
1

For source code, sample chapters, the Online Author Forum, and other resources, go to

http://www.manning.com/huettermann/

Agile ALM
By Michael Hüttermann

There is a conflict between having too much lifecycle management process and not
having enough. An Agile approach advances and demands feedback and
communication. Application Lifecycle Management (ALM) and its major facet
release management have to be a balanced set of process and tools aligned to your
individual requirements. In this article from Agile ALM, you will learn about the
facets of Agile ALM and how it plays the role of a change enabler.

You may also be interested in…

Agile in the Context of Application Lifecycle
Management (ALM)

There is a conflict between having too much lifecycle management process and not having enough. An Agile

approach advances and demands feedback and communication. The release management process should be

effective, efficient and targeted. In practice though, many projects suffer from not having enough process. You

need to focus on priorities including the root cause of the issue. Often, more process is introduced in order to

address the problem. Introducing too many rules or wrong process rules could suggest control that does not really

exist. In the worst case, you have a described process and a real process in parallel. Or you have a very rigid

process that decreases productivity dramatically. Application Lifecycle Management (ALM) and its major facet

release management have to be a balanced set of process and tools aligned to your individual requirements.

Effectiveness and efficiency
Simply speaking, effectiveness is doing the right thing, and efficiency is doing the right thing right. After consulting

on a significant number of projects, I'm left wondering why some teams do not grasp this distinction. If you have

issues (or, better, challenges), try a root cause analysis to detect the original evil. If you find it, you can think

about possible improvements. Mostly, they all have pros and cons, so you should decide wisely which way to go.

You should only go a few new ways in a trackable amount of time, to measure the success of your decisions. If you

dig into challenges deep enough, you most often find communication defects inside the team. That is what Agile is

all about. Communication and interaction is more important than processes and tools, as the Agile Manifesto says.

If you can solve the people issues yet still see room for improvement, proceed to the processes.

Defects in processes are often a problem. For example, it is not possible to configure a workflow system to

cover your processes, unless you know the processes. If they are not described, identify and describe them.

Sometimes, processes don’t exist at all. Set them up; don't be satisfied if the whole team just speaks about the

task of “daily business”. If you are managing the processes, and you know the requirements, then, and only then,

can you think about tooling. A bad example would be to buy a full-fledged commercial ALM suite when you do not

know your requirements (and, therefore, are not able to validate if the tools do fulfill them).

You can work with prototypes, evaluation versions of tools, or a release 0.0/zero for setting up infrastructure.

These provide good possibilities to get early feedback and gain some valuable experience. But, always remember

that you should stay flexible. It is often better to use a collection of lightweight, integrated tools that are de facto

standards on the market and that do the best job in their domains. You can integrate and decouple your

infrastructure, still remaining quite independent and flexible.

http://www.manning.com/huettermann/
http://www.manning.com/huettermann
http://www.manning.com/huettermann
http://www.manning.com/�

2

For source code, sample chapters, the Online Author Forum, and other resources, go to

http://www.manning.com/huettermann/

If you want to kick-start your development of new components, you may decide to use Maven, which provides

component and build management and a neat archetype feature. If you want to integrate your system

continuously, you can add a build server to your infrastructure. You may want to add tests and audits later. Little

by little, you can extend your infrastructure in a requirement-based, focused way. And, if you are not satisfied with

one decision, you can replace one tool while still sticking with the other ones.

Another core competency is managing the identification of configuration items.

Agile ALM and configuration items
ALM deals with management of tasks and artifacts. Controlling artifacts is only possible if the artifacts are

identified: without deciding which artifacts have impact on the release and the project and without putting the

artifacts into the ALM system it is not possible to carry out controlling, status accounting (validation of

completeness to provide a consistence version), and audits. Additionally, setting up an efficient ALM is only

possible when processes and tools are optimally chosen, integrated and standardized.

Identification of assets, controlling, status accounting, and audits are major tasks of traditional Software

Configuration Management (SCM). In an Agile ALM, you’ll find the best fit to implement SCM. There should be an

SCM-aware expert on every Agile team. Pure Agile projects do implement SCM facets in an explicit way. Driving the

SCM needs of the business daily can be done by the traditional build manager or a (technical) release manager.

This depends on how you slice your roles.

SCM is mainly about access to project artifacts. This includes not only tracking artifact versions over time but

also controlling and managing changes to them. Whereas in traditional SCM scenarios you track every single

artifact, in an Agile ALM scope you will focus on final deployment units and important artifacts including documents

influencing the project (like requirement documents). As an example, the Agile approach tracks Enterprise Archive

files (EARs), Web Archive files (WARs), and Java Archive files (JARs) regardless of their contents (packages,

classes). The sources are stored in the version control system. You will not store artifacts that you can generate

out of other artifacts (unless you have good reasons for that) and documents that will not change over time or by

multiple users (for example, meeting minutes), as seen in figure 1.

Figure 1 Artifacts in configuration management. Artifacts that are updated continuously and are of special interest are put into
configuration management. Sources and documents are put into version control; libraries are put into distribution management.

From an underlying SCM point of view, an Agile ALM focuses on aggregating and documenting the most important

parts necessary for releasing. For example, if you want to integrate further components or subsystems into your

enterprise SCM, you need basic information about these components, including their deployment units. Table 1

collects some of the major ones in an SCM checklist. This is a much leaner approach than promoted by traditional

http://www.manning.com/huettermann/

3

For source code, sample chapters, the Online Author Forum, and other resources, go to

http://www.manning.com/huettermann/

SCM. Depending on your individual situation and requirements, implementing the checklist can be done in a smart

way. If you use Maven, for instance, some of the checklist items are covered out of the box (like documenting

deployment units). Tools like Maven help to define your SCM in an executable medium. This means, you do not

only document on paper—you have XML definitions that can be executed reproducibly.

Table 1 Approaching SCM in an Agile way: the SCM checklist

Group Item Details

Overview Configuration elements A complete list of all configuration
elements, including scripts, DB
elements, deployment units,
properties

System Deployment diagram Deployment units (and their
versions), packaging types,
protocols, technical information (like
WAS 6.1), dependencies between
configuration elements, nodes

System Infrastructure Database elements (users, DDL),
technical users, permissions,
security

System Test environments For all subsystems, mapping to
other test environments where
needed

Build Build system The system must provide its
deployment units in a reproducible
way (build must be provided by
component development team!)

Traditional SCM requires listings of configuration items (similar to the expression work items) and checklists. This

can be necessary in an Agile context too but is usually handled automatically in ALM tools. But, there are many

possible usage models. Release notes should be created automatically. You should also be able to conduct a

system configuration audit automatically. For example, JIRA can be used to derive release notes based on a

specific time interval or version number. Mapping sources to requirements to generate what you’re looking for is an

effective way to create documentation automatically and apply an active Impact Management, with Mylyn or

FishEye. Acceptance tests (for example, with Fit) can also be part of this documentation.

Tests and audits (metrics) can be applied automatically as part of the continuous integration system. Here, you

can base your audits on Checkstyle and Cobertura and your testing on, for example, Selenium, FEST, or something

similar. Track your components in a component repository, where the system puts them continuously. If you

already use Maven, you are familiar with this.

Agile ALM minimizes overhead while maximizing benefit. It also acts as an enabler for change.

Agile ALM as change enabler
All systems try to achieve stable states (Panta Rei1). Being flexible and Agile in software development does not

mean chaotic drifting but being able to change and transform from one stable state to another.

The importance of lifecycle management will continue to grow. In a time of distributed, heterogeneous system

landscapes, integration of legacy systems and components in many different versions and (transitive)

dependencies on different platforms, following a systematic release management approach has become a

1 Meaning “everything flows”

http://www.manning.com/huettermann/

4

For source code, sample chapters, the Online Author Forum, and other resources, go to

http://www.manning.com/huettermann/

precondition to providing software of high quality in constant, short intervals. Agile ALM is the catalyst enabling the

daily work of all project stakeholders. It also helps to track and control the artifacts that were created during the

project activities.

During the development of complex systems, change is a constant companion of the development process.

Instead of being exceptional, changes are becoming more and more the norm. A very high percentage of projects

miss their project goals because they did not grant enough space for changes in the process. Modern software

development understands changes to be a major part of the project. They are part of the process in order to align

the current activities to the valid requirements and basic conditions at any time (continuous adaptation).

In the extreme approach, defects (bugs) and all kinds of functional and non-functional requirements are

handled like a coordinated set of changes to the system. Following this paradigm, software development is the

process of identifying and processing changes. ALM is evolving to be the hub of reproducibility and a change

enabler.

Summary
We talked about what Agile means in the context of ALM. We discussed some aspects of the Agile ALM, including

using SCM checklists and being both effective and efficient. Finally, we considered Agile ALM as a change enabler.

http://www.manning.com/huettermann/

5

For source code, sample chapters, the Online Author Forum, and other resources, go to

http://www.manning.com/huettermann/

Here are some other Manning titles you might be interested in:

Becoming Agile
…in an imperfect world
Greg Smith and Ahmed Sidky

Specification by Example
Gojko Adzic

Enterprise Search in Action
Marc Teutelink

Last updated: July 26, 2011

http://www.manning.com/huettermann/
http://www.manning.com/smith
http://www.manning.com/adzic
http://www.manning.com/teutelink/
http://www.manning.com/adzic�
http://www.manning.com/teutelink/�

	Effectiveness and efficiency
	Agile ALM and configuration items
	Agile ALM as change enabler
	Summary

