    corr,  
    vmin=-1, vmax=1, center=0,  
    cmap="PiYG",  
    square=True,  
    ax=ax  
)  
ax.set_xticklabels(  
    ax.get_xticklabels(),  
    rotation=90,  
    horizontalalignment='right'  
);  

The resulting plot is shown in figure 2.4. Let’s first focus on either the last row or the
last column in the figure. This shows us the correlation of each of the inputs with the
target variable. We can see that seven features—BMI, BP, Total Cholesterol, HDL, Thy-
roid, Glaucoma, and Glucose—have moderately high to high correlation with the tar-
get variable. We can also observe that the good cholesterol (HDL) also has a negative
correlation with the progression of diabetes. This means that the higher the HDL
value, the lower the fasting glucose level for the patient one year out. The features
seem to have pretty good signal in being able to predict the disease progression, and
we can go ahead and train a model using them. As an exercise, observe how each of
the features is correlated with each other. Total cholesterol, for instance, seems very
highly correlated with the bad cholesterol, LDL. We will come back to this when we
start to interpret the linear regression model in section 2.3.1. 

Imports Matplotlib 
and Seaborn to plot 
the correlation matrix

Initializes a Matplotlib plot 
with a predefined size

Uses Seaborn to plot a heatmap 
of the correlation coefficients

Rotates the labels on the 
x-axis by 90 degrees
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2.3 Linear regression
Linear regression is one of the simplest models you can train for regression tasks. In
linear regression, the function f is represented as a linear combination of all the input
features, as depicted in figure 2.5. The known variables are shown in gray, and the
idea is to represent the target variable as a linear combination of the inputs. The
unknown variables are the weights that must be learned by the learning algorithm.
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Figure 2.4 Correlation plot of the features and the target variable for the diabetes dataset
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In general, the function f for linear regression is shown mathematically as follows,
where n is the total number of features:

The objective of the linear regression learning algorithm is to determine the weights
that accurately predict the target variable for all patients in the training set. We can
apply the following techniques here:

 Gradient descent
 Closed-form solution (e.g., the Newton equation)

Gradient descent is commonly applied because it scales well to a large number of fea-
tures and training examples. The general idea is to update the weights such that the
squared error of the predicted target variable with respect to the actual target variable
is minimized. 

 The objective of the gradient descent algorithm is to minimize the squared error
or squared difference between the predicted target variable and the actual target vari-
able across all the examples in the training set. This algorithm is guaranteed to find
the optimum set of weights, and because the algorithm minimizes the squared error, it
is said to be based on least squares. A linear regression model can be easily trained
using the Scikit-Learn package in Python. The code to train the model is shown next.
Note that the open diabetes dataset provided by Scikit-Learn is used here, and this
dataset has been standardized, having zero mean and unit variance for all the input
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features. Feature standardization is a widely used form of preprocessing done on data-
sets used in many machine learning models like linear regression, logistic regression,
and more complex models based on neural networks. It allows the learning algo-
rithms that drive these models to converge faster to an optimum solution:

from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LinearRegression 
import numpy as np

X_train, X_test, y_train, y_test = train_test_split(X, y,  
  test_size=0.2,  
  random_state=42)  

lr_model = LinearRegression() 

lr_model.fit(X_train, y_train) 

y_pred = lr_model.predict(X_test) 

mae = np.mean(np.abs(y_test - y_pred)) 

The performance of the trained linear regression model can be quantified by compar-
ing the predictions with the actual values on the test set. We can use multiple metrics,
such as root mean squared error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). Each of these metrics offers pros and cons, and it
helps to quantify the performance using multiple metrics to measure the goodness of
a model. Both MAE and RMSE are in the same units as the target variable and are easy
to understand in that regard. The magnitude of the error, however, cannot be easily
understood using these two metrics. For example, an error of 10 may seem small at
first, but if the actual value you are comparing with is, say, 100, then that error is not
small in relation to that. This is where MAPE is useful for understanding these relative
differences because the error is expressed in terms of percentage (%) error. The topic
of measuring model goodness is important but is beyond the scope of this book. You
can find a lot of resources online. I have written a comprehensive two-part blog post
(http://mng.bz/ZzNP) to cover this topic. 

 The previous trained linear regression model was evaluated using the MAE metric,
and the performance was determined to be 42.8. But is this performance good? To
check whether the performance of a model is good, we need to compare it with a
baseline. For Diagnostics+, the doctors have been using a baseline model that predicts
the median diabetes progression across all patients. The MAE of this baseline model

Imports the scikit-learn function to split 
the data into training and test sets

Imports the scikit-learn class for linear regression

Imports numpy to evaluate the performance of model

Splits the data into training 
and test sets, where 80% of 
the data is used for training 
and 20% of the data for 
testing, and ensures that 
the seed for the random-
number generator is set 
using the random_state 
parameter to ensure 
consistent train-test splits

Initializes the linear regression model, 
which is based on least squares

Learns the weights for the model 
by fitting on the training set

Uses the learned weights to predict the disease 
progression for patients in the test set

Evaluates the model performance using 
the mean absolute error (MAE) metric

http://mng.bz/ZzNP
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was determined to be 62.2. If we now compare this baseline with the linear regression
model, we notice a drop in MAE by 19.4, which is a pretty good improvement. We
have now trained a decent model, but it doesn’t tell us how the model arrived at the
prediction and which input features are most important. I cover this in the following
section.

2.3.1 Interpreting linear regression

In the earlier section, we trained a linear regression model during model develop-
ment and then evaluated the model performance during testing using the MAE met-
ric. As a data scientist building Diagnostics+ AI, you now share these results with the
doctors, and they are reasonably happy with the performance. But there is something
missing. The doctors don’t have a clear understanding of how the model arrived at
the final prediction. Explaining the gradient descent algorithm does not help with
this understanding because you are dealing with a pretty large feature space in this
example—10 input features in total. It is impossible to visualize how the algorithm
converges to the final prediction in a 10-dimensional space. In general, the ability to
describe and explain a machine learning algorithm does not guarantee interpretabil-
ity. So, what is the best way of interpreting a model? 

 For linear regression, because the final prediction is just a weighted sum of the
input features, all we have to look at are the learned weights. This is what makes linear
regression a white-box model. What do the weights tell us? If the weight of a feature is
positive, a positive change in that input will result in a proportional positive change in
the output, and a negative change in the input will result in a proportional negative
change in the output. Similarly, if the weight is negative, a positive change in the input
will result in a proportional negative change in the output, and a negative change in
the input will result in a proportional positive change in the output. Such a learned
function, shown in figure 2.6, is called a linear, monotonic function.

 We can also look at the impact or importance of a feature in predicting the target
variable by looking at the absolute value of the corresponding weight. The larger the
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Figure 2.6 A representation of 
a linear, monotonic function
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absolute value of the weight, the greater the importance. The weights for each of the
10 features are shown in descending order of importance in figure 2.7. 

The most important feature is the Total Cholesterol measurement. It has a large nega-
tive value for the weight. This means that a positive change in the cholesterol level has
a large negative influence on predicting diabetes progression. This could be because
Total Cholesterol also accounts for the good kind of cholesterol. 

 If we now look at the bad cholesterol, or LDL, feature, it has a large positive
weight, and it is also the fourth most important feature in predicting the progression
of diabetes. This means that a positive change in LDL cholesterol level results in a
large positive influence in predicting diabetes one year out. The good cholesterol, or
HDL, feature has a small positive weight and is the third least important feature. Why
is that? Recall the exploratory analysis that we did in section 2.2 where we plotted the
correlation matrix in figure 2.4. If we observe the correlation among total cholesterol,
LDL, and HDL, we see a very high correlation between total cholesterol and LDL and
moderately high correlation between total cholesterol and HDL. Because of this cor-
relation, the HDL feature is deemed redundant by the model. 

 It also looks like the baseline Glucose measurement for the patient has a very small
impact on predicting the progression of diabetes a year out. If we again go back to the
correlation plot shown in figure 2.4, we can see that Glucose measurement is very
highly correlated with the baseline Glaucoma measurement (the second most
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Figure 2.7 Feature importance for the diabetes linear regression model
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important feature for the model) and highly correlated with Total Cholesterol (the
most important feature for the model). The model, therefore, treats Glucose as a
redundant feature because a lot of the signal is obtained from the Total Cholesterol and
Glaucoma features. 

 If an input feature is highly correlated with one or more other features, they are
said to be multicollinear. Multicollinearity could be detrimental to the performance of
a linear regression model based on least squares. Let’s suppose we use two features, x1

and x2, to predict the target variable y. In a linear regression model, we are essentially
estimating weights for each of the features that will help predict the target variable
such that the squared error is minimized. Using least squares, the weight for feature
x1, or the effect of x1 on the target variable y, is estimated by holding x2 constant. Simi-
larly, the weight for x2 is estimated by holding x1 constant. If x1 and x2 are collinear,
then they vary together, and it becomes very difficult to accurately estimate their
effects on the target variable. One of the features becomes completely redundant for
the model. We saw the effects of collinearity on our diabetes model earlier where fea-
tures such as HDL and Glucose that were pretty highly correlated with the target vari-
able had very low importance in the final model. The problem of multicollinearity can
be overcome by removing the redundant features for the model. As an exercise, I
highly recommend doing that to see if you can improve the performance of the linear
regression model. 

 In the process of training a machine learning model, it is important to explore the
data first and determine how correlated features are with each other and with the tar-
get variable. The problem of multicollinearity must be uncovered early in the process,
before training the model, but if it has been overlooked, interpreting the model will
help expose such issues. The plot in figure 2.7 can be generated in Python using the
following code snippet:

import numpy as np 
import matplotlib.pyplot as plt  
import seaborn as sns 
sns.set(style=’whitegrid’)  
sns.set_palette(‘bright’)   

weights = lr_model.coef_ 

feature_importance_idx = np.argsort(np.abs(weights))[::-1] 
feature_importance = [feature_names[idx].upper() for idx in
  feature_importance_idx] 
feature_importance_values = [weights[idx] for idx in
  feature_importance_idx]

f, ax = plt.subplots(figsize=(10, 8))  
sns.barplot(x=feature_importance_values, y=feature_importance, ax=ax) 
ax.grid(True)  
ax.set_xlabel('Feature Weights')  
ax.set_ylabel('Features')

Imports numpy to perform operation 
on vectors in an optimized way

Imports matplotlib and seaborn 
to plot the feature importance

Obtains the weights from the linear 
regression model trained earlier 
using the coef_ parameter

Sorts the weights in 
descending order of 
importance and gets 
their indices

Uses the ordered indices 
to get the feature names 
and the corresponding 
weight values

Generates 
the plot 
shown in 
figure 2.7
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2.3.2 Limitations of linear regression
In the previous section, we saw how easy it is to interpret a linear regression model. It
is highly transparent and easy to understand. However, it has poor predictive power,
especially in cases where the relationship between the input features and target is
nonlinear. Consider the example shown in figure 2.8.

If we were to fit a linear regression model to this dataset, we would get a straight-line
linear fit, as shown in figure 2.9. As you can see, the model does not properly fit the
data and does not capture the nonlinear relationship. This limitation of linear regres-
sion is called underfitting, and the model is said to have high bias. In the following sec-
tions, we will see how this problem can be overcome by using more complex models
with higher predictive power.

2.4 Decision trees
A decision tree is a great machine learning algorithm that can be used to model com-
plex nonlinear relationships. It can be applied to both regression and classification
tasks. It has relatively higher predictive power than linear regression and is highly
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Figure 2.9 The problem 
of underfitting (high bias)
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interpretable, too. The basic idea behind a decision tree is to find optimum splits in
the data that best predict the output or target variable. In figure 2.10, I have illus-
trated this by considering only two features, BMI and Age. The decision tree splits the
dataset into five groups in total, three age groups and two BMI groups. 

The algorithm that is commonly applied in determining the optimum splits is the clas-
sification and regression tree (CART) algorithm. This algorithm first chooses a fea-
ture and a threshold for that feature. Based on that feature and threshold, the
algorithm splits the dataset into the following two subsets: 

 Subset 1, where the value of the feature is less than or equal to the threshold
 Subset 2, where the value of the feature is greater than the threshold 

The algorithm picks the feature and threshold that minimizes a cost function or crite-
rion. For regression tasks, this criterion is typically the mean squared error (MSE),
and for classification tasks, it is typically either Gini impurity or entropy. The algo-
rithm then continues to recursively split the data until the criterion is reduced further
or until a maximum depth is reached. The splitting strategy in figure 2.10 is shown as
a binary tree in figure 2.11.

 A decision tree model can be trained in Python using the Scikit-Learn package as
follows. The code to learn the open diabetes dataset and to split it into the training
and test sets is the same as the one used for linear regression in section 2.3, so, this
code is not repeated here:

from sklearn.tree import DecisionTreeRegressor 

dt_model = DecisionTreeRegressor(max_depth=None, random_state=42) 

dt_model.fit(X_train, y_train) 

y_pred = dt_model.predict(X_test) 

mae = np.mean(np.abs(y_test - y_pred)) 
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The decision tree model trained here was evaluated using the MAE metric, and the
performance was determined to be 54.7. If we tune the max_depth hyperparameter
and set it to 3, we can improve the MAE performance further to 48.6. This perfor-
mance, however, is poorer than the regression model trained in section 2.2. I will dis-
cuss the reasons for this in section 2.4.2, but first, let’s look at how to interpret a
decision tree in the following section. 

2.4.1 Interpreting decision trees

Decision trees are great at modeling nonlinear relationships between the input and
the output. By finding splits in the data across features, the model tends to learn a
function that is nonlinear in nature. The function could be monotonic, where a
change in the input results in a change in the output in the same direction, or non-
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Figure 2.11 Decision tree data splitting visualized as a binary tree

Decision tree for classification tasks
As mentioned in this section, decision trees can also be used for classification tasks.
In the CART algorithm, Gini impurity or entropy is used as the cost function. In Scikit-
Learn, you can easily train a decision tree classifier as follows:

    from sklearn.tree import DecisionTreeClassifier
    dt_model = DecisionTreeClassifier(criterion=’gini’, max_depth=None)
    dt_model.fit(X_train, y_train)

The criterion parameter in the DecisionTreeClassifier can be used to specify
the cost function for the CART algorithm. By default, it is set to gini, but it can be
changed to entropy.
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monotonic, where a change in the input could result in a change in the output in any
direction and at a varying rate. This is illustrated in figure 2.12. 

How do we interpret such a learned nonlinear function? As seen in the previous sec-
tion, a decision tree can be visualized as a bunch of if-else conditions strung together,
where each condition splits the data in two. Such a model can be easily visualized as a
binary tree, as illustrated in figure 2.11. For the decision tree model trained for diabe-
tes, the visualization of the binary tree is shown in figure 2.13. The tree can be inter-
preted as follows.

 Starting at the root of the tree, check if the normalized BMI is <= 0. If true, go to
the left part of the tree. If false, go to the right part of the tree. Because we are starting
at the root of the tree, this node accounts for 100% of the data. This is why samples is
equal to 100%. Also, if we were to set the max_depth to 0 and predict the disease
progression, then we would use the average value of all the samples in the data, which
is 153.7, represented as value in the tree. By predicting 153.7, we would get an MSE
of 6076.4.

 If the normalized BMI is <= 0, then we go to the left part of the tree and check if
the normalized Glaucoma is <= 0. If BMI is <= 0, we would account for approximately
59% of the data, and the MSE would reduce from 6076.4 for the parent node to
3612.7. We can repeat this process until we have reached the leaf nodes in the tree. If
we look at, say, the right-most leaf node, this corresponds to the following condition: if
BMI > 0 and BMI > 0.1 and LDL > 0, then predict 225.8 for 2.3% of the data, resulting
in an MSE of 2757.9.   

 Please note that the max_depth for the decision tree in figure 2.13 was set to 3. The
complexity of this tree will increase as max_depth increases or as the number of input
features increases. 
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The visualization in figure 2.13 can be generated in Python using the following code
snippet:

from sklearn.externals.six import StringIO  
from IPython.display import Image
from sklearn.tree import export_graphviz    
import pydotplus

diabetes_dt_dot_data = StringIO()
export_graphviz(dt_model, 

out_file=diabetes_dt_dot_data,
filled=False, rounded=True,
feature_names=feature_names,
proportion=True,
precision=1,
special_characters=True) 

dt_graph = pydotplus.graph_from_dot_data(diabetes_dt_dot_data.getvalue())
Image(dt_graph.create_png()) 

Because decision trees learn a nonlinear relationship between the input features and
the target, it is hard to understand what effects changes to each of the inputs have on
the output. It is not as straightforward as linear regression. We can, however, compute
the relative importance of each of the features in predicting the target at a global
level. To compute the feature importance, we first need to compute the importance of
a node in the binary tree. The importance of a node is computed as the decrease in
the cost function or impurity measure for that node weighted by the probability of
reaching that node in the tree. This is shown mathematically next:

BMI ≤ 0.0
mse = 6076.4

samples = 100.0%
value = 153.7

Glaucoma  ≤ 0.0
mse = 3612.7

samples = 59.2%
value = 118.0

True

BMI ≤ 0.1
mse = 5119.3

samples = 40.8%
value = 205.5

False

mse = 2378.3
samples = 43.1%

value = 100.6

mse = 3915.5
samples = 16.1%

value = 164.7

mse = 4557.3
samples = 33.4%

value = 191.1

mse = 2428.3
samples = 7.4%
value = 271.1

Figure 2.13 Visualization of the diabetes decision tree model
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We can then compute the feature importance by summing up the importance of the
nodes that split on that feature normalized by the importance of all the nodes in the
tree. This is shown mathematically next. The feature importance for the decision tree
is between 0 and 1, where a higher value implies greater importance:

In Python, the feature importance can be obtained from the Scikit-Learn decision
tree model and plotted as follows:

weights = dt_model.feature_importances_ 

feature_importance_idx = np.argsort(np.abs(weights))[::-1] 
feature_importance = [feature_names[idx].upper() for idx in
  feature_importance_idx] 
feature_importance_values = [weights[idx] for idx in
  feature_importance_idx]  

f, ax = plt.subplots(figsize=(10, 8))  
sns.barplot(x=feature_importance_values, y=feature_importance, ax=ax) 
ax.grid(True)  
ax.set_xlabel('Feature Weights')  
ax.set_ylabel('Features')  

The features ordered in descending order of importance and their corresponding
weights are shown in figure 2.14. As can be seen from the figure, the order of import-
ant features is different from linear regression. The most important feature is BMI,

Gets feature importance from the 
trained decision tree model Sorts indices of feature 

weights in descending 
order of importance

Gets the feature names 
and feature weights in 
descending order of 
importance

Generates 
the plot 
shown in 
figure 2.14
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accounting for roughly 42% of the overall model importance. The Glaucoma mea-
surement is the next most important feature, accounting for roughly 15% of the
model importance. These importance values are useful in determining what features
have the most signal in predicting the target variable. Decision trees are immune to
the problem of multicollinearity because the algorithm picks the feature that is highly
correlated with the target and that most reduces the cost function or impurity. As a
data scientist, it is important to visualize the learned decision tree, as shown in figure
2.13, because this will help you understand how the model arrived at the final predic-
tion. You could reduce the complexity of the tree by setting the max_depth hyperpa-
rameter or by pruning the number of features you feed into the model. You can
determine what features to prune by visualizing the global feature importance, as
shown in figure 2.14.

2.4.2 Limitations of decision trees

Decision trees are quite versatile because they can be applied to both regression and
classification tasks, and they also have the ability to model nonlinear relationships.
The algorithm, however, is prone to the problem of overfitting and the model is said to
have high variance. 

 The problem of overfitting occurs when the model fits the training data almost
perfectly and, therefore, does not generalize well to data that it hasn’t seen before,
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Figure 2.14 Diabetes feature importance for decision tree
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such as the test set. This is illustrated in figure 2.15. When a model overfits, you will
notice really good performance on the training set but poor performance on the test
set. This could explain why the decision tree model trained on the diabetes dataset
performed poorer than the linear regression model. 

 The problem of overfitting can be overcome by tuning certain hyperparameters in
the decision tree, like max_depth, and the minimum number of samples required for
the leaf nodes. As shown in the visualization of the decision tree model in figure 2.13,
one leaf node accounts for only 0.8% of the samples. This means that the prediction
for this node is based on the data from roughly only three patients. By increasing the
minimum number of samples required to 5 or 10, we could improve the performance
of the model on the test set. 

2.5 Generalized additive models (GAMs)
Diagnostics+ and the doctors are reasonably happy with the two models built so far,
but the performance is not that good. By interpreting the models, we have also uncov-
ered some shortcomings. The linear regression model does not seem to handle fea-
tures that are highly correlated with each other, such as Total Cholesterol, LDL, and
HDL. The decision tree model performs worse than linear regression, and it seems to
have overfit on the training data. 

 Let’s look at one specific feature from the diabetes data. Figure 2.16 shows a con-
trived example of a nonlinear relationship between age and the target variable, where
both variables are normalized. How would you best model this relationship without
overfitting? One possible approach is to extend the linear regression model where the
target variable is modeled as an nth degree polynomial of the feature set. This form of
regression is called polynomial regression.

 Polynomial regression for various-degree polynomials is shown in the following
equations. In these equations, we are considering only one feature, x1, to model the
target variable y. The degree 1 polynomial is the same as linear regression. For the
degree 2 polynomial, we would add an additional feature, which is the square of x1.
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Figure 2.15 The problem of 
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For the degree 3 polynomial, we would add two additional features—one that is the
square of x1 and the other that is the cube of x1:

The weights for the polynomial regression model can be obtained using the same
algorithm as linear regression, that is, the method of least squares using gradient
descent. The best fit learned by each of the three polynomials is shown in figure 2.17.
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Figure 2.17 Polynomial regression for modeling a nonlinear relationship
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We can see that the degree 3 polynomial fits the raw data better than degrees 2 and 1.
We can interpret a polynomial regression model the same way as we would a linear
regression because the model is essentially a linear combination of the features
including the higher degree features. 

 Polynomial regression has some limitations, however. The complexity of the model
increases as the number of features or the dimension of the feature space increases.
It, therefore, has a tendency to overfit on the data. It is also hard to determine the
degree for each feature in the polynomial, especially in a higher-dimensional feature
space.

 So, what model can be applied to overcome all these limitations and is also inter-
pretable? Enter generalized additive models (GAMs)! GAMs are models with medium
to high predictive power and are highly interpretable. Nonlinear relationships are
modeled by using smoothing functions for each feature and adding all of them, as
shown in the following equation:

In this equation, each feature has its own associated smoothing function that best
models the relationship between that feature and the target. You can choose from
many types of smoothing functions, but a widely used smoothing function is called
regression splines because it is practical and computationally efficient. I will focus on
regression splines in this book. Let’s now go deep into the world of GAMs using
regression splines!

2.5.1 Regression splines

Regression splines are represented as a weighted sum of basis functions. This is shown
mathematically in the next equation. In this equation, fj is the function that models
the relationship between the feature xj and the target variable. This function is repre-
sented as a weighted sum of basis functions where the weight is represented as wk and
the basis function is represented as bk. In the context of GAMs, the function fj is called
a smoothing function.

Now, what is a basis function? A basis function is a family of transformations that can
be used to capture a general shape or nonlinear relationship. For regression splines,
as the name suggests, splines are used as the basis function. A spline is a polynomial of
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degree n with n –1 derivatives. It will be much easier to understand splines using an
illustration. Figure 2.18 shows splines of various degrees. The top-left graph shows the
simplest spline of degree 0, from which higher degree splines can be generated. As
you can see from the top-left graph, six splines have been placed on a grid. The idea is
to split the distribution of the data into portions and fit a spline on each of those por-
tions. So, in this illustration, the data has been split into six portions, and we are mod-
eling each portion as a degree 0 spline. 

 A degree 1 spline, shown in the top-right graph, can be generated by convolving a
degree 0 spline with itself. Convolution is a mathematical operation that takes in two
functions and creates a third function that represents the correlation of the first func-
tion and a delayed copy of the second function. When we convolve a function with
itself, we are essentially looking at the correlation of the function with a delayed copy
of itself. There is a nice blog post by Christopher Olah on convolutions (http://
mng.bz/5Kdq). By convolving a degree 0 spline with itself, we get a degree 1 spline,
which is triangular, and this has a continuous 0th-order derivative. 

 If we now convolve a degree 1 spline with itself, we will get a degree 2 spline, shown
in the bottom-left graph. This degree 2 spline has a first-order derivative. Similarly, we
can get a degree 3 spline by convolving a degree 2 spline, and this has a second-order
derivative. In general, a degree n spline has an n – 1 derivative. In the limit, as n

Figure 2.18 An illustration of degree 0, degree 1, degree 2, and degree 3 splines

http://mng.bz/5Kdq
http://mng.bz/5Kdq
http://mng.bz/5Kdq
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approaches infinity, we will obtain a spline that has the shape of a Gaussian distribu-
tion. In practice, a degree 3 spline, or cubic spline, is used because it can capture most
general shapes. 

 As mentioned earlier, in figure 2.18, we have divided the distribution of data into
six portions and have placed six splines on the grid. In the earlier mathematical equa-
tion, the number of portions or splines was represented as variable K. The idea
behind regression splines is to learn the weights for each of the splines so that you can
model the distribution of the data in each of the portions. The number of portions or
splines in the grid, K, is also called degrees of freedom. In general, if we place these K
splines on a grid, we will have K + 3 points of division, also known as knots. 

 Let’s now zoom in on cubic splines, as shown in figure 2.19. We can see that there
are six splines, or six degrees of freedom, resulting in nine points of division or knots.

To capture a general shape, we need to take a weighted sum of the splines. We will use
cubic splines here. In figure 2.20, we are using the same six splines overlaid to create
nine knots. For the graph on the left, I have set the same weights for all six splines. As
you can imagine, if we take an equally weighted sum of all six splines, we will get a hor-
izontal straight line. This is an illustration of a poor fit to the raw data. For the graph
on the right, however, I have taken an unequal weighted sum of the six splines gener-
ating a shape that perfectly fits the raw data. This shows the power of regression
splines and GAMs. By increasing the number of splines or by dividing the data into
more portions, we can model more complex nonlinear relationships. In GAMs based
on regression splines, we individually model nonlinear relationships of each feature
with the target variable and then add them all up to come up with the final prediction.

 In figure 2.20, the weights were determined using trial and error to best describe
the raw data. But, how do you algorithmically determine the weights for a regression
spline that best captures the relationship between the features and the target? Recall
from the start of this section that a regression spline is a weighted sum of basis func-
tions or splines. This is essentially a linear regression problem, and you can learn the

Six cubic splines forming nine knots
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weights using the method of least squares and gradient descent. We would, however,
need to specify the number of knots, or degrees of freedom. We can treat this as a
hyperparameter and determine it using a technique called cross-validation. Using
cross-validation, we would remove a portion of the data and fit a regression spline with
a certain number of predetermined knots on the remaining data. This regression
spline is then evaluated on the held-out set. The optimum number of knots is the one
that results in the best performance on the held-out set. 

 In GAMs, you can easily overfit by increasing the number of splines or degrees of
freedom. If the number of splines is high, the resulting smoothing function, which is a
weighted sum of the splines, would be quite “wiggly”—it would start to fit some of the
noise in the data. How can we control this wiggliness or prevent overfitting? We can use
a technique called regularization. In regularization, we would add a term to the least
square cost function that quantifies the wiggliness. We could then quantify the wiggli-
ness of a smoothing function by taking the integral of the square of the second-order
derivative of the function. Then, using a hyperparameter (also called regularization
parameter) represented by λ, we could adjust the intensity of wiggliness. A high value
for λ penalizes wiggliness heavily. We can determine λ the same way we determine other
hyperparameters using cross-validation.
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Figure 2.20 Splines for modeling a nonlinear relationship

Summary of GAMs
A GAM is a powerful model where the target variable is represented as a sum of
smoothing functions representing the relationship of each of the features and the tar-
get. We can use the smoothing function to capture any nonlinear relationship. This
is shown mathematically here:

y = w0 + f1(x1) + f2(x2) +…+ fn(xn)
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GAMs can also be used to model interactions between variables. GA2M, shown mathe-
matically next, is a type of GAM that models pairwise interactions:

With the help of subject matter experts (SMEs)—the doctors in the Diagnostics+
example—you can determine what feature interactions need to be modeled. You
could also look at the correlation between features to understand what features need
to be modeled together.

 In Python, you can use a package called pyGAM to build and train GAMs. It is
inspired by the GAM implementation in the popular mgcv package in R. You can
install pyGAM in your Python environment using the pip package as follows:

pip install pygam

2.5.2 GAM for Diagnostics+ diabetes

Let’s now go back to the Diagnostics+ example to train a GAM to predict diabetes pro-
gression using all 10 features. Note that the Sex of the patient is a categorical or dis-
crete feature. It does not make sense to model this feature using a smoothing
function. We can treat such categorical features in GAMs as factor terms. We can train
the GAM using the pyGAM package as follows. As with decision trees, I’m not going to
repeat the code that loads the diabetes dataset and splits it into the train and test sets.
Please refer to section 2.2 for that snippet of code: 

(continued)
This is a white-box model—we can easily see how each feature is transformed to the
output using the smoothing function. A common way of representing the smoothing
function is by using regression splines. A regression spline is represented as a simple
weighted sum of basis functions. A basis function that is widely used for GAMs is the
cubic spline. By increasing the number of splines or degrees of freedom, we can divide
the distribution of data into small portions and model each portion piecewise. This
way, we can capture very complex nonlinear relationships. The learning algorithm
essentially has to determine the weights for the regression spline. We can do this
the same way as for linear regression, using the method of least squares and gradient
descent. We can determine the number of splines using the cross-validation tech-
nique. As the number of splines increases, GAMs have a tendency to overfit on the
data. We can safeguard against this by using the regularization technique. Using a
regularization parameter λ, we can control the amount of wiggliness. A higher λ ensures
a smoother function. The parameter λ can also be determined using cross-validation.
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from pygam import LinearGAM 
from pygam import s 
from pygam import f

# Load data using the code snippet in Section 2.2

gam = LinearGAM(s(0) + 
 f(1) + 
 s(2) + 
 s(3) + 
 s(4) + 
 s(5) + 
 s(6) + 
 s(7) + 
 s(8) + 
 s(9), 
 n_splines=35) 

gam.gridsearch(X_train, y_train) 

y_pred = gam.predict(X_test)

mae = np.mean(np.abs(y_test - y_pred)) 

Now for the moment of truth! How did the GAM perform? The MAE performance of
the GAM is 41.4—a pretty good improvement when compared to the linear regression
and decision tree models. A comparison of the performance of all three models is
summarized in table 2.2. I have also included the performance of a baseline model
that Diagnostics+ and the doctors have been using where they look at the median dia-
betes progression across all patients. All models are compared against the baseline to
show how much of an improvement the models give to the doctors. It looks like GAM
is the best model across all performance metrics.

Table 2.2 Performance comparison of linear regression, decision tree, and GAM against a baseline for
Diagnostics+ A

MAE RMSE MAPE

Baseline 62.2 74.7 51.6

Linear regression 42.8 (–19.4) 53.8 (–20.9) 37.5 (–14.1)

Decision tree 48.6 (–13.6) 60.5 (–14.2) 44.4 (–7.2)

GAM 41.4 (–20.8) 52.2 (–22.5) 35.7 (–15.9)

Imports the LinearGAM class from 
pygam that can be used to train a 
GAM for regression tasks Imports the smoothing term function 

to be used for numerical features

Imports the factor term function to 
be used for categorical featuresCubic

spline
term for
the Age
feature Factor term for the Sex 

feature, which is categorical

Cubic
spline

term for
the BMI
feature

Cubic spline term for the BP feature

Cubic spline term for the Total Cholesterol feature
Cubic spline term for the LDL feature
Cubic spline term for the HDL feature

Cubic spline term for the Thyroid feature
Cubic
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term for
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Cubic spline term for the Glucose feature

Maximum number of splines to be used for each feature

Uses grid search to perform training and cross-
validation to determine the number of splines, the 
regularization parameter lambda, and the optimum 
weights for the regression splines for each feature

Uses the trained GAM model to predict on the test Evaluates the performance of the model 
on the test set using the MAE metric
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We have now seen the predictive power of GAMs. We could potentially get further
improvement in the performance by modeling feature interactions, especially the
cholesterol features with each other and with other features that are potentially highly
correlated, like BMI. As an exercise, I encourage you to try modeling feature interac-
tions using GAMs. 

 GAMs are white box and can be easily interpreted. In the following section, we will
see how GAMs can be interpreted.

2.5.3 Interpreting GAMs

Although each smoothing function is obtained as a linear combination of basis func-
tions, the final smoothing function for each feature is nonlinear, and, therefore, we
cannot interpret the weights the same way as we do for linear regression. We can, how-
ever, easily visualize the effects of each feature on the target using partial dependence
or partial effects plots. Partial dependence looks at the effect of each feature by mar-
ginalizing on the rest. It is highly interpretable because we can see the average effect
of each feature value on the target variable. We can see whether the target response to
the feature is linear, nonlinear, monotonic, or nonmonotonic.  Figure 2.21 shows the
effect of each of the patient features on the target variable. The 95% confidence inter-
val around them have also been plotted. This will help us determine the sensitivity of
the model to data points with a low sample size. 

 Let’s now look at a couple of features in figure 2.21, namely, BMI and BP. The
effect of BMI on the target variable is shown in the bottom-left graph. On the x-axis,
we see the normalized values of BMI, and on the y-axis, we see the effect that BMI has
on the progression of diabetes for the patient. We see that as BMI increases, the effect
on the progression of diabetes also increases. We see a similar trend for BP shown by
the bottom-right graph. We see that the higher the BP, the higher the impact on the
progression of diabetes. If we look at the 95% confidence interval lines (the dashed
lines in figure 2.21), we see a wider confidence interval around the lower and higher
ends of BMI and BP. This is because fewer samples of patients exist at this range of val-
ues, resulting in higher uncertainty in understanding the effects of these features at
those ranges.

GAMs for classification tasks
GAMs can also be used to train a binary classifier by using the logistic link function
where the response y can be either 0 or 1. In the pyGAM package, you can make use
of the logistic GAM for binary classification problems as follows:

    from pygam import LogisticGAM
    gam = LogisticGAM()
    gam.gridsearch(X_train, y_train)
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The code to generate figure 2.21 follows:

grid_locs1 = [(0, 0), (0, 1), 
(1, 0), (1, 1)] 

fig, ax = plt.subplots(2, 2, figsize=(10, 8)) 
for i, feature in enumerate(feature_names[:4]): 
    gl = grid_locs1[i] 
    XX = gam.generate_X_grid(term=i)
    ax[gl[0], gl[1]].plot(XX[:, i], gam.partial_dependence(term=i, X=XX)) 
    ax[gl[0], gl[1]].plot(XX[:, i], gam.partial_dependence(term=i, X=XX, 

➥ width=.95)[1], c='r', ls='--')
ax[gl[0], gl[1]].set_xlabel('%s' % feature)
ax[gl[0], gl[1]].set_ylabel('f ( %s )' % feature)

Figure 2.22 shows the effect of each of the six blood test measurements on the target.
As an exercise, observe the effects that features like Total Cholesterol, LDL, HDL, and
Glaucoma have on the progression of diabetes. What can you say about the impact of
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Figure 2.21 The effect of each of the patient features on the target variable
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higher LDL values (or bad cholesterol) on the target variable? Why does higher Total
Cholesterol have a lower impact on the target variable? To answer these questions,
let’s look at a few patient cases with very high cholesterol values. The following code
snippet will help you zoom in on those patients:

print(df_data[(df_data['Total Cholesterol'] > 0.15) &
(df_data['LDL'] > 0.19)])

If you execute this code, you will see only one patient out of 442 that has a Total Cho-
lesterol reading greater than 0.15 and an LDL reading greater than 0.19. The fasting
glucose level for this patient one year out (the target variable) seems to be 84, which is
in the normal range. This could explain why in figure 2.22 we are seeing a very large
negative effect for Total Cholesterol on the target variable for a range that is greater

Figure 2.22 The effect of each of the blood test measurements on the target variable
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than 0.15. The negative effect of Total Cholesterol seems to be greater than the posi-
tive effect the bad LDL cholesterol seems to have on the target. The confidence inter-
val seems much wider in these range of values. The model may have overfit on this
one outlier patient record, and so, we should not read too much into these effects. By
observing these effects, we can identify cases or a range of values where the model is
sure of the prediction and cases where there is high uncertainty. For high uncertainty
cases, we can go back to the diagnostics center to collect more patient data so that we
have a representative sample.

 The code to generate figure 2.22 follows:

grid_locs2 = [(0, 0), (0, 1), 
(1, 0), (1, 1),  
(2, 0), (2, 1)]  

fig2, ax2 = plt.subplots(3, 2, figsize=(12, 12)) 
for i, feature in enumerate(feature_names[4:]): 

idx = i + 4           
gl = grid_locs2[i]    

    XX = gam.generate_X_grid(term=idx) 
    ax2[gl[0], gl[1]].plot(XX[:, idx], gam.partial_dependence(term=idx, 

➥ X=XX))
ax2[gl[0], gl[1]].plot(XX[:, idx], gam.partial_dependence(term=idx, X=XX,

➥ width=.95)[1], c='r', ls='--')
ax2[gl[0], gl[1]].set_xlabel('%s' % feature)
ax2[gl[0], gl[1]].set_ylabel('f ( %s )' % feature)

Through figures 2.21 and 2.22, we can gain a much deeper understanding of the mar-
ginal effect of each of the feature values on the target. The partial dependence plots
are useful for debugging any issues with the model. By plotting the 95% confidence
interval around the partial dependence values, we can also see data points with low
sample sizes. If a feature value with a low sample size has a dramatic effect on the tar-
get, then there could be an overfitting problem. We can also visualize the wiggliness of
the smoothing function to determine whether the model has fit on the noise in the
data. We can fix these overfitting problems by increasing the value of the regulariza-
tion parameter. These partial dependence plots can also be shared with the SME—
doctors, in this case—for validation which will help gain their trust. 

2.5.4 Limitations of GAMs
We have so far seen the advantages of GAMs in terms of predictive power and inter-
pretability. GAMs have a tendency to overfit, although this can be overcome with reg-
ularization. You do need to be aware of the following other limitations, however:

 GAMs are sensitive to feature values outside of the range in the training set and
tend to lose predictive power when exposed to outlier values.

 For mission-critical tasks, GAMs may sometimes have limited predictive power,
in which case you may need to consider more powerful black-box models.
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2.6 Looking ahead to black-box models
Black-box models are models with really high predictive power and are typically
applied in tasks for which model performance (such as accuracy) is extremely import-
ant. They are, however, inherently opaque, and the characteristics that make them
opaque include the following:

 The machine learning process is complicated, and you can’t easily understand
how the input features are transformed into the output or target variable.

 You can’t easily identify the most important features to predict the target variable. 

Examples of black-box models are tree ensembles such as random forest and gradient-
boosted trees, deep neural networks (DNNs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs). Table 2.3 shows the machine learning tasks
for which these models are typically applied.

I have now plotted in the black-box models in the same predictive power versus inter-
pretability plane as introduced in section 2.1, shown in figure 2.23. 

 The black-box models are clustered in the top left of the plane because they have
high predictive power but low interpretability. For mission-critical tasks, it is important
not to trade off model performance (such as accuracy) for interpretability by applying
white-box models. We will need to apply black-box models for such tasks and will need
to find ways to interpret them. We can interpret black-box models in multiple ways,
and doing so is the main focus of the remaining chapters in this book. In the next

Table 2.3 Mapping of black-box model to machine learning tasks

Black-box model Machine learning tasks

Tree ensembles (random forest, gradient-
boosted trees)

Regression and classification

Deep neural networks (DNNs) Regression and classification

Convolutional neural networks (CNNs) Image classification, object detection

Recurrent neural networks (RNNs) Sequence modeling, language understanding

Interpretability

Pr
ed

ic
tiv

e 
po

w
er

x Linear regression

x Decision trees

x GAMs
Tree ensembles x

DNNs x
CNNs xx RNNs 

B
lack-box m

odels

W
hi

te
-b

ox
 m

od
el

s

Figure 2.23 Black-box models 
on the interpretability versus 
predictive power plane



53Summary

chapter, we will specifically focus on tree ensembles and how to interpret them using
global, model-agnostic techniques.

Summary
 White-box models are inherently transparent. The machine learning process is

straightforward to understand, and you can clearly interpret how the input fea-
tures are transformed into the output. Using white-box models, you can identify
the most important features, and those features are understandable.

 Linear regression is one of the simplest white-box models, where the target vari-
able is modeled as a linear combination of the input features. You can deter-
mine the weights using the method of least squares and gradient descent. 

 We can implement linear regression in Python using the LinearRegression
class in the Scikit-Learn package. You can interpret the model by inspecting the
coefficients or learned weights. The weights can also be used to determine the
importance of each of the features. Linear regression, however, suffers from the
problems of multicollinearity and underfitting.

 A decision tree is a slightly more advanced white-box model that can be used
for both regression and classification tasks. You can predict the target variable
by splitting the data across all features to minimize a cost function. You have
learned the CART algorithm to learn the splits.

 A decision tree for regression tasks can be implemented in Python using the
DecisionTreeRegressor class in Scikit-Learn. You can implement a decision
tree for classification tasks using the DecisionTreeClassifier class in Scikit-
Learn. You can interpret a decision tree learned using CART by visualizing it as
a binary tree. The Scikit-Learn implementation also computes the feature
importance for you. A decision tree can be used to model nonlinear relation-
ships but tends to suffer from overfitting.

 GAMs are a powerful white-box model where the target variable is represented
as a sum of smoothing functions representing the relationship of each of the
features and the target. You know that regression splines and cubic splines are
widely used to represent the smoothing function. 

 Regression splines and GAMs can be implemented using the pyGAM package
in Python. We can use the LinearGAM class for regression tasks and the Logis-
ticGAM class for classification tasks. You can interpret a GAM by plotting the
partial dependence of each of the features on the target. GAMs have a tendency
to overfit, but this problem can be mitigated through regularization. 

 Black-box models are models with really high predictive power and are typically
applied to tasks for which model performance (such as accuracy) is extremely
important. They are, however, inherently opaque. The machine learning pro-
cess is complicated, and you can’t easily understand how the input features are
transformed into the output or target variable. As a result, you can’t easily iden-
tify the most important features to predict the target variable. 
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