

Network Automation Cookbook

Proven and actionable recipes to automate and manage
network devices using Ansible

Karim Okasha

BIRMINGHAM - MUMBAI

Network Automation Cookbook
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Ronn Kurien
Senior Editor: Richard Brookes-Bland
Technical Editor: Dinesh Pawar
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Nilesh Mohite

First published: April 2020

Production reference: 1170420

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-648-1

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Karim Okasha is a network consultant with over 15 years of experience in the ICT
industry. He is specialized in the design and operation of large telecom and service
provider networks and has lots of experience in network automation. Karim has a
bachelor's degree in telecommunications and holds several expert-level certifications, such
as CCIE, JNCIE, and RHCE. He is currently working in Red Hat as a network automation
consultant, helping large telecom and service providers to design and implement
innovative network automation solutions. Prior to joining Red Hat, he worked for Saudi
Telecom Company as well as Cisco and Orange S.A.

I would like to thank my wife and kids for providing me with the freedom and
understanding needed to focus on this dream; without their support, this book
wouldn't be possible.

I would like to thank the Packt Publishing team and my technical reviewers,
for making my dream of writing this book a reality.

Finally, I would like to thank my mentor and best friend, Mohammed Mahmoud,
for all his support and encouragement during all these years.

6
Administering a Multi-Vendor

Network with NAPALM and
Ansible

Network Automation and Programmability Abstraction Layer with Multivendor support
(NAPALM), as the name implies, is a multi-vendor Python library intended to interact with
different vendor equipment, and it provides a consistent method to interact with all these
devices, irrespective of the vendor equipment used.

In previous chapters, we have seen how to interact with different network devices using
Ansible. However, for each vendor OS, we had to use a different Ansible module to
support that specific OS. Furthermore, we saw that the data returned from each vendor OS
is completely different. Although writing a playbook for multi-vendor devices is still
possible, it requires the use of multiple different modules, and we need to work with the
different data structures returned by these devices. This is the main issue that NAPALM
tries to address. NAPALM attempts to provide an abstracted and consistent API to interact
with multiple vendor OSes, while the data returned by NAPALM from these different
vendor OSes is normalized and consistent.

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[190]

NAPALM interacts with each device according to the most common API supported by this
node, and the API that is widely adopted by the community. The following diagram
outlines how NAPALM interacts with the most common network devices, as well as the
libraries used in NAPALM to interact with the APIs on these devices:

Since NAPALM tries to provide a consistent method to interact with network equipment, it
supports a specific set of vendor devices. NAPALM also supports the most common tasks
that are carried out on these devices, such as device configuration, retrieving the
operational state for interfaces, Border Gate Protocol (BGP) and Link Layer Discovery
Protocol (LLDP), and many others. For more information regarding the supported devices,
as well as the supported methods when interacting with these devices, please check the
following link: https:/ /napalm. readthedocs. io/ en/latest/ support/ index. html.

In this chapter, we will outline how to automate a multi-vendor network using NAPALM
and Ansible. We will outline how to manage the configuration of these different vendor
OSes, as well as how to retrieve the operational state from these devices. We will base our
illustration on the following sample network diagram of a basic service provider network:

https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html
https://napalm.readthedocs.io/en/latest/support/index.html

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[191]

The following table outlines the devices in our sample topology and their respective
management Internet Protocols (IPs):

Device Role Vendor Management (MGMT) Port MGMT IP
mxp01 P Router Juniper vMX 14.1 fxp0 172.20.1.2

mxp02 P Router Juniper vMX 14.1 fxp0 172.20.1.3

mxpe01 PE Router Juniper vMX 14.1 fxp0 172.20.1.4

mxpe01 PE Router Juniper vMX 17.1 fxp0 172.20.1.5

xrpe03 PE Router Cisco XRv 6.1.2 Mgmt0/0/CPU0/0 172.20.1.6

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[192]

The main recipes covered in this chapter are shown in the following list:

Installing NAPALM and integrating with Ansible
Building an Ansible network inventory
Connecting and authenticating to network devices using Ansible
Building the device configuration
Deploying configuration on network devices using NAPALM
Collecting device facts with NAPALM
Validating network reachability using NAPALM
Validating and auditing networks with NAPALM

Technical requirements
The code files for this chapter can be found here: https:/ / github. com/ PacktPublishing/
Network-Automation- Cookbook/ tree/ master/ ch6_ napalm.

The following software will be required in this chapter:

Ansible machine running CentOS 7
Ansible 2.9
Juniper Virtual MX (vMX) router running Junos OS 14.1R8 and Junos OS 17.1R1
release
Cisco XRv router running IOS XR 6.1.2

Check out the following video to see the Code in Action:
https://bit.ly/2Veox8j

Installing NAPALM and integrating with
Ansible
In this recipe, we outline how to install NAPALM and integrate it to work with Ansible.
This task is mandatory since NAPALM Ansible modules are not part of the core modules
that are shipped with Ansible by default. So, in order to start working with these modules,
we need to install NAPALM and all of its Ansible modules. Then, we need to inform
Ansible of where to find it and start working with the specific modules developed by the
NAPALM team for Ansible.

https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://github.com/PacktPublishing/Network-Automation-Cookbook/tree/master/ch6_napalm
https://bit.ly/2Veox8j
https://bit.ly/2Veox8j
https://bit.ly/2Veox8j
https://bit.ly/2Veox8j
https://bit.ly/2Veox8j
https://bit.ly/2Veox8j
https://bit.ly/2Veox8j
https://bit.ly/2Veox8j
https://bit.ly/2Veox8j

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[193]

Getting ready
Ansible and Python 3 need to be installed on the machine, along with the python3-pip
package, which we will use to install NAPALM.

How to do it...
Install the napalm-ansible Python package, as shown in the following code1.
snippet:

$ pip3 install napalm-ansible

Run the napalm-ansible command, as shown in the following code block:2.

$ napalm-ansible

To ensure Ansible can use the NAPALM modules you will have to add the3.
following configurtion to your Ansible configuration file (ansible.cfg):

[defaults]
 library = /usr/local/lib/python3.6/site-
packages/napalm_ansible/modules
 action_plugins = /usr/local/lib/python3.6/site-
packages/napalm_ansible/plugins/action

For more details on Ansible's configuration file, visit https:/ /docs. ansible. com/
ansible/ latest/ intro_ configuration. html.

Create a new folder called ch6_napalm and create the ansible.cfg file,4.
updating it as shown in the following code block:

$ cat ansible.cfg
[defaults]
inventory=hosts
retry_files_enabled=False
gathering=explicit
host_key_checking=False
library = /usr/local/lib/python3.6/site-
packages/napalm_ansible/modules
action_plugins = /usr/local/lib/python3.6/site-
packages/napalm_ansible/plugins/action

https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html
https://docs.ansible.com/ansible/latest/intro_configuration.html

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[194]

How it works…
Since the NAPALM package and corresponding NAPALM Ansible modules are not part of
the core modules shipped and installed by default with Ansible, we need to install it on the
system in order to start working with the NAPALM Ansible modules. The NAPALM team
has shipped a specific Python package to install NAPALM along with all the Ansible
modules and all the dependencies, in order to start working with NAPALM from inside
Ansible. This package is napalm-ansible. We will use the pip3 program to install this
package since we are using Python 3.

In order to tell Ansible where the Ansible module is installed, we need to enter the path for
these modules into Ansible. The NAPALM team also provides simple instruction on how to
find the path where the NAPALM modules are installed, and how to integrate it with
Ansible via the napalm-ansible program. We execute the napalm-ansible command,
which outputs the required configuration that we need to include in the ansible.cfg file
so that Ansible can find the NAPALM modules that we will be using.

We update the ansible.cfg file with the output that we obtained from the napalm-
ansible command. We then update the library and action plugin options, which tell
Ansible to include these folders in its path when it is searching for modules or action
plugins. In the ansible.cfg file, we include the normal configuration that we used before
in the previous chapters. 

Building an Ansible network inventory
In this recipe, we will outline how to build and structure our Ansible inventory to describe
our sample service provider network setup outlined in this chapter. Building an Ansible
inventory is a mandatory step, in order to tell Ansible how to connect to the managed
devices. In the case of NAPALM, we need to sort the different nodes in our network into
the correct vendor types supported by NAPALM.

How to do it…
Inside the new folder (ch6_napalm), we create a hosts file with the following1.
content:

$ cat hosts
[pe]
 mxpe01 ansible_host=172.20.1.3

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[195]

 mxpe02 ansible_host=172.20.1.4
 xrpe03 ansible_host=172.20.1.5

[p]
 mxp01 ansible_host=172.20.1.2
 mxp02 ansible_host=172.20.1.6

[junos]
 mxpe01
 mxpe02
 mxp01
 mxp02

[iosxr]
 xrpe03
 [sp_core:children]
 pe
 p

How it works…
We built the Ansible inventory using the hosts file, and we defined multiple groups in
order to segment our infrastructure, as follows:

We created the PE group, which references all the Multiprotocol Label
Switching (MPLS) Provider Edge (PE) nodes in our topology.
We created the P group, which references all the MPLS Provider (P) nodes in our
topology.
We created the junos group to reference all the Juniper devices in our topology.
We created the iosxr group to reference all the nodes running IOS-XR.

Segmenting and defining groups per vendor or per OS is a best practice when working
with NAPALM since we use these groups to specify the required parameters needed by
NAPALM to identify the vendor of the remotely managed node, and how to establish
network connectivity with this remote node. In the next recipe, we will outline how we will
employ these groups (junos and iosxr), and which parameters we will include in order
for NAPALM to establish a connection to the remotely managed nodes.

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[196]

Connecting and authenticating to network
devices using Ansible
In this recipe, we will outline how to connect to both Juniper and IOS-XR nodes using
Ansible, in order to start interacting with the devices.

Getting ready
In order to follow along with this recipe, an Ansible inventory file should be constructed as
per the previous recipe. Also, IP reachability between the Ansible control machine and all
the devices in the network must be configured.

How to do it…
On the Juniper devices, configure the username and password, as shown in the1.
following code block:

system {
 login {
 user ansible {
 class super-user;
 authentication {
 encrypted-password "1mR940Z9C$ipX9sLKTRDeljQXvWFfJm1"; ##
ansible123
 }
 }
 }
}

On the Cisco IOS-XR devices, configure the username and password, as shown in2.
the following code block:

!
 username ansible
 group root-system
 password 7 14161C180506262E757A60 # ansible123
!

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[197]

Enable the Network Configuration Protocol (NETCONF) on the Juniper devices,3.
as follows:

system {
 services {
 netconf {
 ssh {
 port 830;
 }
 }
 }
}

On the IOS-XR devices, we need to enable Secure Shell (SSH), as well as enable4.
xml-agent, as follows:

!
xml agent tty
iteration off
!
xml agent
!
ssh server v2
ssh server vrf default

On the Ansible machine, create the group_vars directory in the5.
ch6_napalm folder, and create the junos.yml and iosxr.yml files, as shown in
the following code block:

$ cat group_vars/iosxr.yml

 ansible_network_os: junos
 ansible_connection: netconf

 $ cat group_vars/junos.yml

 ansible_network_os: iosxr
 ansible_connection: network_cli

Under the group_vars folder, create the all.yml file with the following login6.
details:

$ cat group_vars/all.yml
ansible_user: ansible
 ansible_ssh_pass: ansible123

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[198]

How it works…
NAPALM uses a specific transport API for each vendor equipment supported by
NAPALM. It uses this API in order to connect to the device, so in our sample topology, we
need NETCONF to be enabled on the Juniper devices. For Cisco IOS-XR devices, we need
to enable SSH, as well as enabling the XML agent on the IOS-XR devices.

The username/password used on the Ansible control machine to authenticate with the
devices must be configured on the remote nodes. We perform all these steps on the devices
in order to make them ready for NAPALM to communicate with them.

Using the legacy xml agent on the IOS-XR devices in production is not
recommended and needs to be evaluated as per the Cisco documentation.
For further details, refer to https:/ / www.cisco. com/c/ en/us/ td/ docs/
routers/ asr9000/ software/ asr9k_ r5-3/ sysman/ command/ reference/ b-
sysman- cr53xasr/ b- sysman- cr53xasr_ chapter_ 01010. html.

On the Ansible machine, we set the ansible_connection parameter per each vendor (
netconf for juniper and network_cli for iosxr), and we specify the
ansible_network_os parameter to designate the vendor OS. All these parameters are
defined under the group_vars hierarchy in junos.yml and iosxr.yml, corresponding to
the groups that we defined in our inventory for grouping the devices on vendor OS basics.
Finally, we specify the username and password via ansible_user and
ansible_ssh_pass in the all.yml file, since we are using the same user to authenticate
to both Juniper and Cisco devices.

To test and validate that, we can communicate with the devices from the Ansible control
machine using the Ansible ping module, as shown in the following code block:

$ ansible all -m ping
mxpe01 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
mxpe02 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
mxp02 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
mxp01 | SUCCESS => {
 "changed": false,

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-3/sysman/command/reference/b-sysman-cr53xasr/b-sysman-cr53xasr_chapter_01010.html

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[199]

 "ping": "pong"
}
xrpe03 | SUCCESS => {
 "changed": false,
 "ping": "pong"
} 

Building the device configuration
NAPALM doesn't provide declarative modules to configure the various system parameters
on the managed devices, such as interfaces' BGP, Quality of Service (QoS), and so on.
However, it provides a common API to push text-based configuration to all the devices, so
it requires the configuration for the devices to be present in text format in order to push the
required configuration. In this recipe, we will create the configuration for all our devices.
This is the configuration that we will push to our devices using NAPALM, in the next
recipe.

Getting ready
As a prerequisite for this recipe, an Ansible inventory file must be present.

How to do it…
Create a roles folder, and inside this folder, create a new role called1.
build_router_config, as follows:

$ mkdir roles && mkdir roles/build_router_config

Use the exact same contents (Jinja2 templates and tasks) for the2.
build_router_config role that we developed for Juniper devices in Chapter
3, Automating Juniper Devices in the Service Providers Using Ansible, to generate the
configuration for the devices. The directory layout should be as shown in the
following code block:

$ tree roles/build_router_config/

roles/build_router_config/
 ├── tasks
 │ ├── build_config_dir.yml
 │ ├── build_device_config.yml

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[200]

 │ └── main.yml
 └── templates
 └── junos
 ├── bgp.j2
 ├── intf.j2
 ├── mgmt.j2
 ├── mpls.j2
 └── ospf.j2

Create a new folder called iosxr under the templates folder and populate it3.
with the Jinja2 templates for the different IOS-XR configuration sections, as
shown in the following code block:

$ tree roles/build_router_config/templates/iosxr/

roles/build_router_config/templates/iosxr/
 ├── bgp.j2
 ├── intf.j2
 ├── mgmt.j2
 ├── mpls.j2
 └── ospf.j2

Update the group_vars/all.yml file with the required data to describe our4.
network topology, as shown in the following code block:

$ cat group_vars/all.yml
tmp_dir: ./tmp
config_dir: ./configs
p2p_ip:
< -- Output Omitted for brevity -->
 xrpe03:
 - {port: GigabitEthernet0/0/0/0, ip: 10.1.1.7 , peer: mxp01,
pport: ge-0/0/2, peer_ip: 10.1.1.6}
 - {port: GigabitEthernet0/0/0/1, ip: 10.1.1.13 , peer: mxp02,
pport: ge-0/0/2, peer_ip: 10.1.1.12}

lo_ip:
 mxp01: 10.100.1.254/32
 mxp02: 10.100.1.253/32
 mxpe01: 10.100.1.1/32
 mxpe02: 10.100.1.2/32
 xrpe03: 10.100.1.3/32

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[201]

Create a specific directory for each host in the host_vars directory, and in each5.
directory, create the bgp.yml file with the following BGP peering content:

$ cat host_vars/xrpe03/bgp.yml
bgp_asn: 65400
bgp_peers:
 - local_as: 65400
 peer: 10.100.1.254
 remote_as: 65400

Create a new playbook called pb_napalm_net_build.yml that utilizes the6.
build_router_config role in order to generate the device configuration, as
shown in the following code block:

$ cat pb_napalm_net_build.yml

- name: " Generate and Deploy Configuration on All Devices"
 hosts: sp_core
 tasks:
 - name: Build Device Configuration
 import_role:
 name: build_router_config
 delegate_to: localhost
 tags: build

How it works…
In this recipe, our main goal is to create the device configuration that we will deploy on the
devices in our sample topology. We are using the same Ansible role that we used to
generate the configuration for Juniper devices in Chapter 3, Automating Juniper Devices in
the Service Providers Using Ansible. The only addition to this role is that we are adding the
required Jinja2 templates for IOS XR.

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[202]

Here is a quick explanation of the steps, as a quick review:

Modeling the network via Ansible variables

We describe the different aspects of our network topology, such as Peer-to-
Peer (P2P) interface, loopback interfaces, and Open Shortest Path First (OSPF)
parameters under different data structures in the group_vars/all.yml file. For
any host-specific data, we use the host_vars directory to populate all
variables/parameters that are specific to a specific node, and, in our case, we use
this approach for BGP data to outline bgp_peers variable for each node. This
provides us with all the required data to populate the Jinja2 templates needed to
generate the final configuration for each device in our sample network.

Building the Jinja2 templates

We place all our Jinja2 templates in the templates folder inside our role, and we
segment our Jinja2 templates per the vendor OS, each in a separate folder. Next,
we create a Jinja2 template for each section of the configuration. The following
code snippet outlines the directory structure for the templates folder:

templates/
 ├── iosxr
 │ ├── bgp.j2
 │ ├── intf.j2
 │ ├── mgmt.j2
 │ ├── mpls.j2
 │ └── ospf.j2
 └── junos
 ├── bgp.j2
 ├── intf.j2
 ├── ospf.j2
 ├── mgmt.j2
 └── mpls.j2

For a detailed explanation of the different Jinja2 templates used in this
recipe and how they use the defined Ansible variables to generate the
final configuration, please refer to Chapter 3 of this book, Automating
Juniper Devices in the Service Providers Using Ansible, since we are using the
exact same network topology and the same data structures for both JunOS
and IOS-XR devices.

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[203]

Running this playbook will generate the configuration for all the devices in our Ansible
inventory in the configs folder, as shown in the following code block:

$ tree configs/
configs/
 ├── mxp01.cfg
 ├── mxp02.cfg
 ├── mxpe01.cfg
 ├── mxpe02.cfg
 └── xrpe03.cfg 

Deploying configuration on network devices
using NAPALM
In this recipe, we will outline how to push configurations on different vendor devices using
Ansible and NAPALM. NAPALM provides a single Ansible module for configuration
management, and this module allows us to use a single common method to push any
configuration on any vendor equipment supported by NAPALM, greatly simplifying
Ansible playbooks.

Getting ready
To follow along with this recipe, you will need to have an Ansible inventory already set up,
with network reachability between the Ansible controller and the network devices
established. The configuration that we will be pushing to the devices is the one we
generated in the previous recipe.

How to do it…
Update the pb_napalm_net_build.yml playbook file, and add the tasks shown1.
in the following code block:

$ cat pb_napalm_net_build.yml

- name: " Play 1: Deploy Config on All JunOS Devices"
 hosts: sp_core
 tasks:

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[204]

< -- Output Omitted for brevity -->

 - name: "P1T5: Deploy Configuration"
 napalm_install_config:
 hostname: "{{ ansible_host }}"
 username: "{{ ansible_user }}"
 password: "{{ ansible_ssh_pass }}"
 dev_os: "{{ ansible_network_os }}"
 config_file: "{{config_dir}}/{{ inventory_hostname }}.cfg"
 commit_changes: "{{commit | default('no')}}"
 replace_config: yes
 tags: deploy, never

How it works…
As previously outlined, NAPALM provides a single Ansible module to push configurations
to the network devices. It requires the configuration to be present in a text file. When it
connects to the network device, it pushes the configuration to the respective device.

Since we are using a single configuration module that can be used across all the vendor OS
devices supported by NAPALM, and since NAPALM uses a different connection API to
manage the device, we need to tell the module the vendor OS for the device. We also need
to provide the other parameters, such as username/password, to log in and authenticate
with the device.

The napalm_install_config module requires the following mandatory parameters in
order to correctly log in to the managed device and push the configuration to it:

hostname: This is the IP address through which we can reach the device. We
supply the value of ansible_host for this parameter.
username/password: This is the username and password to connect to the
device. We need to supply the ansible_user and ansible_ssh_pass
attributes.
dev_os: This parameter provides the vendor OS name that NAPALM requires in
order to choose the correct API and the correct library to communicate with the
device. For this option, we provide the ansible_network_os parameter.
The napalm_install_config module uses the following parameters to manage
the configuration on remote devices:

config_file: This provides the path of the configuration file
containing the device configuration that needs to be pushed to the
managed device.

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[205]

commit_changes: This tells the device whether or not to commit
the configuration. NAPALM provides a consistent method for
configuration commits, even for devices that don't support it by
default (for instance, Cisco IOS devices).
replace_config: This parameter controls how to merge between
the existing configuration on the device and the configuration in
the config_file parameter. In our case, since we are generating
the whole device configuration and all the configuration sections
are managed under Ansible, we replace the entire configuration
with the configuration that we generate. This will cause any
configuration on the device not present in our configuration file to
be removed.

As per the configuration outlined in this recipe, when we run the playbook using the
deploy tag, NAPALM will connect to the device and push the configuration. However, it
will not commit the configuration on the remote device, since we have specified the default
value for commit_changes to be no. In case we need to push and commit the configuration
on the remote device, we can set the value for the commit parameter to yes when running
the playbook, as shown in the following code snippet:

$ ansible-playbook pb_napalm_net_build.yml --tags deploy --e commit=yes

There's more…
The napalm_install_config module provides extra options to control how to manage
the configuration on the remote devices, such as the configuration diff. With this option, we
can collect the differences between the running configuration on the device and the
configuration that we will push via NAPALM. This option can be enabled as follows:

Create a folder called config_diff to store the configuration diff captured by
NAPALM, as shown in the following code block:

$ cat group_vars/all.yml

< -- Output Omitted for brevity -->
config_diff_dir: ./config_diff

$ cat tasks/build_config_dir.yml

- name: "Create Config Diff Directory"
 file: path={{config_diff_dir}} state=directory
 run_once: yes

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[206]

Update the pb_napalm_net_build.yml playbook, as shown in the following
code block:

$ cat pb_napalm_net_build.yml

- name: "Generate and Deploy Configuration on All Devices"
 hosts: sp_core
 tasks:

< -- Output Omitted for brevity -->

 - name: "Deploy Configuration"
 napalm_install_config:
 hostname: "{{ ansible_host }}"
 username: "{{ ansible_user }}"
 password: "{{ ansible_ssh_pass }}"
 dev_os: "{{ ansible_network_os }}"
 config_file: "{{config_dir}}/{{ inventory_hostname }}.cfg"
 diff_file: "{{ config_diff_dir}}/{{ inventory_hostname
}}_diff.txt"
 commit_changes: "{{commit | default('no')}}"
 replace_config: yes
 tags: deploy, never

Next, we create a new folder to house all the configuration diff files that we will generate
for each device, and add the diff_file parameter to the napalm_install_config
module. This will collect the configuration diff for each device and save it to the
config_diff directory for each device.

When we run the playbook again with a modified configuration on the devices, we can see
that the config_diff files for each device are generated, as shown in the following code
block:

$ tree config_diff/
config_diff/
 ├── mxp01_diff.txt
 ├── mxpe01_diff.txt
 ├── mxpe02_diff.txt
 └── xrpe03_diff.txt

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[207]

Collecting device facts with NAPALM
In this recipe, we will outline how to collect the operational state from network devices
using the NAPALM fact-gathering Ansible module. This can be used to validate the
network state across multi-vendor equipment since NAPALM Ansible's fact-gathering
module returns a consistent data structure across all vendor OSes supported by NAPALM.

Getting ready
To follow along with this recipe, it is assumed that an Ansible inventory is already in place
and network reachability between the Ansible controller and the network is already
established. Finally, the network is configured as per the previous recipe.

How to do it…
Create an Ansible playbook named pb_napalm_get_facts.yml with the1.
following content:

$ cat cat pb_napalm_get_facts.yml

- name: " Collect Network Facts using NAPALM"
 hosts: sp_core
 tasks:
 - name: "P1T1: Collect NAPALM Facts"
 napalm_get_facts:
 hostname: "{{ ansible_host }}"
 username: "{{ ansible_user }}"
 password: "{{ ansible_ssh_pass }}"
 dev_os: "{{ ansible_network_os }}"
 filter:
 - bgp_neighbors

Update the playbook with the following tasks to validate the data returned by2.
the NAPALM facts module:

$ cat pb_napalm_get_facts.yml

< -- Output Omitted for brevity -->

- name: Validate All BGP Routers ID is correct
 assert:

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[208]

 that: napalm_bgp_neighbors.global.router_id ==
lo_ip[inventory_hostname].split('/')[0]
 when: napalm_bgp_neighbors

- name: Validate Correct Number of BGP Peers
 assert:
 that: bgp_peers | length ==
napalm_bgp_neighbors.global.peers.keys() | length
 when: bgp_peers is defined

- name: Validate All BGP Sessions Are UP
 assert:
 that: napalm_bgp_neighbors.global.peers[item.peer].is_up ==
true
 loop: "{{ bgp_peers }}"
 when: bgp_peers is defined

How it works…
We use the napalm_get_facts Ansible module to retrieve the operational state from the
network devices. We supply the same parameters (hostname, username/password, and
dev_os) that we used with napalm_install_config to be able to connect to the devices
and collect the required operational state from these devices.

In order to control which information we retrieve using NAPALM, we use the filter
parameter and supply the required information that we need to retrieve. In this example,
we are limiting the data retrieved to bgp_neighbors.

The napalm_get_facts module returns the data retrieved from the nodes as Ansible facts.
This data can be retrieved from the napalm_bgp_neighbors variable, which stores all the
NAPALM BGP facts retrieved from the device.

The following snippet outlines the output from napalm_bgp_neighbors, retrieved from a
Junos OS device:

ok: [mxpe02] => {
 "napalm_bgp_neighbors": {
 "global": {
 "peers": {
 "10.100.1.254": {
 "address_family": {
 "ipv4": {
 "accepted_prefixes": 0,
 "received_prefixes": 0,
 "sent_prefixes": 0

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[209]

 },
 < -- Output Omitted for brevity -->
 },
 "description": "",
 "is_enabled": true,
 "is_up": true,
 "local_as": 65400,
 "remote_as": 65400,
 "remote_id": "10.100.1.254",
 "uptime": 247307
 }
 },
 "router_id": "10.100.1.2"
 }
 }
}

The following snippet outlines the output from napalm_bgp_neighbors, retrieved from
an IOS-XR device:

ok: [xrpe03] => {
 "napalm_bgp_neighbors": {
 "global": {
 "peers": {
 "10.100.1.254": {
 "address_family": {

< -- Output Omitted for brevity -->
 },
 "description": "",
 "is_enabled": false,
 "is_up": true,
 "local_as": 65400,
 "remote_as": 65400,
 "remote_id": "10.100.1.254",
 "uptime": 247330
 }
 },
 "router_id": "10.100.1.3"
 }
 }
}

As we can see, the data returned from NAPALM for the BGP information from different
network vendors is consistent between different network vendors. This simplifies parsing
this data and allows us to run much simpler playbooks to validate the network state.

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[210]

We use the data returned by NAPALM to compare and validate the operational state of the
network against our network design, which we defined using Ansible variables such
as bgp_peers. We use the assert module to validate multiple BGP information, such as
the following:

Correct number of BGP peers
BGP router ID
All BGP sessions are operational

We use the when statement in the different assert modules in scenarios in which we have
a router in our topology that doesn't run BGP (mxp02 is an example). Consequently, we
skip these checks on these nodes.

See also…
The napalm_get_fact module can retrieve a huge range of information from the network
devices based on the vendor equipment supported and the level of facts supported by this
vendor. For example, it supports the retrieval of interfaces, IP addresses, and LLDP peers
for almost all the known networking vendors.

For the complete documentation for the napalm_get_facts module, please check the
following URL:
https://napalm.readthedocs. io/ en/ latest/ integrations/ ansible/ modules/ napalm_
get_facts/index. html.

For complete facts/getters supported by NAPALM and their support matrix against vendor
equipment, please consult the following URL:
https://napalm.readthedocs. io/ en/ latest/ support/ . 

Validating network reachability using
NAPALM
In this recipe, we will outline how to utilize NAPALM and its Ansible modules to validate
network reachability across the network. This validation performs pings from the managed
devices to the destination that we specify, in order to make sure that the forwarding path
across the network is working as expected.

https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_get_facts/index.html
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/
https://napalm.readthedocs.io/en/latest/support/

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[211]

Getting ready
To follow along with this recipe, it is assumed that an Ansible inventory is already in place
and network reachability between the Ansible controller and the network is established.
The network in this recipe is assumed to be configured as per the relevant previous recipe.

How to do it…
Create a new playbook called pb_napalm_ping.yml with the following content:1.

$ cat pb_napalm_ping.yml

- name: " Validation Traffic Forwarding with NAPALM"
 hosts: junos:&pe
 vars:
 rr: 10.100.1.254
 max_delay: 5 # This is 5 msec
 tasks:
 - name: "P1T1: Ping Remote Destination using NAPALM"
 napalm_ping:
 hostname: "{{ ansible_host }}"
 username: "{{ ansible_user }}"
 password: "{{ ansible_ssh_pass }}"
 dev_os: "{{ ansible_network_os }}"
 destination: "{{ rr }}"
 count: 2
 register: rr_ping

Update the playbook with the validation tasks shown in the following code2.
block:

$ cat pb_napalm_ping.yml

< -- Output Omitted for brevity -->
- name: Validate Packet Loss is Zero and No Delay
 assert:
 that:
 - rr_ping.ping_results.keys() | list | first == 'success'
 - rr_ping.ping_results['success'].packet_loss == 0
 - rr_ping.ping_results['success'].rtt_avg < max_delay

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[212]

How it works…
NAPALM provides another Ansible module, napalm_ping, which connects to the remote
managed device and executes pings from the remote managed device toward a destination
that we specify. Using this module, we are able to validate the forwarding path between the
managed devices and the specified destination.

This napalm_ping module does not currently support Cisco IOS-XR devices, which is why
we only select all PE devices that are in the Junos OS group. In our playbook, we use the
junos:&pe pattern in order to do this.

In our example, we create a new playbook and we specify the destination that we want to
ping, along with the maximum delay for our ping packets within the playbook itself, using
the vars parameter. Then, we use the napalm_ping module to connect to the MPLS PE
devices (only Junos OS ones) in our topology to execute ping from all these PE nodes
toward the destination that we specified (in our case, this is the loopback for our route
reflector (RR) router). We store all this data in a variable called rr_ping.

The following snippet shows the output returned from napalm_ping:

"ping_results": {
 "success": {
 "packet_loss": 0,
 "probes_sent": 2,
 "results": [
 {
 "ip_address": "10.100.1.254",
 "rtt": 2.808
 },
 {
 "ip_address": "10.100.1.254",
 "rtt": 1.91
 }
],
 "rtt_avg": 2.359,
 "rtt_max": 2.808,
 "rtt_min": 1.91,
 "rtt_stddev": 0.449
 }
}

Finally, we use the assert module to validate and compare the results returned by
NAPALM against our requirements (ping is successful, no packet loss, and delay less than
max_delay). 

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[213]

Validating and auditing networks with
NAPALM
In this recipe, we will outline how we can validate the operational state of the network by
defining the intended state of the network and letting NAPALM validate that the
actual/operational state of the network matches our intended state. This is useful in
network auditing and compliance reports for our network infrastructure.

Getting ready
To follow along with this recipe, it is assumed that an Ansible inventory is already in place
and network reachability between the Ansible controller and the network is established.
Finally, the network is configured as per the previously outlined recipe.

How to do it…
Create a new folder called napalm_validate and create a YAML file for each1.
device. We will validate its state, as shown in the following code block:

$ cat napalm_validate/mxpe01.yml

- get_interfaces_ip:
 ge-0/0/0.0:
 ipv4:
 10.1.1.3:
 prefix_length: 31
- get_bgp_neighbors:
 global:
 router_id: 10.100.1.1

Create a new pb_napalm_validation.yml playbook with the following2.
content:

$ cat pb_napalm_validation.yml

- name: " Validating Network State via NAPALM"
 hosts: pe
 tasks:
 - name: "P1T1: Validation with NAPALM"

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[214]

 napalm_validate:
 hostname: "{{ ansible_host }}"
 username: "{{ ansible_user }}"
 password: "{{ ansible_ssh_pass }}"
 dev_os: "{{ ansible_network_os }}"
 validation_file: "napalm_validate/{{
inventory_hostname}}.yml"
 ignore_errors: true
 register: net_validate

Update the playbook to create a folder that will store the compliance reports for3.
each device, as shown in the following code block:

$ cat pb_napalm_validation.yml

< -- Output Omitted for brevity -->

- name: Create Compliance Report Folder
 file: path=compliance_folder state=directory

- name: Clean Last Compliance Report
 file: path=compliance_folder/{{inventory_hostname}}.txt
state=absent

- name: Create Compliance Report
 copy:
 content: "{{ net_validate.compliance_report | to_nice_yaml }}"
 dest: "compliance_folder/{{ inventory_hostname }}.txt"

How it works…
NAPALM provides another module for network validation, which is the
napalm_validate module. This module is mainly used to perform auditing and generate
compliance reports for the network infrastructure. The main idea is to declare the intended
state of the network and define it in a YAML document. This YAML file has a specific
format, following the same structure with which the different NAPALM facts are
generated. In this YAML file, we specify the NAPALM facts that we want to retrieve from
the network, along with the network's expected output.

We supply these validation files to the napalm_validate module, and NAPALM will
connect to the devices, retrieve the facts specified in these validation files, and compare the
output retrieved from the network against the network state declared in these validation
files.

Administering a Multi-Vendor Network with NAPALM and Ansible Chapter 6

[215]

Next, NAPALM generates a compliance_report object, which has the result of the
comparison and whether the network complies with these validation files or not. We also
set the ignore_errors parameter in order to continue with the other tasks in this
playbook in case the device doesn't comply, so we can capture this compliance problem in
the compliance report that we will generate.

Finally, we save the output in a separate folder called compliance_folder for each node,
copy the contents of the compliance_report parameter, and format it using
the to_nice_yaml filter.

The code for a correct compliance report generated for a mxpe01 device is shown in the
following snippet:

complies: true
get_bgp_neighbors:
 complies: true
 extra: []
 missing: []
 present:
 global:
 complies: true
 nested: true
get_interfaces_ip:
 complies: true
 extra: []
 missing: []
 present:
 ge-0/0/0.0:
 complies: true
 nested: true
skipped: []

See also…
For further information on validating deployments and the other options available for
napalm_validate, please check the following URLs:

https:// napalm. readthedocs. io/en/ latest/ integrations/ ansible/ modules/
napalm_validate/ index. html

https:// napalm. readthedocs. io/en/ latest/ validate/ index. html

https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/integrations/ansible/modules/napalm_validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html
https://napalm.readthedocs.io/en/latest/validate/index.html

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Building Blocks of Ansible
	Technical requirements
	Installing Ansible
	Getting ready
	How to do it...
	How it works..
	How it works...
	See also...

	Building Ansible's inventory
	Getting ready
	How to do it...
	How it works...

	Using Ansible's variables
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building Ansible's playbook
	Getting ready
	How to do it...
	How it works...

	Using Ansible's conditionals
	Getting ready
	How to do it...
	How it works...
	See also...

	Using Ansible's loops
	Getting ready
	How to do it...
	How it works..
	See also...

	Securing secrets with Ansible Vault
	How to do it...
	How it works..
	There's more...

	Using Jinja2 with Ansible
	Getting ready
	How to do it...
	How it works...
	See also...

	Using Ansible's filters
	How to do it...
	How it works...

	Using Ansible Tags
	How to do it...
	How it works...
	See also...

	Customizing Ansible's settings
	How to do it...
	How it works...
	See also...

	Using Ansible Roles
	How to do it...
	How it works...
	See also

	Chapter 2: Managing Cisco IOS Devices Using Ansible
	Technical requirements
	Building an Ansible network inventory
	Getting ready
	How to do it...
	How it works...

	Connecting to Cisco IOS devices
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring basic system information
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring interfaces on IOS devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring L2 VLANs on IOS devices
	Getting ready
	How to do it...
	How it works...

	Configuring trunk and access interfaces
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring interface IP addresses
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring OSPF on IOS devices
	Getting ready
	How to do it...
	How it works...

	Collecting IOS device facts
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Validating network reachability on IOS devices
	Getting ready
	How to do it...
	How it works...

	Retrieving operational data from IOS devices
	Getting ready
	How to do it...
	How it works...

	Validating network states with pyATS and Ansible
	Getting ready
	How to do it...
	How it works...
	See also...

	Chapter 3: Automating Juniper Devices in the Service Providers Using Ansible
	Technical requirements
	Building the network inventory
	Getting ready
	How to do it...
	How it works...

	Connecting and authenticating to Juniper devices
	Getting ready
	How to do it...
	How it works...
	There's more...

	Enabling NETCONF on Junos OS devices
	Getting ready
	How to do it...
	How it works...

	Configuring generic system options on Juniper devices
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Configuring interfaces on Juniper devices
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring OSPF on Juniper devices
	How to do it...
	How it works...

	Configuring MPLS on Juniper devices
	How to do it...
	How it works...

	Configuring BGP on Juniper devices
	How to do it...
	How it works...

	Deploying configuration on Juniper devices
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Configuring the L3VPN service on Juniper devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Gathering Juniper device facts using Ansible
	Getting ready
	How it works...
	See also...

	Validating network reachability on Juniper devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Retrieving operational data from Juniper devices
	Getting ready
	How to do it...
	How it works...
	There's more...

	Validating the network state using PyEZ operational tables
	Getting ready
	How to do it...
	How it works...
	See also...

	Chapter 4: Building Data Center Networks with Arista and Ansible
	Technical requirements
	Building the Ansible network inventory
	Getting ready
	How to do it...
	How it works...

	Connecting to and authenticating Arista devices from Ansible
	Getting ready
	How to do it...
	How it works...

	Enabling eAPI on Arista devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring generic system options on Arista devices
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring interfaces on Arista devices
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Configuring the underlay BGP on Arista devices
	Getting ready
	How to do it...
	How it works...

	Configuring the overlay BGP EVPN on Arista devices
	Getting ready
	How to do it...
	How it works...

	Deploying the configuration on Arista devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring VLANs on Arista devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring VXLANs tunnels on Arista devices
	Getting ready
	How to do it...
	How it works...

	Gathering Arista device facts
	Getting ready
	How to do it...
	How it works...
	See also...

	Retrieving operational data from Arista devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Chapter 5: Automating Application Delivery with F5 LTM and Ansible
	Technical requirements
	Building an Ansible network inventory
	Getting ready
	How to do it...
	How it works...

	Connecting and authenticating to BIG-IP devices
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring generic system options on BIG-IP devices
	Getting ready
	How to do it...
	How it works...

	Configuring interfaces and trunks on BIG-IP devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring VLANs and self-IPs on BIG-IP devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring static routes on BIG-IP devices
	Getting ready
	How to do it...
	How it works...

	Deploying nodes on BIG-IP devices
	Getting ready
	How to do it...
	How it works...

	Configuring a load balancing pool on BIG-IP devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Configuring virtual servers on BIG-IP devices
	Getting ready
	How to do it...
	How it works...
	See also...

	Retrieving operational data from BIG-IP nodes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Chapter 6: Administering a Multi-Vendor Network with NAPALM and Ansible
	Technical requirements
	Installing NAPALM and integrating with Ansible
	Getting ready
	How to do it...
	How it works…

	Building an Ansible network inventory
	How to do it…
	How it works…

	Connecting and authenticating to network devices using Ansible
	Getting ready
	How to do it…
	How it works…

	Building the device configuration
	Getting ready
	How to do it…
	How it works…

	Deploying configuration on network devices using NAPALM
	Getting ready
	How to do it…
	How it works…
	There's more…

	Collecting device facts with NAPALM
	Getting ready
	How to do it…
	How it works…
	See also…

	Validating network reachability using NAPALM
	Getting ready
	How to do it…
	How it works…

	Validating and auditing networks with NAPALM
	Getting ready
	How to do it…
	How it works…
	See also…

	Chapter 7: Deploying and Operating AWS Networking Resources with Ansible
	Technical requirements
	Installing the AWS SDK
	Getting ready
	How to do it...
	How it works...

	Building an Ansible inventory
	How to do it...
	How it works...

	Authenticating to your AWS account
	Getting ready
	How to do it...
	How it works...

	Deploying VPCs using Ansible
	Getting ready
	How to do it...
	How it works...
	See also

	Deploying subnets using Ansible
	Getting ready
	How to do it...
	How it works...
	See also

	Deploying IGWs using Ansible
	Getting ready
	How to do it...
	How it works...
	See also

	Controlling routing within a VPC using Ansible
	Getting ready
	How to do it...
	How it works...
	See also

	Deploying network ACLs using Ansible
	Getting ready
	How to do it...
	How it works...
	See also

	Deployment validation using Ansible
	Getting ready
	How to do it...
	How it works...
	See also

	Decommissioning resources on AWS using Ansible
	Getting ready
	How to do it...
	How it works...

	Chapter 8: Deploying and Operating Azure Networking Resources with Ansible
	Technical requirements
	Installing the Azure SDK
	Getting ready
	How to do it…
	How it works…
	See also…

	Building an Ansible inventory
	How to do it…
	How it works…

	Authenticating to your Azure account
	Getting ready
	How to do it…
	How it works…
	See also…

	Creating a resource group
	Getting ready
	How to do it…
	How it works...
	See also...

	Creating virtual networks
	Getting ready
	How to do it...
	How it works...
	See also...

	Creating subnets
	Getting ready
	How to do it...
	How it works...
	See also...

	Building user-defined routes
	Getting ready
	How to do it...
	How it works...
	See also...

	Deploying network security groups
	Getting ready
	How to do it...
	How it works...
	See also...

	Deployment validation using Ansible
	Getting ready
	How to do it...
	How it works...
	See also...

	Decommissioning Azure resources using Ansible
	Getting ready
	How to do it...
	How it works...

	Chapter 9: Deploying and Operating GCP Networking Resources with Ansible
	Technical requirements
	Installing the GCP SDK
	Getting ready
	How to do it...
	How it works...
	See also...

	Building an Ansible inventory
	How to do it...
	How it works...

	Authenticating to your GCP account
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Creating GCP VPC networks
	Getting ready
	How to do it...
	How it works...
	There is more...
	See also...

	Creating subnets
	Getting ready
	How to do it...
	How it works...
	See also...

	Deploying firewall rules in GCP
	Getting ready
	How to do it...
	How it works...
	See also...

	Deploying VMs in GCP
	Getting ready
	How to do it...
	How it works...
	See also...

	Adjusting routing within a VPC
	Getting ready
	How to do it...
	How it works..
	See also...

	Validating GCP deployment using Ansible
	Getting ready
	How to do it...
	How it works...
	See also...

	Decommissioning GCP resources using Ansible
	Getting ready
	How to do it...
	How it works...

	Chapter 10: Network Validation with Batfish and Ansible
	Technical requirements
	Installing Batfish
	Getting ready
	How to do it...
	How it works…
	See also...

	Integrating Batfish with Ansible
	Getting ready
	How to do it…
	How it works…
	See also...

	Generating the network configuration
	Getting ready
	How to do it...
	How it works...

	Creating a network snapshot for Batfish
	Getting ready
	How to do it...
	How it works…
	See also...

	Initializing the network snapshot with Ansible
	Getting ready
	How to do it...
	How it works...

	Collecting network facts from Batfish
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Validating traffic forwarding with Batfish
	Getting ready
	How to do it...
	How it works...

	Validating ACLs with Batfish
	Getting ready
	How to do it…
	How it works…

	Chapter 11: Building a Network Inventory with Ansible and NetBox
	Technical requirements
	Installing NetBox
	Getting ready
	How to do it…
	How it works…
	There's more
	See also...

	Integrating NetBox with Ansible
	Getting ready
	How to do it…
	How it works…
	See also...

	Populating sites in NetBox
	Getting ready
	How to do it…
	How it works…
	See also...

	Populating devices in NetBox
	Getting ready
	How to do it...
	How it works…
	See also...

	Populating interfaces in NetBox
	Getting ready
	How to do it…
	How it works…
	See also...

	Populating IP addresses in NetBox
	Getting ready
	How to do it…
	How it works…
	See also...

	Populating IP prefixes in NetBox
	Getting ready
	How to do it…
	How it works…
	See also...

	Using NetBox as a dynamic inventory source for Ansible
	Getting ready
	How to do it…
	How it works…
	There's more
	See also...

	Generating a configuration using NetBox
	Getting ready
	How to do it…
	How it works…

	Chapter 12: Simplifying Automation with AWX and Ansible
	Technical requirements
	Installing AWX
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also...

	Managing users and teams on AWX
	Getting ready
	How to do it…
	How it works…
	See also...

	Creating a network inventory on AWX
	Getting ready
	How to do it…
	How it works…

	Managing network credentials on AWX
	Getting ready
	How to do it…
	How it works…
	See also...

	Creating projects on AWX
	Getting ready
	How to do it…
	How it works…
	See also...

	Creating templates on AWX
	Getting ready
	How to do it…
	How it works…
	See also...

	Creating workflow templates on AWX
	Getting ready
	How to do it…
	How it works…
	See also...

	Running automation tasks using the AWX API
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also...

	Chapter 13: Advanced Techniques and Best Practices for Ansible
	Technical requirements
	Installing Ansible in a virtual environment
	Getting ready
	How to do it...
	How it works...

	Validating YAML and Ansible playbooks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Calculating the execution time for Ansible playbooks
	How to do it...
	How it works...
	See also...

	Validating user input using Ansible
	How to do it...
	How it works...

	Running Ansible in check mode
	How to do it...
	How it works...
	There's more...
	See also...

	Controlling parallelism and rolling updates in Ansible
	How to do it...
	How it works...
	See also...

	Configuring fact caching in Ansible
	How to do it...
	How it works...
	There's more...
	See also...

	Creating custom Python filters for Ansible
	How to do it...
	How it works...
	There's more...

	Other Books You May Enjoy
	Index

