
VINCENT SESTO I ONUR VILMAZ

SATHSARA SARATHCHANDRA

ARIC RENZO I ENGV FOUDA

THE

WORKSHOP

LEARN HOW TO USE DOCKER CONTAINERS EFFECTIVELY

TO SPEED UP THE DEVELOPMENT PROCESS

Pacl<t>

Vincent Sesto, Onur Yılmaz, Sathsara Sarathchandra, Aric Renzo,

and Engy Fouda

Learn how to use Docker containers effectively

to speed up the development process

The

DOCKEr
Workshop

The Docker Workshop
Copyright © 2020 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Vincent Sesto, Onur Yılmaz, Sathsara Sarathchandra, Aric Renzo,
and Engy Fouda

Reviewers: Ankit Mishra, Fiodar Sazanavets, Craig Newton, and Earl Waud

Managing Editors: Prachi Jain and Clara Joseph

Acquisitions Editors: Royluis Rodrigues, Sneha Shinde, Archie Vankar,
Karan Wadekar, and Alicia Wooding

Production Editor: Shantanu Zagade

Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: October 2020

Production reference: 2250221

ISBN: 978-1-83898-344-4

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Overview

In this chapter, you will work with Docker Swarm from the command line to
manage running nodes, deploy services, and perform rolling updates on
your services when needed. You will learn how to troubleshoot your Swarm
nodes and deploy entire stacks using your existing Docker Compose
files, as well as learning how you can use Swarm to manage your service
configuration and secrets. The final part of this chapter will provide you
with the knowledge you need to get started using Swarmpit, which is a
web-based interface for running and managing your Docker Swarm
services and clusters.

Docker Swarm

9

346 | Docker Swarm

Introduction
So far in this book, we've run our Docker containers and controlled the way they run
from the command line using direct commands such as docker run to launch
containers. Our next step is to automate things with the use of Docker Compose,
which allows an entire environment of containers to work together. Docker Swarm
is the next step in managing our Docker environments. Docker Swarm allows you
to orchestrate how your containers can scale and work together to provide a more
reliable service to your end-users.

Docker Swarm allows you to set up multiple servers running Docker Engine and
organize them as a cluster. Docker Swarm can then run commands to coordinate
your containers across the cluster instead of just one server. Swarm will configure
your cluster to make sure your services are balanced across your cluster, ensuring
higher reliability for your services. It will also decide for you which service will be
assigned to which server depending on the load across your cluster. Docker Swarm is
a step up in terms of managing the way you run your containers and is provided by
default with Docker.

Docker Swarm allows you to configure redundancy and failover for your services
while scaling the number of containers up and down depending on the load. You
can perform rolling updates across your services to reduce the chances of an outage,
meaning new versions of your container applications can be applied to the cluster
without these changes causing an outage for your customers. It will allow you to
orchestrate your container workloads through the swarm instead of manually
managing containers one by one.

Swarm also introduces some new terms and concepts when it comes to managing
your environment, defined in the following list:

• Swarm: Multiple Docker hosts run in swarm mode to act as managers and
workers. Having multiple nodes and workers is not compulsory as part of
Docker Swarm. You can run your services as a single node swarm, which is
the way we will be working in this chapter, even though a production cluster
may have multiple nodes available to make sure your services are as
fault-tolerant as possible.

• Task: The manager distributes the tasks to run inside the nodes. A task consists
of a Docker container and the commands that will run inside the container.

• Service: This defines the tasks to execute on the manager or worker. The
difference between services and a standalone container is that you can modify a
service's configuration without restarting the service.

How Docker Swarm Works? | 347

• Node: An individual system running Docker Engine and participating in the
swarm is a node. More than one node can run on a single physical computer
at one time through the use of virtualization.

Note

We will only be using one node on our system.

• Manager: The manager dispatches tasks to worker nodes. The manager carries
out orchestration and cluster management. It also hosts services on the cluster.

• Leader node: The manager node in the swarm elects a single primary leader
node to conduct the orchestration tasks across the cluster.

• Worker nodes: Worker nodes execute the tasks assigned by the manager node.

Now that you are familiar with the key terms, let's explore how Docker Swarm works
in the following section.

How Docker Swarm Works?
The swarm manager nodes handle cluster management, and the main objective is
to maintain a consistent state of both the swarm and the services running on it. This
includes ensuring that the cluster is running at all times and that services are run and
scheduled when needed.

As there are multiple managers running at the same time, this means there is fault
tolerance, especially in a production environment. That is, if one manager is shut
down, the cluster will still have another manager to coordinate services on the
cluster. The sole purpose of worker nodes is to run Docker containers. They require
at least one manager to function, but worker nodes can be promoted to being a
manager, if needed.

Services permit you to deploy an application image to a Docker swarm. These are the
containers to run and the commands to execute inside the running container. Service
options are provided when you create a service, where you can specify the ports the
application can publish on, CPU and memory restrictions, the rolling update policy,
and the number of replicas of an image that can run.

348 | Docker Swarm

The desired state is set for the service, and the manager's responsibility is to monitor
the service. If the service is not in the desired state, it will correct any issues. If a task
fails, the orchestrator simply removes the container related to the failed task and
replaces it.

Now that you know how Docker Swarm works, the next section will get you started
with the basic commands and guide you through a hands-on exercise to further
demonstrate its operation.

Working with Docker Swarm
The previous section of this chapter has shown you that Swarm uses similar concepts
to what you have already learned so far in this book. You'll see that the use of Swarm
takes the Docker commands you are so familiar with and expands them to allow you
to create your clusters, manage services, and configure your nodes. Docker Swarm
takes a lot of the hard work out of running your services, as Swarm will work out
where it is best to place your services, take care of scheduling your containers, and
decide which node it is best to place it on. For example, if there are already three
services running on one node and only one service on your second node, Swarm
will know that it should distribute the services evenly across your system.

By default, Docker Swarm is disabled, so to run Docker in swarm mode, you will need
to either join an existing cluster or create a new swarm. To create a new swarm and
activate it in your system, you use the swarm init command shown here:

docker swarm init

This will create a new single-node swarm cluster on the node you are currently
working on. Your system will become the manager node for the swarm you have
just created. When you run the init command, you'll also be provided with the
details on the commands needed to allow other nodes to join your swarm.

For a node to join a swarm, it requires a secret token, and the token for a worker
node is different from that of a manager node. The manager tokens need to be
strongly protected so you don't allow your swarm cluster to become vulnerable. Once
you have the token, IP address, and port of the swarm that your node needs to join,
you run a command similar to the one shown here, using the --token option:

docker swarm join --token <swarm_token> <ip_address>:<port>

Working with Docker Swarm | 349

If for some reason you need to change the tokens (possibly for security reasons), you
can run the join-token --rotate option to generate new tokens as shown here:

docker swarm join-token --rotate

From the swarm manager node, the following node ls command will allow you to
see the nodes available in your swarm and provide details on the status of the node,
whether it is a manager or a worker, and whether there are any issues with the node:

docker node ls

Once your swarm is available and ready to start hosting services, you can create a
service with the service create command, providing the name of the service,
the container image, and the commands needed for the service to run correctly—for
example, if you need to expose ports or mount volumes:

docker service create --name <service> <image> <command>

Changes can then be made to the service configuration, or you can change the way
the service is running by using the update command, as shown here:

docker service update <service> <changes>

Finally, if you need to remove or stop the service from running, you simply use the
service remove command:

docker service remove <service>

We've provided a lot of theory on Docker Swarm here, and we hope it has provided
you with a clear understanding of how it works and how you can use Swarm to
launch your services and scale to provide a stable service when there is high demand.
The following exercise will take what we have learned so far and show you how to
implement it in your projects.

Note

Please use touch command to create files and vim command to work on
the file using vim editor.

350 | Docker Swarm

Exercise 9.01: Running Services with Docker Swarm

This exercise is designed to help you become familiar with using the Docker Swarm
commands to manage your services and containers. In the exercise, you will activate
a cluster, set up a new service, test scaling up the service, and then remove the
service from the cluster using Docker Swarm:

1. Although Swarm is included by default with your Docker installation, you still
need to activate it on your system. Use the docker swarm init command
to put your local system into Docker Swarm mode:

docker swarm init

Your output might be a little different from what you see here, but as you can
see, once the swarm is created, the output provides details on how you can add
extra nodes to your cluster with the docker swarm join command:

Swarm initialized: current node (j2qxrpf0a1yhvcax6n2ajux69) is

now a manager.

To add a worker to this swarm, run the following command:

 docker swarm join --token SWMTKN-1-2w0fk5g2e18118zygvmvdxartd43n0
ky6cmywy0ucxj8j7net1-5v1xvrt7
1ag6ss7trl480e1k7 192.168.65.3:2377

To add a manager to this swarm, run 'docker swarm join-token

manager' and follow the instructions.

2. Now list the nodes you have in your cluster, using the node ls command:

docker node ls

You should have one node you are currently working on and its status should
be Ready:

ID HOSTNAME STATUS AVAILABILITY

 MANAGER STATUS

j2qx.. * docker-desktop Ready Active

 Leader

For clarity here, we have removed the Engine Version column from
our output.

Working with Docker Swarm | 351

3. From your node, check the status of your swarm using the docker info
command, providing further details of your Swarm cluster and how the node
is interacting with it. It will also give you extra information if you need to
troubleshoot issues later:

docker info

As you can see from the output, you get all the specific details of your Docker
Swarm cluster, including NodeID and ClusterID. If you don't have Swarm set
up correctly on your system, all you will see is an output of Swarm: inactive:

…

Swarm: active

 NodeID: j2qxrpf0a1yhvcax6n2ajux69

 Is Manager: true

 ClusterID: pyejfsj9avjn595voauu9pqjv

 Managers: 1

 Nodes: 1

 Default Address Pool: 10.0.0.0/8

 SubnetSize: 24

 Data Path Port: 4789

 Orchestration:

 Task History Retention Limit: 5

 Raft:

 Snapshot Interval: 10000

 Number of Old Snapshots to Retain: 0

 Heartbeat Tick: 1

 Election Tick: 10

 Dispatcher:

 Heartbeat Period: 5 seconds

 CA Configuration:

 Expiry Duration: 3 months

 Force Rotate: 0

4. Start your first service on your newly created swarm. Create a service named
web using the docker service create command and the --replicas
option to set two instances of the container running:

docker service create --replicas 2 -p 80:80 --name web nginx

352 | Docker Swarm

You will see that the two instances are successfully created:

uws28u6yny7ltvutq38166alf

overall progress: 2 out of 2 tasks

1/2: running [==>]

2/2: running [==>]

verify: Service converged

5. Similar to the docker ps command, you can see a listing of the services
running on your cluster with the docker service ls command. Execute the
docker service ls command to view the details of the web service created
in the step 4:

docker service ls

The command will return the details of the web service:

ID NAME MODE REPLICAS IMAGE

 PORTS

uws28u6yny7l web replicated 2/2 nginx:latest

 *:80->80/tcp

6. To view the containers currently running on your swarm, use the docker
service ps command with the name of your service, web:

docker service ps web

As you can see, you now have a list of the containers running our service:

ID NAME IMAGE NODE DESIRED

 CURRENT STATE

viyz web.1 nginx docker-desktop Running

 Running about a minute ago

mr4u web.2 nginx docker-desktop Running

 Running about a minute ago

Working with Docker Swarm | 353

7. The service will only run the default Welcome to nginx! page. Use the
node IP address to view the page. In this instance, it will be your localhost
IP, 0.0.0.0:

Figure 9.1: The nginx service from Docker Swarm

8. Scaling the number of containers running your service is easy with Docker
Swarm. Simply provide the scale option with the number of total containers
you want to have running, and the swarm will do the work for you. Perform the
command shown here to scale your running web containers to 3:

docker service scale web=3

The following output shows that the web service is now scaled to 3 containers:

web scaled to 3

overall progress: 3 out of 3 tasks

1/3: running [==>]

2/3: running [==>]

3/3: running [==>]

verify: Service converged

9. As in step 5 of this exercise, run the service ls command:

docker service ls

You should now see three web services running on your cluster:

ID NAME MODE REPLICAS IMAGE

 PORTS

uws28u6yny7l web replicated 3/3 nginx:latest

 *:80->80/tcp

354 | Docker Swarm

10. The following change is more suited to a cluster with more than one node, but
you can run it anyway to see what happens. Run the following node update
command to set the availability to drain and use your node ID number or
name. This will remove all the containers running on this node as it is no longer
available on your cluster. You will be provided with the node ID as an output:

docker node update --availability drain j2qxrpf0a1yhvcax6n2ajux69

11. If you were to run the docker service ps web command, you would see
each of your web services shut down while trying to start up new web services.
As you only have one node running, the services would be sitting in a pending
state with no suitable node error. Run the docker service ps
web command:

docker service ps web

The output has been reduced to only show the second, third, fifth, and sixth
columns, but you can see that the service is unable to start. The CURRENT
STATE column has both Pending and Shutdown states:

NAME IMAGE CURRENT STATE

 ERROR

web.1 nginx:latest Pending 2 minutes ago

 "no suitable node (1 node…"

_ web.1 nginx:latest Shutdown 2 minutes ago

web.2 nginx:latest Pending 2 minutes ago

 "no suitable node (1 node…"

_ web.2 nginx:latest Shutdown 2 minutes ago

web.3 nginx:latest Pending 2 minutes ago

 "no suitable node (1 node…"

_ web.3 nginx:latest Shutdown 2 minutes ago

12. Run the docker node ls command:

docker node ls

This shows that your node is ready but in an AVAILABILITY state of Drain:

ID HOSTNAME STATUS AVAILABILITY

 MANAGER STATUS

j2qx.. * docker-desktop Ready Drain

 Leader

Working with Docker Swarm | 355

13. Stop the service from running. Use the service rm command, followed by the
service name (in this instance, web) to stop the service from running:

docker service rm web

The only output shown will be the name of the service you are removing:

web

14. You don't want to leave your node in a Drain state as you want to keep using
it through the rest of the exercises. To get the node out of a Drain state and
prepare to start managing swarm, set the availability to active with the
following command using your node ID:

docker node update --availability active j2qxrpf0a1yhvcax6n2ajux69

The command will return the hash value of the node, which will be different for
every user.

15. Run the node ls command:

docker node ls

It will now show the availability of our node as Active and ready your services
to run again:

ID HOSTNAME STATUS AVAILABILITY

 MANAGER STATUS

j2qx.. * docker-desktop Ready Active

 Leader

16. Use the docker node inspect command with the --format option and
search for the ManagerStatus.Reachability status to ensure that your
node is reachable:

docker node inspect j2qxrpf0a1yhvcax6n2ajux69 --format "{{
.ManagerStatus.Reachability }}"

If the node is available and can be contacted, you should see a result
of reachable:

reachable

17. Search for Status.State to ensure that the node is ready:

docker node inspect j2qxrpf0a1yhvcax6n2ajux69 --format "{{ .Status.
State }}"

356 | Docker Swarm

This should produce ready:

ready

This exercise should have given you a good indication of how Docker Swarm is able
to simplify your work, especially when you start to think about deploying your work
into a production environment. We used the Docker Hub NGINX image, but we could
easily use any service we have created as a Docker image that is available to our
Swarm node.

The next section will take a quick sidestep to discuss some actions you need to take if
you find yourself in trouble with your Swarm nodes.

Troubleshooting Swarm Nodes
For the work we will be doing in this chapter, we will be using only a single-node
swarm to host our services. Docker Swarm has been providing production-level
environments for years now. However, this doesn't mean there will never be any
issues with your environment, especially when you start hosting services in a multi-
node swarm. If you need to troubleshoot any of the nodes running on your cluster,
there are a number of steps you can take to make sure you are correcting any issues
they may have:

• Reboot: Usually the easiest option is to either reboot or restart the node system
to see whether this resolves the issues you may be experiencing.

• Demote the node: If the node is a manager on your cluster, try demoting the
node using the node demote command:

docker node demote <node_id>

If this node is the leader, it will allow one of the other manager nodes to
become the leader of the swarm and hopefully resolve any issues you may
be experiencing.

• Remove the node from the cluster: Using the node rm command, you can
remove the node from the cluster:

docker node rm <node_id>

This can also be an issue if the node is not communicating correctly with the
rest of the swarm, and you may need to use the --force option to remove
the node from the cluster:

docker node rm --force <node_id>

Troubleshooting Swarm Nodes | 357

• Join back to the cluster: If the preceding has worked correctly, you may be
able to successfully join the node back onto the cluster with the swarm join
command. Remember to use the token that you used before when joining
the swarm:

docker node swarm join --token <token> <swarm_ip>:<port>

Note

If your services are still having issues running on Docker Swarm
and you have corrected all issues with the Swarm nodes, Swarm is
simply using Docker to run and deploy your services onto the nodes
in your environment. Any issues may come down to basic troubleshooting
with the container image you are trying to run on Swarm and not the Swarm
environment itself.

A cluster of managers is known as a quorum, and a majority of the managers need
to agree on the proposed updates to the swarm, such as adding new nodes or scaling
back the number of containers. As we saw in the previous section, you can monitor
swarm managers' or nodes' health by running the docker node ls command,
using the ID of the manager to then use the docker node inspect command
as shown here:

docker node inspect <node_id>

Note

One final note on your Swarm node is to remember to deploy services to
your nodes that have been created as Docker images. The container image
itself needs to be available for download from a central Docker Registry,
which is available for all the nodes to download from and not simply built
on one of the Swarm nodes.

Although we've taken a quick detour to discuss troubleshooting your Swarm nodes,
this should not be a major aspect of running services on Swarm. The next part of
this chapter moves a step further by showing you how you can use new or existing
docker-compose.yml files to automate the deployment of your services into
Docker Swarm.

358 | Docker Swarm

Deploying Swarm Deployments from Docker Compose
Deploying a complete environment is easy with Docker Swarm; you'll see that most
of the work is already done if you have been running your containers using Docker
Compose. This means you won't need to manually start services one by one in
Swarm as we did in the previous section of this chapter.

If you already have a docker-compose.yml file available to bring up your services
and applications, there is a good chance it will simply work without issues. Swarm
will use the stack deploy command to deploy all your services across the Swarm
nodes. All you need to do is provide the compose file and assign the stack a name:

docker stack deploy --compose-file <compose_file> <swarm_name>

The stack creation is quick and seamless, but a lot is happening in the background to
make sure all services are running correctly—including setting up networks between
all the services and starting up each of the services in the order needed. Running the
stack ps command with the swarm_name you provided at creation time will show
you whether all the services in your deployment are running:

docker stack ps <swarm_name>

And once you are finished using the services on your swarm or you need to clean
up everything that is deployed, you simply use the stack rm command, providing
the swarm_name you provided when you created the stack deployment. This will
automatically stop and clean up all the services running in your swarm and ready
them for you to reassign to other services:

docker stack rm <swarm_name>

Now, since we know the commands used to deploy, run, and manage our Swarm
stack, we can look at how to perform rolling updates for our services.

Swarm Service Rolling Updates
Swarm also has the ability to perform rolling updates on the services that are
running. This means if you have a new update to an application running on your
Swarm, you can create a new Docker image and update your service, and Swarm
will make sure the new image is up and running successfully before it brings down
the old version of your container image.

Swarm Service Rolling Updates | 359

Performing a rolling update on a service you have running in Swarm is simply a
matter of running the service update command. In the following command,
you can see both the new container image name and the service you want to
update. Swarm will handle the rest:

docker service update --image <image_name:tag> <service_name>

You'll get the chance very shortly to use all the commands we've explained here.
In the following example, you will create a small test application using Django and
PostgreSQL. The web application you will be setting up is very basic, so there is no
real need to have a prior understanding of the Django web framework. Simply follow
along and we will explain what is happening as we move through the exercise.

Exercise 9.02: Deploying Your Swarm from Docker Compose

In the following exercise, you will use docker-compose.yml to create a basic web
application using a PostgreSQL database and the Django web framework. You will
then use this compose file to deploy your services into your swarm without the
need to run your services manually:

1. First, create a directory to run your application in. Call the directory swarm and
move into the directory using the cd command:

mkdir swarm; cd swarm

2. Create a Dockerfile for your Django application in the new directory
and, using your text editor, enter the details in the following code block. The
Dockerfile will use the default Python3 image, set environment variables
relevant for Django, install relevant applications, and copy the code into the
current directory of the container image:

FROM python:3

ENV PYTHONUNBUFFERED 1

RUN mkdir /application

WORKDIR /application

COPY requirements.txt /application/

RUN pip install -r requirements.txt

COPY . /application/

360 | Docker Swarm

3. Create the requirements.txt file that your Dockerfile uses in the
previous step to install all the relevant applications needed for it to run. Add
in the following two lines with your text editor to install the version of Django
and Psycopg2 required by the Django application to communicate with the
PostgreSQL database:

1 Django>=2.0,<3.0

2 psycopg2>=2.7,<3.0

4. Create a docker-compose.yml file using your text editor. Add in the first
service for your database, as shown in the following code. The db service will use
the latest postgres image from Docker Hub, exposing port 5432, and also set
the environment variable for POSTGRES_PASSWORD:

1 version: '3.3'

2

3 services:

4 db:

5 image: postgres

6 ports:

7 - 5432:5432

8 environment:

9 - POSTGRES_PASSWORD=docker

5. The second half of the docker-compose.yml file builds and deploys your
web application. Build your Dockerfile in line 10, expose port 8000 to access
it from your web browser, and set the database password to match your db
service. You will also notice a Python command in line 13 that will start the
development web server for the Django application:

10 web:

11 build: .

12 image: swarm_web:latest

13 command: python manage.py runserver 0.0.0.0:8000

14 volumes:

15 - .:/application

16 ports:

17 - 8000:8000

18 environment:

19 - PGPASSWORD=docker

20 depends_on:

21 - db

Swarm Service Rolling Updates | 361

6. Run the following command to pull and build the db and web services in
your docker-compose.yml. The command will then run django-admin
startproject, which will create your basic Django project, named
chapter_nine:

docker-compose run web django-admin startproject chapter_nine .

The command should return the following output, in which you see the
containers being pulled and built:

…

Status: Downloaded newer image for postgres:latest

Creating swarm_db_1 ... done

Building web

…

Successfully built 41ff06e17fe2

Successfully tagged swarm_web:latest

7. The startproject command you ran in the previous step should have
created some extra files and directories in your swarm directory. Run the ls
command to list all the files and directories in the swarm directory:

ls -l

You previously created the Dockerfile, docker-compose.yml file, and
requirements.txt file, but now the build of the container has added the
chapter_nine Django directory and the manage.py file:

-rw-r--r-- 1 user staff 175 3 Mar 13:45 Dockerfile

drwxr-xr-x 6 user staff 192 3 Mar 13:48 chapter_nine

-rw-r--r-- 1 user staff 304 3 Mar 13:46 docker-compose.yml

-rwxr-xr-x 1 user staff 634 3 Mar 13:48 manage.py

-rw-r--r-- 1 user staff 36 3 Mar 13:46 requirements.txt

8. To get your basic application running, you need to make some minor changes
to the Django project settings. Open the chapter_nine/settings.py file
with your text editor and locate the entry that starts with DATABASES. This
controls how Django will connect to your database, and by default, Django is
set up to work with an SQLite database. The DATABASES entry should look like
the following:

76 DATABASES = {

77 'default': {

78 'ENGINE': 'django.db.backends.sqlite3',

362 | Docker Swarm

79 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

80 }

81 }

You have a PostgreSQL database to deploy to Swarm as a part of our installation,
so edit the DATABASES settings with the following eight lines so that Django will
access this PostgreSQL database instead:

settings.py

76 DATABASES = {
77 'default': {
78 'ENGINE': 'django.db.backends.postgresql',
79 'NAME': 'postgres',
80 'USER': 'postgres',
81 'PASSWORD': 'docker',
82 'HOST': 'db',
83 'PORT': 5432,
84 }
85 }

The complete code for this step can be found at https://packt.live/2DWP9ov.

9. At line 28 of our settings.py file, we also need to add the IP address we
are going to use as the ALLOWED_HOSTS configuration. We will configure our
application to be accessible from the IP address 0.0.0.0. Make the relevant
changes to the settings file at line 28 so that it now looks like the code below:

 27

 28 ALLOWED_HOSTS = ["0.0.0.0"]

10. Now test to see whether your basic project is working as expected. From
the command line, deploy your services to Swarm with the stack deploy
command. In the following command, specify the docker-compose.yml file
to use with the --compose-file option and name the stack test_swarm:

docker stack deploy --compose-file docker-compose.yml test_swarm

The command should set up the swarm network, the database, and the
web services:

Creating network test_swarm_default

Creating service test_swarm_db

Creating service test_swarm_web

https://packt.live/2DWP9ov

Swarm Service Rolling Updates | 363

11. Run the docker service ls command, and you should be able to see the
status for both the test_swarm_db and test_swarm_web services:

docker service ls

As you can see in the following output, they are both showing a REPLICAS value
of 1/1:

ID NAME MODE REPLICAS IMAGE

 PORTS

dsr. test_swarm_db replicated 1/1 postgres

kq3. test_swarm_web replicated 1/1 swarm_web:latest

 *:8000.

12. If your work has been successful, test it by opening a web browser and going
to http://0.0.0.0:8000. If everything has worked, you should see the
following Django test page displayed on your web browser:

Figure 9.2: Deploying a service to Swarm with Docker Compose file

13. To view the stacks currently running on your system, use the
stack ls command:

docker stack ls

You should see the following output, which shows two services running under
the name of test_swarm:

NAME SERVICES ORCHESTRATOR

test_swarm 2 Swarm

364 | Docker Swarm

14. Use the stack ps command with the name of your swarm to view the services
running and check whether there are any issues:

docker stack ps test_swarm

The ID, DESIRED STATE, and ERROR columns are not included in the
following reduced output. Also, it can be seen that the test_swarm_web.1
and test_swarm_db.1 services are running:

NAME IMAGE NODE

 CURRENT STATE

test_swarm_web.1 swarm_web:latest docker-desktop

 Running

test_swarm_db.1 postgres:latest docker-desktop

 Running

15. Just as you were able to start up all your services at once with the deploy
command, you can stop the services all at once, as well. Use the stack rm
command with the name of your swarm to stop all of your services from
running and remove the stack:

docker stack rm test_swarm

Note that all the services are stopped in the following output:

Removing service test_swarm_db

Removing service test_swarm_web

Removing network test_swarm_default

16. You still want to perform some extra work on your swarm as part of this
exercise, but first, make a minor change to the compose file. Open the
docker-compose.yml file with your text editor and add the following lines to
your web service to now have two replica web services created when deployed
to the swarm:

22 deploy:

23 replicas: 2

The complete docker-compose.yml file should look like the following:

version: '3.3'

services:

 db:

 image: postgres

Swarm Service Rolling Updates | 365

 ports:

- 5432:5432

 environment:

- POSTGRES_PASSWORD=docker

 web:

 build: .

 image: swarm_web:latest

 command: python manage.py runserver 0.0.0.0:8000

 volumes:

- .:/application

 ports:

- 8000:8000

 environment:

- PGPASSWORD=docker

 deploy:

 replicas: 2

 depends_on:

- db

17. Deploy the swarm again with the changes you have made using the same
command, as you did earlier in step 8. Even if the test_swarm stack was
still running, it would note and make the relevant changes to the services:

docker stack deploy --compose-file docker-compose.yml test_swarm

18. Run the docker ps command as follows:

docker ps | awk '{print $1 "\t" $2 }'

Only the first two columns are printed in the output shown here. You can now
see that there are two swarm_web services running:

CONTAINER ID

2f6eb92414e6 swarm_web:latest

e9241c352e12 swarm_web:latest

d5e6ece8a9bf postgres:latest

19. To deploy a new version of the swarm_web service to your swarm without
stopping the services, first, build a new Docker image of our web service. Don't
make any changes to the image, but this time tag the image with the patch1 tag
to demonstrate a change while the service is running:

docker build . -t swarm_web:patch1

366 | Docker Swarm

20. To perform a rolling update, use the service update command, providing
details of the image you wish to update to and the service name. Run the
following command, which uses the image you have just created with the
patch1 tag, on the test_swarm_web service:

docker service update --image swarm_web:patch1 test_swarm_web

Swarm will manage the update to make sure one of the services is always
running before the update is applied to the rest of the images:

image swarm_web:patch1 could not be accessed on a registry

to record its digest. Each node will access

swarm_web:patch1 independently, possibly leading to different

nodes running different versions of the image.

test_swarm_web

overall progress: 2 out of 2 tasks

1/2: running [===>]

2/2: running [===>]

verify: Service converged

Note

You'll notice the output shows the image was not available on a repository.
As we only have one node running our swarm, the update will use the
image built on the node. In a real-world scenario, we would need to push
this image to a central repository that all our nodes have access to so they
can pull it.

21. Run the docker ps command given here, which pipes its output to an awk
command to only print the first two columns of CONTAINER and ID:

docker ps | awk '{print $1 "\t" $2 }'

The command will return the output such as the following:

CONTAINER ID

ef4107b35e09 swarm_web:patch1

d3b03d8219dd swarm_web:patch1

d5e6ece8a9bf postgres:latest

Managing Secrets and Configurations with Docker Swarm | 367

22. What if you wanted to control the way the rolling updates occur? Run the
following command to perform a new rolling update to your test_swarm_web
services. Revert the changes you made to deploy the image with the latest
tag, but this time, make sure there is a 30-second delay in performing the
update as this will give your web service extra time to start up before the
second update is run:

docker service update --update-delay 30s --image swarm_web:latest
test_swarm_web

23. Run the docker ps command again:

docker ps | awk '{print $1 "\t" $2 }'

Note that the containers are now running the swarm_web:latest image
again after you have performed the rolling update:

CONTAINER ID

414e62f6eb92 swarm_web:latest

352e12e9241c swarm_web:latest

d5e6ece8a9bf postgres:latest

By now, you should see the benefit of using a swarm, especially when we start
to scale out our applications using Docker Compose. In this exercise, we have
demonstrated how to easily deploy and manage a group of services onto your
swarm using Docker Compose and upgrade services with rolling updates.

The next section of this chapter will expand your knowledge further to show how
you can use Swarm to manage your configurations and secret values used within
your environment.

Managing Secrets and Configurations with Docker Swarm
So far in this chapter, we have observed Docker Swarm's proficiency at orchestrating
our services and applications. It also provides functionality to allow us to define
configurations within our environment and then use these values. Why do we
need this functionality, though?

Firstly, the way we have been storing details such as our secrets has not been very
secure, especially when we are typing them in plain text in our docker-compose.
yml file or including them as part of our built Docker image. For our secrets, Swarm
allows us to store encrypted values that are then used by our services.

368 | Docker Swarm

Secondly, by using these features, we can start to move away from setting up
configurations in our Dockerfile. This means we can create and build our
application as a container image. Then, we can run our application on any
environment, be it a development system on a laptop or a test environment.
We can also run the application on a production environment, where we assign
it with a separate configuration or secrets value to use in that environment.

Creating a Swarm config is simple, especially if you already have an existing
file to use. The following code shows how we can create a new config using the
config create command by providing our config_name and the name of our
configuration_file:

docker config create <config_name> <configuration_file>

This command creates a config stored as part of the swarm and is available to
all the nodes in your cluster. To view the available configs on your system and the
swarm, run the ls option with the config command:

docker config ls

You can also view the details in the configuration using the config inspect
command. Make sure you are using the --pretty option since the output is
presented as a long JSON output that would be almost unreadable without it:

docker config inspect --pretty <config_name>

Using secrets within Swarm provides a secure way to create and store sensitive
information in our environments, such as usernames and passwords, in an
encrypted state so it can then be used by our services.

To create a secret that is only holding a single value, such as a username or password,
we can simply create the secret from the command line, where we pipe the secret
value into the secret create command. The following sample command provides
an example of how to do this. Remember to name the secret when you create it:

echo "<secret_password>" | docker secret create <secret_name> –

You can make a secret from a file. For example, say you would like to set up a
certificates file as a secret. The following command shows how to do this using the
secret create command by providing the name of the secret and the name of
the file you need to create the secret from:

docker secret create <secret_name> <secret_file>

Managing Secrets and Configurations with Docker Swarm | 369

Once created, your secret will be available on all the nodes you have running
on your swarm. Just as you were able to view your config, you can use the
secret ls command to see a listing of all the available secrets in your swarm:

docker secret ls

We can see that Swarm provides us with flexible options to implement configurations
and secrets in our orchestration, instead of needing to have it set up as part of our
Docker images.

The following exercise will demonstrate how to use both configurations and secrets in
your current Docker Swarm environment.

Exercise 9.03: Implementing Configurations and Secrets in Your Swarm

In this exercise, you will expand your Docker Swarm environment further. You
will add a service to your environment that will help NGINX to route the requests
through the proxy, before moving into your web service. You will set this up using
traditional methods but then use the config and secret functions as part of your
environment to observe their operations within Swarm and help users deploy and
configure services more efficiently:

1. Currently, the web service is using the Django development web server via the
runserver command to provide web requests. NGINX will not be able to route
traffic requests through to this development server, and instead, you will need
to install the gunicorn application onto our Django web service for traffic to
be routed via NGINX. Start by opening your requirements.txt file with your
text editor and add the application as in the highlighted third line:

Django>=2.0,<3.0

psycopg2>=2.7,<3.0

gunicorn==19.9.0

Note

Gunicorn is short for Green Unicorn and is used as a Web Service
Gateway Interface (WSGI) for Python applications. Gunicorn is widely
used for production environments as it is seen to be one of the most stable
WSGI applications available.

370 | Docker Swarm

2. To run Gunicorn as part of your web application, adjust your
docker-compose.yml file. Open the docker-compose.yml file with
your text editor and change line 13 to run the gunicorn application, instead
of the Django manage.py runserver command. The following gunicorn
command runs the chapter_nine Django project via its WSGI service and
binds to IP address and port 0.0.0.0:8000:

12 image: swarm_web:latest

13 command: gunicorn chapter_nine.wsgi:application
--bind 0.0.0.0:8000

14 volumes:

3. Rebuild your web service to make sure the Gunicorn application is installed
on the container and available to run. Run the docker-compose
build command:

docker-compose build

4. Gunicorn can also run without the need of the NGINX proxy, so test the changes
you have made by running the stack deploy command again. If you already
have your services deployed, don't worry, you can still run this command again.
It will simply make the relevant changes to your swarm and match the changes
in your docker-compose.yml:

docker stack deploy --compose-file docker-compose.yml test_swarm

The command will return the following output:

Ignoring unsupported options: build

Creating network test_swarm_default

Creating service test_swarm_web

Creating service test_swarm_db

5. To ensure the changes have taken effect, make sure you open your web browser
and verify that the Django test page is still being provided by your web service
before moving on to the next step. As per your changes, the page should still be
displayed at http://0.0.0.0:8000.

6. To start your implementation of NGINX, open the docker-compose.yml
file again and change lines 16 and 17 to expose port 8000 from the original
ports command:

10 web:

11 build: .

12 image: swarm_web:latest

Managing Secrets and Configurations with Docker Swarm | 371

13 command: gunicorn chapter_nine.wsgi:application
--bind 0.0.0.0:8000

14 volumes:

15 - .:/application

16 ports:

17 - 8000:8000

18 environment:

19 - PGPASSWORD=docker

20 deploy:

21 replicas: 2

22 depends_on:

23 - db

7. Keeping the docker-compose.yml file open, add your nginx service at the
end of the compose file. All of the information here should be familiar to you by
now. Line 25 provides the location of a new NGINX directory, the Dockerfile
you will create shortly, and the name of the image to be used when the service is
deployed. Lines 27 and 28 expose port 1337 to port 80 and lines 29 and 30 show
that NGINX needs to depend on the web service to run:

24 nginx:

25 build: ./nginx

26 image: swarm_nginx:latest

27 ports:

28 - 1337:80

29 depends_on:

30 - web

8. Now, set up the NGINX Dockerfile and configurations for the service. Start by
creating a directory called nginx, as in the following command:

mkdir nginx

9. Create a new Dockerfile in the nginx directory, open the file with your
text editor, and add in the details shown here. The Dockerfile is created
from the latest nginx image available on Docker Hub. It removes the default
configuration nginx file in line 3 and then adds a new configuration that you
need to set up shortly:

FROM nginx

RUN rm /etc/nginx/conf.d/default.conf

COPY nginx.conf /etc/nginx/conf.d

372 | Docker Swarm

10. Create the nginx.conf file that the Dockerfile will use to create your new
image. Create a new file called nginx.conf in the nginx directory and use
your text editor to add the following configuration details:

upstream chapter_nine {

 server web:8000;

}

server {

 listen 80;

 location / {

proxy_pass http://chapter_nine;

proxy_set_header X-Forwarded-For
$proxy_add_x_forwarded_for;

proxy_set_header Host $host;

proxy_redirect off;

 }

}

If you're unfamiliar with NGINX configurations, the preceding details are simply
looking for requests to the web service and will route requests through to the
chapter_nine Django application.

11. With all the details now in place, build your new image for the NGINX service
now set up in your docker-compose.yml file. Run the following command to
build the image:

docker-compose build

12. Run the stack deploy command again:

docker stack deploy --compose-file docker-compose.yml test_swarm

This time, you will notice that your output shows that the test_swarm_nginx
service has been created and should be running:

Creating network test_swarm_default

Creating service test_swarm_db

Creating service test_swarm_web

Creating service test_swarm_nginx

Managing Secrets and Configurations with Docker Swarm | 373

13. Verify that all the services are running as part of your swarm with the
stack ps command:

docker stack ps test_swarm

The resulting output has been reduced to show only four of the eight columns.
You can see that the test_swarm_nginx service is now running:

NAME IMAGE NODE

 DESIRED STATE

test_swarm_nginx.1 swarm_nginx:latest docker-desktop

 Running

test_swarm_web.1 swarm_web:latest docker-desktop

 Running

test_swarm_db.1 postgres:latest docker-desktop

 Running

test_swarm_web.2 swarm_web:latest docker-desktop

 Running

14. To prove that requests are routing through the NGINX proxy, use port 1337
instead of port 8000. Make sure that a web page is still being provided from
your web browser by using the new URL of http://0.0.0.0:1337.

15. This has been a great addition to the services running on Swarm but is not
using the correct configuration management features. You already have an
NGINX configuration created previously in this exercise. Create a Swarm
configuration by using the config create command with the name of the
new configuration and the file you are going to create the configuration from.
Run the following command to create the new configuration from your
nginx/nginx.conf file:

docker config create nginx_config nginx/nginx.conf

The output from the command will provide you with the created
configuration ID:

u125x6f6lhv1x6u0aemlt5w2i

16. Swarm also gives you a way to list all the configurations created as part of your
Swarm, using the config ls command. Make sure the new nginx_config
file has been created in the previous step and run the following command:

docker config ls

374 | Docker Swarm

nginx_config has been created in the following output:

ID NAME CREATED UPDATED

u125x6f6… nginx_config 19 seconds ago 19 seconds ago

17. View the full details of the configuration you have created using the
docker config inspect command. Run the following command
with the --pretty option to make sure the configuration output is in a
readable form:

docker config inspect --pretty nginx_config

The output should look similar to what you see here, showing details of the
NGINX configuration you have just created:

ID: u125x6f6lhv1x6u0aemlt5w2i

Name: nginx_config

Created at: 2020-03-04 19:55:52.168746807 +0000 utc

Updated at: 2020-03-04 19:55:52.168746807 +0000 utc

Data:

upstream chapter_nine {

 server web:8000;

}

server {

 listen 80;

 location / {

proxy_pass http://chapter_nine;

proxy_set_header X-Forwarded-For
$proxy_add_x_forwarded_for;

proxy_set_header Host $host;

proxy_redirect off;

 }

}

Managing Secrets and Configurations with Docker Swarm | 375

18. As you have now set up the configuration in Swarm, make sure the configuration
is no longer built into the container image. Instead, it will be provided when the
Swarm is deployed. Open the Dockerfile in the nginx directory and remove
the fourth line of the Dockerfile. It should now look similar to the details
given here:

FROM nginx:1.17.4-alpine

RUN rm /etc/nginx/conf.d/default.conf

Note

Remember that the change we are making here will make sure that we don't
need to build a new NGINX image every time the configuration changes.
This means we can use the same image and deploy it to a development
swarm or a production swarm. All we would do is change the configuration
to make the environment. We do need to create the image that can use the
config we have created and stored in Swarm, though.

19. The previous step in this exercise made a change to the nginx Dockerfile,
so now rebuild the image to make sure it is up to date:

docker-compose build

20. Open the docker-compose.yml file with your text editor to update the
compose file so that our nginx service will now use the newly created Swarm
config. At the bottom of the nginx service, add in the configuration details
with the source name of the nginx_cof configuration you created earlier. Be
sure to add it to the running nginx service so it can be used by the container.
Then, set up a separate configuration for the file. Even though you have created
it manually in the previous steps, your swarm needs to know about it when it is
deployed. Add the following into your docker-compose.yml:

25 nginx:

26 build: ./nginx

27 image: swarm_nginx:latest

28 ports:

29 - 1337:80

30 depends_on:

31 - web

32 configs:

376 | Docker Swarm

33 - source: nginx_conf

34 target: /etc/nginx/conf.d/nginx.conf

35

36 configs:

37 nginx_conf:

38 file: nginx/nginx.conf

21. Deploy your swarm again:

docker stack deploy --compose-file docker-compose.yml test_swarm

In the following output, you should now see an extra line showing Creating
config test_swarm_nginx_conf:

Creating network test_swarm_default

Creating config test_swarm_nginx_conf

Creating service test_swarm_db

Creating service test_swarm_web

Creating service test_swarm_nginx

22. There is still more you can do to take advantage of Swarm, and one extra feature
not used yet is the secrets function. Just as you created a configuration earlier in
this exercise, you can create a secret with a similar command. The command
shown here first uses echo to output the password you want as your secret
value, and then, using the secret create command, it uses this output to
create the secret named pg_password. Run the following command to name
your new secret pg_password:

echo "docker" | docker secret create pg_password –

The command will output the ID of the secret created:

4i1cwxst1j9qoh2e6uq5fjb8c

23. View the secrets in your swarm using the secret ls command. Run this
command now:

docker secret ls

You can see that your secret has been created successfully with the name of
pg_password:

ID NAME CREATED

 UPDATED

4i1cwxst1j9qoh2e6uq5fjb8c pg_password 51 seconds ago

 51 seconds ago

Managing Secrets and Configurations with Docker Swarm | 377

24. Now, make the relevant changes to your docker-compose.yml file.
Previously, you simply entered the password you wanted for your postgres
user. As you can see in the following code, here, you will point the environment
variable to the secret you created earlier as /run/secrets/pg_password.
This means it will search through the available secrets in your swarm and assign
the secret stored in pg_password. You also need to refer to the secret in the
db service to allow it access. Open the file with your text editor and make the
following changes to the file:

4 db:

5 image: postgres

6 ports:

7 - 5432:5432

8 environment:

9 - POSTGRES_PASSWORD=/run/secrets/pg_password

10 secrets:

11 - pg_password

25. The web service uses the same secret to access the PostgreSQL database. Move
into the web service section of the docker-compose.yml and change line 21
to resemble the following, as it will now use the secret you have created:

20 environment:

21 - PGPASSWORD=/run/secrets/pg_password

22 deploy:

26. Finally, just as you have done with your configuration, define the secret at the
end of docker-compose.yml. Add in the following lines at the end of your
compose file:

41 secrets:

42 pg_password:

43 external: true

378 | Docker Swarm

27. Before deploying your changes, you have made a lot of changes to the compose
file, so your docker-compose.yml file should look similar to what is shown
in the following code block. You have three services running with the db, web,
and nginx services set up, and we now have one config instance and one
secret instance:

docker-compose.yml

version: '3.3'

services:
 db:
 image: postgres
 ports:

- 5432:5432
 environment:

- POSTGRES_PASSWORD=/run/secrets/pg_password
 secrets:

- pg_password
 web:
 build: .
 image: swarm_web:latest
 command: gunicorn chapter_nine.wsgi:application --bind
 0.0.0.0:8000
 volumes:

- .:/application
 ports:

- 8000:8000

The complete code for this step can be found at https://packt.live/3miUJD8.

Note

There are a few changes to our service, and if there are any issues in
deploying the changes to Swarm, it may be worth deleting the services
and then re-deploying to make sure all the changes take effect correctly.

This is the final run of your Swarm deployment for this exercise:

docker stack deploy --compose-file docker-compose.yml test_swarm

28. Run the deployment and make sure the services are running and
deployed successfully:

Creating network test_swarm_default

Creating config test_swarm_nginx_conf

Creating service test_swarm_db

Creating service test_swarm_web

Creating service test_swarm_nginx

https://packt.live/3miUJD8

Managing Swarm with Swarmpit | 379

In this exercise, you have practiced using Swarm to deploy a complete set of services
using your docker-compose.yml file and have them running in a matter of
minutes. This part of the chapter has also demonstrated some extra functionality
of Swarm using config and secret instances to help us reduce the amount of
work needed to move services to different environments. Now that you know how
to manage Swarm from the command line, you can further explore Swarm cluster
management in the following section using a web interface with Swarmpit.

Managing Swarm with Swarmpit
The command line provides an efficient and useful way for users to control their
Swarm. This can get a little confusing for some users if your services and nodes
multiply as need increases. One way to help with managing and monitoring your
Swarm is by using a web interface such as the one provided by Swarmpit to help
you administer your different environments.

As you'll see shortly, Swarmpit provides an easy-to-use web interface that allows
you to manage most aspects of your Docker Swarm instances, including the stacks,
secrets, services, volumes networks, and configurations.

Note

This chapter will only touch on the use of Swarmpit, but if you would like
more information on the application, the following site should provide you
with further details: https://swarmpit.io.

Swarmpit is a simple-to-use installation Docker image that, when run on your
system, creates its swarm of services deployed in your environment to run the
management and web interface. Once installed, the web interface is accessible
from http://0.0.0.0:888.

To run the installer on your system to get Swarm running, execute the following
docker run command. With this, you name the container swampit-installer
and mount the container volume on /var/run/docker.sock so it can manage
other containers on our system, using the swarmpit/install:1.8 image:

docker run -it --rm --name swarmpit-installer --volume /var/run/
docker.sock:/var/run/docker.sock swarmpit/install:1.8

https://swarmpit.io

380 | Docker Swarm

The installer will set up a swarm with a database, an agent, a web application,
and the network to link it all together. It will also guide you through setting up an
administrative user to log on to the interface for the first time. Once you log in to
the web application, the interface is intuitive and easy to navigate.

The following exercise will show you how to install and run Swarmpit on your running
system and start to manage your installed services.

Exercise 9.04: Installing Swarmpit and Managing Your Stacks

In this exercise, you will install and run Swarmpit, briefly explore the web interface,
and begin managing your services from your web browser:

1. It's not completely necessary to do so, but if you have stopped your
test_swarm stack from running, start it up again. This will provide
you with some extra services to monitor from Swarmpit:

docker stack deploy --compose-file docker-compose.yml test_swarm

Note

If you are worried that there will be too many services running on your
system at once, feel free to skip this test_swarm stack restart.
The exercise can be performed as follows on the Swarmpit stack
that is created as part of the installation process.

2. Run the following docker run command:

docker run -it --rm --name swarmpit-installer --volume /var/run/
docker.sock:/var/run/docker.sock swarmpit/install:1.8

It pulls the install:1.8 image from the swarmpit repository and then runs
through the process of setting up your environment details, allowing the user to
make changes to the stack name, ports, administrator username, and password.
It then creates the relevant services needed to run the applications:

_____ ____ _ _ __ _ __ ___ _ __ (_) |_

/ __\ \ /\ / / _` | '__| '_ ` _ \| '_ \| | __|

__ \\ V V / (_| | | | | | | | | |_) | | |_

|___/ _/_/ __,_|_| |_| |_| |_| .__/|_|__|

|_|

Welcome to Swarmpit

Version: 1.8

Managing Swarm with Swarmpit | 381

Branch: 1.8

…

Application setup

Enter stack name [swarmpit]:

Enter application port [888]:

Enter database volume driver [local]:

Enter admin username [admin]:

Enter admin password (min 8 characters long): ******

DONE.

Application deployment

Creating network swarmpit_net

Creating service swarmpit_influxdb

Creating service swarmpit_agent

Creating service swarmpit_app

Creating service swarmpit_db

DONE.

3. On the command line, run the stack ls command to ensure that you have the
Swarmpit swarm deployed to your node:

docker stack ls

The following output confirms that Swarmpit is deployed to our node:

NAME SERVICES ORCHESTRATOR

swarmpit 4 Swarm

test_swarm 3 Swarm

4. Use the service ls command to verify that the services needed by Swarmpit
are running:

docker service ls | grep swarmpit

For clarity, the output shown here only displays the first four columns.
The output also shows that the REPLICAS value for each service is 1/1:

ID NAME MODE REPLICAS

vi2qbwq5y9c6 swarmpit_agent global 1/1

4tpomyfw93wy swarmpit_app replicated 1/1

nuxi5egfa3my swarmpit_db replicated 1/1

do77ey8wz49a swarmpit_influxdb replicated 1/1

382 | Docker Swarm

It's time to log in to the Swarmpit web interface. Open your web browser and
use http://0.0.0.0:888 to open the Swarmpit login page and enter the
admin username and password you set during the installation process:

Figure 9.3: The Swarmpit login screen

5. Once you log in, you're presented with the Swarmpit welcome screen, showing
your dashboard of all your services running on the node, as well as details of the
resources being used on the node. The left of the screen provides a menu of all
the different aspects of the Swarm stack you can monitor and manage, including
the stacks themselves, Services, Tasks, Networks, Nodes, Volumes,
Secrets, Configs, and Users. Click on the Stacks option in the left-hand
menu and select the test_swarm stack:

Managing Swarm with Swarmpit | 383

Figure 9.4: The Swarmpit welcome dashboard

6. You should be presented with a screen similar to the following. The size of the
screen has been reduced for clarity, but as you can see, it provides all the details
of the interacting components of the stack—including the services available and
the secrets and configs being used. If you click on the menu next to the stack
name, as shown here, you can edit the stack. Click Edit Stack now:

Figure 9.5: Managing your swarm with Swarmpit

384 | Docker Swarm

7. Editing the stack brings up a page where you can make changes directly to the
stack as if you were making changes to docker-compose.yml. Move down to
the file, find the replicas entry for the web service, and change it to 3 from 2:

Figure 9.6: Editing your swarm with Swarmpit

8. Click on the Deploy button at the bottom of the screen. This will deploy the
changes to your test_swarm stack into the environment and return you to the
test_swarm stack screen, where you should now see 3/3 replicas of the web
service running:

Managing Swarm with Swarmpit | 385

Figure 9.7: Increased number of web services in Swarmpit

9. Notice that most of the options in Swarmpit are linked. On the test_swarm
stack page, if you click on the web service from the services panel, you will
open the Service page for the test_swarm_web service. If you click the
menu, you should see the following page:

Figure 9.8: Managing services with Swarmpit

10. Select Rollback Service from the menu, and you will see the number of
replicas of the test_swarm_web service roll back to two replicas.

386 | Docker Swarm

11. Finally, return to the Stacks menu and select the test_swarm again. With
the test_swarm stack open, you have the option to delete the stack by clicking
on the trash can icon toward the top of the screen. Confirm that you would like
to delete the stack, and this will bring test_swarm down again and it will no
longer be running on your node:

Figure 9.9: Deleting a web service in Swarmpit

Note

Note that Swarmpit will allow you to delete the swarmpit stack. You will
see an error, but when you try to reload the page, it will simply not come up
again as all the services will have been stopped from running.

Although this has been only a quick introduction to Swarmpit, using your prior
knowledge from this chapter, the interface will allow you to intuitively deploy and
make changes to your services and stacks. Almost anything that you can do from the
command line, you can also do from the Swarmpit web interface. This brings us to
the end of this exercise and the end of the chapter. The activities in the next section
of this chapter are designed to help expand your knowledge further.

Managing Swarm with Swarmpit | 387

Activity 9.01: Deploying the Panoramic Trekking App to a Single-Node Docker

Swarm

You are required to use Docker Swarm to deploy web and database services in the
Panoramic Trekking App. You will gather configurations to create a compose file for
the application and deploy them to a single node Swarm using a docker-compose.
yml file.

The steps you will need to take to complete this activity are as follows:

1. Gather all the applications and build the Docker images needed for the services
of your swarm.

2. Create a docker-compose.yml file that will allow the services to be deployed
to Docker Swarm.

3. Create any supporting images needed for the services to use once deployed.

4. Deploy your services onto Swarm and verify that all services are able to
run successfully.

Your running services should look similar to the output shown here:

ID NAME MODE REPLICAS

 IMAGE

k6kh… activity_swarm_db replicated 1/1

 postgres:latest

copa… activity_swarm_web replicated 1/1

 activity_web:latest

Note

The solution for this activity can be found via this link.

Continue with the next activity as this will work to solidify some of the information
you have already learned in this chapter.

388 | Docker Swarm

Activity 9.02: Performing an Update to the App While the Swarm Is Running

In this activity, you need to make a minor change to the Panoramic Trekking App that
will allow you to build a new image and deploy the image to the running Swarm. In
this activity, you will perform a rolling update to deploy these changes to your
Swarm cluster.

The steps you'll need to complete this activity are as follows:

1. If you do not have the Swarm from Activity 9.01, Deploying the Panoramic Trekking
App to a Single Node Docker Swarm still running, deploy the swarm again.

2. Make a minor change to the code in the Panoramic Trekking App—something
small that can be tested to verify that you have made a change in your
environment. The change you are making is not important, so it can be
something as basic as a configuration change. The main focus of this
activity is on performing the rolling update to the service.

3. Build a new image to be deployed into the running environment.

4. Perform an update to the environment and verify that the changes
were successful.

Note

The solution for this activity can be found via this link.

Summary | 389

Summary
This chapter has done a lot of work in moving our Docker environments from
manually starting single-image services to a more production-ready and complete
environment with Docker Swarm. We started this chapter with an in-depth discussion
of Docker Swarm and how you can manage your services and nodes from the
command line, providing a list of commands and their use, and later implementing
them as part of a new environment running a test Django web application.

We then expanded this application further with an NGINX proxy and utilized Swarm
functionality to store configuration and secrets data so they no longer need to be
included as part of our Docker image and can instead be included in the Swarm we
are deploying. We then showed you how to manage your swarm using your web
browser with Swarmpit, providing a rundown of the work we previously did on the
command line and making a lot of these changes from a web browser. Swarm is not
the only way you can orchestrate your environments when using Docker.

In the next chapter, we will introduce Kubernetes, which is another orchestration
tool used to manage Docker environments and applications. Here, you will see how
you can use Kubernetes as part of your projects to help reduce the time you are
managing services and improve the updating of your applications.

	Cover
	FM
	Copyright
	Chapter 9: Docker Swarm
	Introduction
	How Docker Swarm Works?
	Working with Docker Swarm
	Exercise 9.01: Running Services with Docker Swarm

	Troubleshooting Swarm Nodes
	Deploying Swarm Deployments from Docker Compose
	Swarm Service Rolling Updates
	Exercise 9.02: Deploying Your Swarm from Docker Compose

	Managing Secrets and Configurations with Docker Swarm
	Exercise 9.03: Implementing Configurations and Secrets in Your Swarm

	Managing Swarm with Swarmpit
	Exercise 9.04: Installing Swarmpit and Managing Your Stacks
	Activity 9.01: Deploying the Panoramic Trekking App to a Single-Node Docker Swarm
	Activity 9.02: Performing an Update to the App While the Swarm Is Running

	Summary

