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4
Observability Tools

Operating systems have historically provided many tools for observing system soft-
ware and hardware components. To the newcomer, the wide range of available
tools suggested that everything—or at least everything important—could be
observed. In reality, there were many gaps, and systems performance experts
became skilled in the art of inference and interpretation: figuring out activity from
indirect tools and statistics.

For example, network packets could be examined individually (sniffing), but
disk I/O could not (at least, not remotely easily). Conversely, disk utilization (per-
cent busy) was easily observable from operating system tools, but network inter-
face utilization was not. 

With the addition of tracing frameworks, especially dynamic tracing, every-
thing can now be observed, and virtually any activity can be observed directly. This
has had a profound effect on systems performance, making it possible to create
hundreds of new observability tools (the potential number is unlimited).

This chapter describes the types of operating system observability tools, includ-
ing key examples, and the frameworks upon which they are built. The focus here is
the frameworks, including /proc, kstat, /sys, DTrace, and SystemTap. Many more
tools that use these frameworks are introduced in later chapters, including Linux
Performance Events (LPE) in Chapter 6, CPUs.
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4.1 Tool Types

Performance observability tools can be categorized as providing system-wide or per-
process observability, and most are based on either counters or tracing. These attri-
butes are shown in Figure 4.1, along with tool examples.

Some tools fit in more than one quadrant; for example, top(1) also has a
system-wide summary, and DTrace also has per-process capabilities.

There are also performance tools that are based on profiling. These observe
activity by taking a series of snapshots either system-wide or per process.

The following sections summarize tools that use counters, tracing, and profiling
as well as those that perform monitoring.

4.1.1 Counters

Kernels maintain various statistics, called counters, for counting events. They are
usually implemented as unsigned integers that are incremented when events
occur. For example, there are counters for the number of network packets received,
disk I/O issued, and system calls performed.

Counters are considered “free” to use since they are enabled by default and
maintained continually by the kernel. The only additional cost when using them is
the act of reading their values from user-land (which should be negligible). The fol-
lowing example tools read these system-wide or per process.

Figure 4-1 Observability tool types
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System-Wide

These tools examine system-wide activity in the context of system software or
hardware resources, using kernel counters. Examples are

� vmstat: virtual and physical memory statistics, system-wide 

� mpstat: per-CPU usage

� iostat: per-disk I/O usage, reported from the block device interface 

� netstat: network interface statistics, TCP/IP stack statistics, and some per-
connection statistics

� sar: various statistics; can also archive them for historical reporting 

These tools are typically viewable by all users on the system (non-root). Their sta-
tistics are also commonly graphed by monitoring software.

Many follow a usage convention where they accept an optional interval and
count, for example, vmstat(8) with an interval of one second and an output count
of three:

The first line of output is the summary-since-boot, which shows averages for the
entire time the system has been up. The subsequent lines are the one-second inter-
val summaries, showing current activity. At least, this is the intent: this Linux ver-
sion mixes summary-since-boot and current values for the first line.

Per-Process

These tools are process-oriented and use counters that the kernel maintains for
each process. Examples are

� ps: process status, shows various process statistics, including memory and 
CPU usage. 

� top: shows top processes, sorted by one of the statistics such as CPU usage. 
Solaris-based systems provide prstat(1M) for this purpose.

� pmap: lists process memory segments with usage statistics. 

These tools typically read statistics from the /proc file system.

$ vmstat 1 3
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r  b   swpd   free   buff cache   si   so    bi   bo   in   cs us sy id wa
 4  0      0 34455620 111396 13438564   0   0   0    5    1    2  0  0 100  0
 4  0      0 34458684 111396 13438588   0   0    0   0 2223 15198 13 11 76  0
 4  0      0 34456468 111396 13438588   0   0    0   0 1940 15142 15 11 74  0



118 Chapter 4 � Observability Tools

4.1.2 Tracing

Tracing collects per-event data for analysis. Tracing frameworks are not typically
enabled by default, since tracing incurs CPU overhead to capture the data and can
require significant storage to save it. These overheads can slow the target of trac-
ing and need to be accounted for when interpreting measured times.

Logging, including the system log, can be thought of as low-frequency tracing
that is enabled by default. Logging includes per-event data, although usually only
for infrequent events such as errors and warnings.

The following are examples of system-wide and per-process tracing tools.

System-Wide

These tracing tools examine system-wide activity in the context of system soft-
ware or hardware resources, using kernel tracing facilities. Examples are

� tcpdump: network packet tracing (uses libpcap) 

� snoop: network packet tracing for Solaris-based systems

� blktrace: block I/O tracing (Linux)

� iosnoop: block I/O tracing (DTrace-based)

� execsnoop: tracing of new processes (DTrace-based)

� dtruss: system-wide buffered syscall tracing (DTrace-based)

� DTrace: tracing of kernel internals and the usage of any resource (not just 
network or block I/O), using static and dynamic tracing

� SystemTap: tracing of kernel internals and the usage of any resource, using 
static and dynamic tracing

� perf: Linux Performance Events, tracing static and dynamic probes 

As DTrace and SystemTap are programming environments, system-wide tracing
tools can be built upon them, including the few included in this list. More exam-
ples are provided throughout this book.

Per-Process

These tracing tools are process-oriented, as are the operating system frameworks
on which they are based. Examples are

� strace: system call tracing for Linux-based systems 

� truss: system call tracing for Solaris-based systems 
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� gdb: a source-level debugger, commonly used on Linux-based systems 

� mdb: an extensible debugger for Solaris-based systems 

The debuggers can examine per-event data, but they must do so by stopping and
starting the execution of the target.

Tools such as DTrace, SystemTap, and perf all support a mode of execution
where they can examine a single process only, although they are better described
as system-wide tools.

4.1.3 Profiling

Profiling characterizes the target by collecting a set of samples or snapshots of its
behavior. CPU usage is a common example, where samples are taken of the pro-
gram counter or stack trace to characterize the code paths that are consuming
CPU cycles. These samples are usually collected at a fixed rate, such as 100 or
1,000 Hz (cycles per second) across all CPUs. Profiling tools, or profilers, some-
times vary this rate slightly to avoid sampling in lockstep with target activity,
which could lead to over- or undercounting.

Profiling can also be based on untimed hardware events, such as CPU hard-
ware cache misses or bus activity. It can also show which code paths are responsi-
ble, information that can especially help developers optimize their code for the
usage of system resources.

System-Wide and Per-Process

Here are some examples of profilers, all of which perform timer- and hardware-
cache-based profiling:

� oprofile: Linux system profiling

� perf: a Linux performance toolkit, which includes profiling subcommands 

� DTrace: programmatic profiling, timer-based using its profile provider, 
and hardware-event-based using its cpc provider 

� SystemTap: programmatic profiling, timer-based using its timer tapset, and 
hardware-event-based using its perf tapset 

� cachegrind: from the valgrind toolkit, can profile hardware cache usage 
and be visualized using kcachegrind

� Intel VTune Amplifier XE: Linux and Windows profiling, with a graphical 
interface including source browsing

� Oracle Solaris Studio: Solaris and Linux profiling with its Performance 
Analyzer, which has a graphical interface including source browsing
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Programming languages often have their own special-purpose profilers that can
inspect language context.

See Chapter 6, CPUs, for more about profiling tools. 

4.1.4 Monitoring (sar)

Monitoring was introduced in Chapter 2, Methodology. The most commonly used
tool for monitoring a single operating system host is the system activity reporter,
sar(1), originating from AT&T Unix. sar(1) is counter-based and has an agent
that executes at scheduled times (via cron) to record the state of system counters.
The sar(1) tool allows these to be viewed at the command line, for example:

By default, sar(1) reads its statistics archive (if enabled) to print recent his-
toric statistics. You can specify an optional interval and count for it to examine cur-
rent activity at the rate specified.

Specific uses of sar(1) are described later in this book; see Chapters 6, 7, 8, 9,
and 10. Appendix C is a summary of the sar(1) options.

While sar(1) can report many statistics, it may not cover all you really need,
and those it does provide have at times been misleading (especially on Solaris-
based systems [McDougall 06b]). Alternatives have been developed, such as Sys-
tem Data Recorder and Collectl.

In Linux, sar(1) is provided via the sysstat package. Third-party monitoring
products are often built on sar(1), or the same observability statistics it uses.

4.2 Observability Sources

The sections that follow describe various interfaces and frameworks that provide
the statistics and data for observability tools. They are summarized in Table 4.1.

The main sources of systems performance statistics are covered next: /proc, /sys,
and kstat. Delay accounting and microstate accounting are then described, and
other sources are summarized. After these, the DTrace and SystemTap tools are
introduced, which are built upon some of these frameworks.

# sar
Linux 3.2.6-3.fc16.x86_64 (web100)   04/15/2013     _x86_64_     (16 CPU)
05:00:00        CPU %user     %nice   %system %iowait    %steal     %idle
05:10:00        all   12.61      0.00    4.58      0.00     0.00     82.80
05:20:00        all   21.62      0.00    9.59      0.93     0.00     67.86
05:30:00        all   23.65      0.00    9.61      3.58     0.00     63.17
05:40:00        all   28.95      0.00    8.96      0.04     0.00     62.05
05:50:00        all   29.54      0.00    9.32      0.19     0.00     60.95
Average:        all   23.27      0.00    8.41      0.95     0.00     67.37
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4.2.1 /proc

This is a file system interface for kernel statistics. /proc contains a number of
directories, where each directory is named after the process ID for the process it
represents. These directories contain a number of files containing information and
statistics about each process, mapped from kernel data structures. On Linux, there
are additional files in /proc for system-wide statistics.

/proc is dynamically created by the kernel and is not backed by storage devices
(it runs in-memory). It is mostly read-only, providing statistics for observability
tools. Some files are writeable, for controlling process and kernel behavior.

The file system interface is convenient: it’s an intuitive framework for exposing
kernel statistics to user-land via the directory tree and has a well-known program-
ming interface via the POSIX file system calls: open(), read(), close(). The
file system also provides user-level security, through use of file access permissions.

The following shows how per-process statistics are read by top(1), traced using
strace(1):

This has opened a file called stat in a directory named after the process ID, and
then read the file contents.

top(1) repeats this for all active processes on the system. On some systems,
especially those with many processes, the overhead from performing these can
become noticeable, especially for versions of top(1) that repeat this sequence for

Table 4.1 Observability Sources

Type Linux Solaris

Per-process counters /proc /proc, lxproc

System-wide counters /proc, /sys kstat

Device driver and debug info /sys kstat

Per-process tracing ptrace, uprobes procfs, dtrace

CPU performance counters perf_event libcpc

Network tracing libpcap libdlpi, libpcap

Per-thread latency metrics delay accounting microstate accounting

System-wide tracing tracepoints, kprobes, ftrace dtrace

stat("/proc/14704", {st_mode=S_IFDIR|0555, st_size=0, ...}) = 0
open("/proc/14704/stat", O_RDONLY)      = 4
read(4, "14704 (sshd) S 1 14704 14704 0 -"..., 1023) = 232
close(4)
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every process on every screen update. This can lead to a situation where top(1)
reports that top(1) itself is the highest CPU consumer!

The file system type for /proc on Linux is “proc” and for Solaris-based systems it
is “procfs.”

Linux

Various files are provided in /proc for per-process statistics. Here is an example of
those that may be available:

The exact list of files available depends on the kernel version and CONFIG
options.

Those related to per-process performance observability include

� limits: in-effect resource limits

� maps: mapped memory regions 

� sched: various CPU scheduler statistics

� schedstat: CPU runtime, latency, and time slices

� smaps: mapped memory regions with usage statistics 

� stat: process status and statistics, including total CPU and memory usage

� statm: memory usage summary in units of pages

� status: stat and statm information, human-readable 

� task: directory of per-task statistics 

Linux has also extended /proc to include system-wide statistics, contained in
these additional files and directories:

$ ls -F /proc/28712
attr/            cpuset   io        mountinfo  oom_score sessionid  syscall
auxv             cwd@    latency   mounts      pagemap  smaps      task/
cgroup environ  limits mountstats  personality  stack      wchan
clear_refs       exe@   loginuid  net/   root@        stat
cmdline          fd/      maps      numa_maps   sched        statm
coredump_filter  fdinfo/  mem       oom_adj     schedstat    status

$ cd /proc; ls -Fd [a-z]*
acpi/      dma   kallsyms       mdstat     schedstat     timer_list
buddyinfo  driver/      kcore          meminfo  scsi/     timer_stats
bus/       execdomains keys           misc     self@          tty/
cgroups    fb   key-users modules       slabinfo       uptime
cmdline    filesystems  kmsg           mounts@    softirqs     version
consoles   fs/   kpagecount     mtrr         stat         vmallocinfo
cpuinfo    interrupts kpageflags     net@   swaps          vmstat
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System-wide files related to performance observability include

� cpuinfo: physical processor information, including every virtual CPU, 
model name, clock speed, and cache sizes. 

� diskstats: disk I/O statistics for all disk devices

� interrupts: interrupt counters per CPU 

� loadavg: load averages 

� meminfo: system memory usage breakdowns 

� net/dev: network interface statistics 

� net/tcp: active TCP socket information 

� schedstat: system-wide CPU scheduler statistics

� self: a symlink to the current process ID directory, for convenience 

� slabinfo: kernel slab allocator cache statistics 

� stat: a summary of kernel and system resource statistics: CPUs, disks, pag-
ing, swap, processes 

� zoneinfo: memory zone information 

These are read by system-wide tools. For example, here’s vmstat(8) reading /proc,
as traced by strace(1):

/proc files are usually text formatted, allowing them to be read easily from the
command line and processed by shell scripting tools. For example:

crypto     iomem   latency_stats  pagetypeinfo  sys/           zoneinfo
devices    ioports   loadavg partitions    sysrq-trigger
diskstats  irq/   locks   sched_debug   sysvipc/

open("/proc/meminfo", O_RDONLY)         = 3
lseek(3, 0, SEEK_SET)                 = 0
read(3, "MemTotal:  889484 kB\nMemF"..., 2047) = 1170
open("/proc/stat", O_RDONLY)            = 4
read(4, "cpu  14901 0 18094 102149804 131"..., 65535) = 804
open("/proc/vmstat", O_RDONLY)       = 5
lseek(5, 0, SEEK_SET)                 = 0
read(5, "nr_free_pages 160568\nnr_inactive"..., 2047) = 1998

$ cat /proc/meminfo 
MemTotal:    889484 kB
MemFree:     636908 kB
Buffers:     125684 kB
Cached:      63944 kB

continues
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While this is convenient, it does add overhead for the kernel to encode the statis-
tics as text, and for any user-land tool that then processes the text.

The contents of /proc are documented in the proc(5) man page and in the
Linux kernel documentation: Documentation/filesystems/proc.txt. Some parts have
extended documentation, such as diskstats in Documentation/iostats.txt and
scheduler stats in Documentation/scheduler/sched-stats.txt. Apart from the docu-
mentation, you can also study the kernel source code to understand the exact ori-
gin of all items in /proc. It can also be helpful to read the source to the tools that
consume them.

Some of the /proc entries depend on CONFIG options: schedstats are enabled
with CONFIG_SCHEDSTATS, and sched with CONFIG_SCHED_DEBUG.

Solaris

On Solaris-based systems, /proc contains only process status statistics. System-
wide observability is provided via other frameworks, mostly kstat.

Here is a list of files in a /proc process directory:

Files related to performance observability include

� map: virtual address space mappings

� psinfo: miscellaneous process information, including CPU and memory 
usage

� status: process state information 

� usage: extended process activity statistics, including process microstates, 
fault, block, context switch, and syscall counters

� lstatus: similar to status, but containing statistics for each thread 

� lpsinfo: similar to psinfo, but containing statistics for each thread 

� lusage: similar to usage, but containing statistics for each thread 

SwapCached:            0 kB
Active:     119168 kB
[...]
$ grep Mem /proc/meminfo 
MemTotal:    889484 kB
MemFree:     636908 kB

$ ls -F /proc/22449 
as          cred  fd/      lstatus  map  path/   rmap    status  xmap
auxv        ctl   ldt      lusage   object/   priv    root@   usage
contracts/  cwd@  lpsinfo  lwp/     pagedata  psinfo  sigact  watch
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� lwpsinfo: lightweight process (thread) statistics for the representative LWP 
(currently most active); there are also lwpstatus and lwpsinfo files 

� xmap: extended memory mapping statistics (undocumented) 

The following truss(1) output shows prstat(1M) reading status for a process:

The format of these files is binary, as seen by the pread() data above. psinfo
contains

This can be read directly to a psinfo_t variable in user-space, where the mem-
bers can then be dereferenced. This makes the Solaris /proc more suitable for pro-
cessing by programs written in C, which can include the struct definitions from the
system-supplied header files.

open("/proc/4363/psinfo", O_RDONLY)             = 5
pread(5, "01\0\0\001\0\0\0\v11\0\0".., 416, 0)  = 416

typedef struct psinfo {
         int pr_flag; /* process flags (DEPRECATED: see below) */
         int pr_nlwp;             /* number of active lwps in the process */
         int pr_nzomb;             /* number of zombie lwps in the process */
         pid_t pr_pid;           /* process id */
         pid_t pr_ppid;  /* process id of parent */
         pid_t pr_pgid;            /* process id of process group leader */
         pid_t pr_sid;           /* session id */
         uid_t pr_uid;     /* real user id */
         uid_t pr_euid;    /* effective user id */
         gid_t pr_gid;    /* real group id */
         gid_t pr_egid;   /* effective group id */
         uintptr_t pr_addr;  /* address of process */
         size_t pr_size;           /* size of process image in Kbytes */
         size_t pr_rssize; /* resident set size in Kbytes */
         dev_t pr_ttydev;          /* controlling tty device (or PRNODEV) */
         ushort_t pr_pctcpu;       /* % of recent cpu time used by all lwps */
         ushort_t pr_pctmem;       /* % of system memory used by process */
         timestruc_t pr_start;     /* process start time, from the epoch */
         timestruc_t pr_time;  /* cpu time for this process */
         timestruc_t pr_ctime; /* cpu time for reaped children */
         char pr_fname[PRFNSZ];    /* name of exec'ed file */
         char pr_psargs[PRARGSZ];  /* initial characters of arg list */
         int pr_wstat; /* if zombie, the wait() status */
         int pr_argc;   /* initial argument count */
         uintptr_t pr_argv;        /* address of initial argument vector */
         uintptr_t pr_envp;        /* address of initial environment vector */
         char pr_dmodel;  /* data model of the process */
         lwpsinfo_t pr_lwp;        /* information for representative lwp */
         taskid_t pr_taskid;       /* task id */
         projid_t pr_projid;       /* project id */
         poolid_t pr_poolid;       /* pool id */
         zoneid_t pr_zoneid;       /* zone id */
         ctid_t pr_contract; /* process contract id */
     } psinfo_t;
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/proc is documented by the proc(4) man page, and by the sys/procfs.h header
file. As with Linux, if the kernel is open source, it can be helpful to study the ori-
gin of these statistics and how tools consume them.

lxproc

There has been the occasional need for a Linux-like /proc on Solaris-based sys-
tems. One reason is for porting Linux observability tools (e.g., htop(1)), which
can otherwise be difficult to port due to the /proc differences: from a text-based
interface to binary. 

One solution is the lxproc file system: it provides a loosely Linux-compatible /proc
for Solaris-based systems and can be mounted in parallel with the standard procfs
/proc. For example, lxproc can be mounted on /lxproc, and applications that require
a Linux-like proc can be modified to load process information from /lxproc instead
of /proc—what should be a minor change.

Like Linux /proc, there are also directories for each process containing process
information.

lxproc may be incomplete and require additions: it is provided only as a best-
effort interface for simple Linux /proc users.

4.2.2 /sys

Linux provides a sysfs file system, mounted on /sys, which was introduced with
the 2.6 kernel to provide a directory-based structure for kernel statistics. This dif-
fers from /proc, which has evolved over time and had various system statistics
added to the top-level directory. sysfs was originally designed to provide device
driver statistics but has been extended to include any statistic type.

For example, the following lists /sys files for CPU 0 (truncated):

smartos# more /lxproc/meminfo 
        total:    used:    free:  shared: buffers:  cached:
Mem:  1073741824 88395776 985346048        0     0        0
Swap: 2147483648 267640832 1879842816
MemTotal:   1048576 kB
MemFree:     962252 kB
[...]

$ find /sys/devices/system/cpu/cpu0 -type f
/sys/devices/system/cpu/cpu0/crash_notes
/sys/devices/system/cpu/cpu0/cache/index0/type
/sys/devices/system/cpu/cpu0/cache/index0/level
/sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size
/sys/devices/system/cpu/cpu0/cache/index0/physical_line_partition
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Many of those listed provide information about the CPU hardware caches. The
following output shows their contents (using grep(1), so that the file name is
included with the output):

This shows that CPU 0 has access to two Level 1 caches, each 32 Kbytes, a Level 2
cache of 256 Kbytes, and a Level 3 cache of 8 Mbytes.

The /sys file system typically has tens of thousands of statistics in read-only
files, as well as many writeable files for changing kernel state. For example, CPUs
can be set to online or offline by writing “1” or “0” to a file named “online.” As with
reading statistics, setting state can be performed by using text strings at the com-
mand line (echo 1 > filename), rather than a binary interface.

4.2.3 kstat

Solaris-based systems have a kernel statistics (kstat) framework used by system-
wide observability tools. kstat includes statistics for most resources, including
CPUs, disks, network interfaces, memory, and many software components in the
kernel. A typical system has tens of thousands of statistics available from kstat.

Unlike /proc or /sys, there is no pseudo file system for kstat, and it is read
from /dev/kstat via ioctl(). This is usually performed via the libkstat library,
which provides convenience functions, or via Sun::Solaris::Kstat, a Perl library for
the same purpose (although it is being phased out in some distributions in favor of

/sys/devices/system/cpu/cpu0/cache/index0/ways_of_associativity
/sys/devices/system/cpu/cpu0/cache/index0/number_of_sets
/sys/devices/system/cpu/cpu0/cache/index0/size
/sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_map
/sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list
[...]
/sys/devices/system/cpu/cpu0/topology/physical_package_id
/sys/devices/system/cpu/cpu0/topology/core_id
/sys/devices/system/cpu/cpu0/topology/thread_siblings
/sys/devices/system/cpu/cpu0/topology/thread_siblings_list
/sys/devices/system/cpu/cpu0/topology/core_siblings
/sys/devices/system/cpu/cpu0/topology/core_siblings_list

$ grep . /sys/devices/system/cpu/cpu0/cache/index*/level
/sys/devices/system/cpu/cpu0/cache/index0/level:1
/sys/devices/system/cpu/cpu0/cache/index1/level:1
/sys/devices/system/cpu/cpu0/cache/index2/level:2
/sys/devices/system/cpu/cpu0/cache/index3/level:3
$ grep . /sys/devices/system/cpu/cpu0/cache/index*/size
/sys/devices/system/cpu/cpu0/cache/index0/size:32K
/sys/devices/system/cpu/cpu0/cache/index1/size:32K
/sys/devices/system/cpu/cpu0/cache/index2/size:256K
/sys/devices/system/cpu/cpu0/cache/index3/size:8192K
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libkstat). The kstat(1M) tool provides the statistics at the command line and can
be used with shell scripting.

kstats are structured as a four-tuple:

These are

� module: This usually refers to the kernel module that created the statistic, 
such as sd for the SCSI disk driver, or zfs for the ZFS file system. 

� instance: Some modules exist as multiple instances, such as an sd module 
for each SCSI disk. The instance is an enumeration. 

� name: This is a name for the group of statistics. 

� statistic: This is the individual statistic name. 

For example, the following reads the nproc statistic using kstat(1M) and spec-
ifying the full four-tuple:

This statistic shows the currently running number of processes. The -p option to
kstat(1M) was used to print parseable output (colon-separated). A blank field is
treated as a wildcard. Trailing colons can also be dropped. These rules together
allow the following to match and print all statistics from the system_misc group:

The avenrun* statistics are used to calculate the system load averages, as
reported by tools including uptime(1) and top(1).

module:instance:name:statistic

$ kstat -p unix:0:system_misc:nproc
unix:0:system_misc:nproc       94

$ kstat -p unix:0:system_misc
unix:0:system_misc:avenrun_15min        201
unix:0:system_misc:avenrun_1min 383
unix:0:system_misc:avenrun_5min 260
unix:0:system_misc:boot_time    1335893569
unix:0:system_misc:class       misc
unix:0:system_misc:clk_intr     1560476763
unix:0:system_misc:crtime       0
unix:0:system_misc:deficit      0
unix:0:system_misc:lbolt      1560476763
unix:0:system_misc:ncpus       2
unix:0:system_misc:nproc       94
unix:0:system_misc:snaptime    15604804.5606589
unix:0:system_misc:vac  0
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Many statistics in kstat are cumulative. Instead of providing the current value,
they show the total since boot. For example:

This freemem statistic is incremented per second with the number of free pages.
This allows the average over time intervals to be calculated. The summary-since-
boot, as printed by many system-wide observability tools, can also be calculated by
dividing the current value by seconds since boot.

Another version of freemem provides the instantaneous value (unix:0:system_
pages:freemem). This mitigates a shortcoming in the cumulative version: it takes
at least one second to know the current value, so that would be the minimum time
for which a delta could be calculated.

Without any statistic name, kstat(1M) lists all statistics. For example, the fol-
lowing commands pipe the list of all statistics into grep(1) to search for those
containing freemem, and then wc(1) to count the number of total statistics:

The kstat statistics are not formally documented because they are considered an
unstable interface—subject to change whenever the kernel changes. To under-
stand what each does, the locations that increment them can be studied in the ker-
nel source (if available). For example, the cumulative freemem statistic originates
from the following kernel code:

$ kstat -p unix:0:vminfo:freemem
unix:0:vminfo:freemem   184882526123755

$ kstat -p | grep freemem
unix:0:system_pages:freemem     5962178
unix:0:vminfo:freemem   184893612065859
$ kstat -p | wc -l
   33195

usr/src/uts/common/sys/sysinfo.h:
typedef struct vminfo {         /* (update freq) update action          */
        uint64_t freemem;       /* (1 sec) += freemem in pages          */
        uint64_t swap_resv;     /* (1 sec) += reserved swap in pages    */
        uint64_t swap_alloc;    /* (1 sec) += allocated swap in pages   */
        uint64_t swap_avail;    /* (1 sec) += unreserved swap in pages  */
        uint64_t swap_free;     /* (1 sec) += unallocated swap in pages */
        uint64_t updates;       /* (1 sec) ++                   */
} vminfo_t; 

usr/src/uts/common/os/space.c:
vminfo_t        vminfo;         /* VM stats protected by sysinfolock mutex */

usr/src/uts/common/os/clock.c:
static void

continues
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The freemem statistic is incremented once per second in the kernel clock()
routine, by the value of a global called freemem. Locations that modify freemem
can be inspected to see all the code involved.

The source code to the existing system tools (if available) can also be studied for
example kstat usage.

4.2.4 Delay Accounting

Linux systems with the CONFIG_TASK_DELAY_ACCT option track time per
task in the following states:

� Scheduler latency: waiting for a turn on-CPU

� Block I/O: waiting for a block I/O to complete

� Swapping: waiting for paging (memory pressure)

� Memory reclaim: waiting for the memory reclaim routine

Technically, the scheduler latency statistic is sourced from schedstats (men-
tioned earlier, in /proc) but is exposed with the other delay accounting states. (It is
in struct sched_info, not struct task_delay_info.)

These statistics can be read by user-level tools using taskstats, which is a netlink-
based interface for fetching per-task and process statistics. The kernel source Docu-
mentation/accounting directory has both the documentation, delay-accounting.txt,
and an example consumer, getdelays.c:

clock(void)
{
[...]
        if (one_sec) {
[...]

    vminfo.freemem += freemem;

$ ./getdelays -dp 17451
print delayacct stats ON
PID    17451

CPU             count     real total virtual total    delay total  delay average
386     3452475144 31387115236 1253300657     3.247ms

IO count    delay total  delay average
                  302    1535758266              5ms
SWAP            count    delay total  delay average
                    0          0              0ms
RECLAIM         count    delay total  delay average
                    0          0              0ms
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Times are in nanoseconds unless specified otherwise. This example was taken from a
heavily CPU-loaded system, and the process inspected was suffering scheduler latency.

4.2.5 Microstate Accounting

Solaris-based systems have per-thread and per-CPU microstate accounting, which
records a set of high-resolution times for predefined states. These were a vast
improvement of accuracy over the prior tick-based metrics and also provided addi-
tional states for performance analysis [McDougall 06b]. They are exposed to user-
level tools via kstat for per-CPU metrics and /proc for per-thread metrics.

The CPU microstates are shown as the usr, sys, and idl columns of
mpstat(1M) (see Chapter 6, CPUs). You can find them in the kernel code as CMS_
USER, CMS_SYSTEM, and CMS_IDLE.

The thread microstates are visible as the USR, SYS, . . . columns from prstat –m
and are summarized in Section 6.6.7, prstat of Chapter 6, CPUs.

4.2.6 Other Observability Sources

Various other observability sources include

� CPU performance counters: These are programmable hardware registers 
that provide low-level performance information, including CPU cycle counts, 
instruction counts, stall cycles, and so on. On Linux they are accessed via the 
perf_events interface and the perf_event_open() syscall and are con-
sumed by tools including perf(1). On Solaris-based systems they are 
accessed via libcpc and consumed by tools including cpustat(1M). For more 
about these counters and tools, see Chapter 6, CPUs.

� Per-process tracing: This traces user-level software events, such as sys-
calls and function calls. It is usually expensive to perform, slowing the tar-
get. On Linux there is the ptrace() syscall for controlling process tracing, 
which is used by strace(1) for tracing syscalls. Linux also has uprobes for 
user-level dynamic tracing. Solaris-based systems trace syscalls using procfs 
and the truss(1) tool and dynamic tracing via DTrace.

� Kernel tracing: On Linux, tracepoints provide static kernel probes (origi-
nally kernel makers), and kprobes provide dynamic probes. Both of these are 
used by tracing tools such as ftrace, perf(1), DTrace, and SystemTap. On 
Solaris-based systems, static and dynamic probes are provided by the dtrace 
kernel module. Both DTrace and SystemTap, consumers of kernel tracing, 
will be covered in the following sections, which also explain the terms static
and dynamic probes.
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� Network sniffing: These interfaces provide a way to capture packets from 
network devices for detailed investigations into packet and protocol perfor-
mance. On Linux, sniffing is provided via the libpcap library and /proc/net/
dev and is consumed by the tcpdump(8) tool. On Solaris-based systems 
sniffing is provided via the libdlpi library and /dev/net and is consumed by 
the snoop(1M) tool. A port of libpcap and tcpdump(8) has also been devel-
oped for Solaris-based systems. There are overheads, both CPU and storage, 
for capturing and examining all packets. See Chapter 10, Network, for more 
about network sniffing.

� Process accounting: This dates back to mainframes and the need to bill 
departments and users for their computer usage, based on the execution and 
runtime of processes. It exists in some form for both Linux- and Solaris-based 
systems and can sometimes be helpful for performance analysis at the pro-
cess level. For example, the atop(1) tool uses process accounting to catch 
and display information from short-lived processes that would otherwise be 
missed when taking snapshots of /proc [1].

� System calls: Some system or library calls may be available to provide some 
performance metrics. These include getrusage(), a function call for pro-
cesses to get their own resource usage statistics, including user- and system-
time, faults, messages, and context switches. Solaris-based systems also have 
swapctl(),a system function for swap device management and statistics 
(Linux has /proc/swap).

If you are interested in how each of these works, you will find that documentation
is usually available, intended for the developer who is building tools upon these
interfaces.

And More

Depending on your kernel version and enabled options, even more observability
sources may be available. Some are mentioned in later chapters of this book.

Here are a few more:

� Linux: I/O accounting, blktrace, timer_stats, lockstat, debugfs

� Solaris: extended accounting, flow accounting, Solaris Auditing

One technique to find such sources is to read the kernel code you are interested in
observing and see what statistics or tracepoints have been placed there.

In some cases there may be no kernel statistics for what you are after. Apart
from dynamic tracing, covered next, you may find that debuggers can fetch kernel
variables to shed some light on an investigation. These include gdb(1) and
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mdb(1) (Solaris only). A similar and even more desperate approach is used by
tools that open /dev/mem or /dev/kmem to read kernel memory directly.

Multiple observability sources with different interfaces can be a burden to learn
and can be inefficient when their capabilities overlap. As DTrace has been part of
the Solaris kernel since 2003, there have been efforts to move some old tracing
frameworks to DTrace, and to serve all new tracing needs from it. This consolida-
tion has been working very well and has simplified tracing on Solaris-based sys-
tems. We can hope that this trend continues, and that the future for both kernels
brings fewer, yet more powerful, observability frameworks.

4.3 DTrace

DTrace is an observability framework that includes a programming language and
a tool. This section summarizes DTrace basics, including dynamic and static trac-
ing, probes, providers, D, actions, variables, one-liners, and scripting. It is intended
as a DTrace primer, providing you with enough background for understanding its
use later in this book, where it is used to extend performance observability on both
Solaris- and Linux-based systems.

DTrace can observe all user- and kernel-level code via instrumentation points
called probes. When probes are hit, arbitrary actions may be performed in its D
language. Actions can include counting events, recording timestamps, performing
calculations, printing values, and summarizing data. These actions can be per-
formed in real time, while tracing is still enabled.

As an example of using DTrace for dynamic tracing, the following instruments
the kernel ZFS (file system) spa_sync() function, showing the completion time
and duration in nanoseconds (illumos kernel):

The spa_sync() function flushes written data to the ZFS storage devices, caus-
ing bursts of disk I/O. It is of particular interest for performance analysis, as I/O

# dtrace -n 'fbt:zfs:spa_sync:entry { self->start = timestamp; }
fbt:zfs:spa_sync:return /self->start/ { printf("%Y: %d ns",
walltimestamp, timestamp - self->start); self->start = 0; }'

dtrace: description 'fbt:zfs:spa_sync:entry ' matched 2 probes
CPU     ID            FUNCTION:NAME
  7  65353    spa_sync:return 2012 Oct 30 00:20:27: 63849335 ns
 12  65353    spa_sync:return 2012 Oct 30 00:20:32: 39754457 ns
 18  65353    spa_sync:return 2012 Oct 30 00:20:37: 261013562 ns
  8  65353    spa_sync:return 2012 Oct 30 00:20:42: 29800786 ns
 17  65353    spa_sync:return 2012 Oct 30 00:20:47: 250368664 ns
 20  65353    spa_sync:return 2012 Oct 30 00:20:52: 37450783 ns
 11  65353    spa_sync:return 2012 Oct 30 00:20:57: 56010162 ns
[...]
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can sometimes queue behind the issued disk I/O. Using DTrace, information about
the rate at which spa_sync() fires, and the duration, can be immediately seen
and studied. Thousands of other kernel functions can be studied in a similar way,
by either printing per-event details or summarizing them.

A key difference of DTrace from other tracing frameworks (e.g., syscall tracing)
is that DTrace is designed to be production-safe, with minimized performance
overhead. One way it does this is by use of per-CPU kernel buffers, which improve
memory locality, reduce cache coherency overheads, and can remove the need for
synchronization locks. These buffers are also used to pass data to user-land at a
gentle rate (by default, once per second), minimizing context switches. DTrace also
provides a set of actions that can summarize and filter data in-kernel, which also
reduces data overheads.

DTrace supports both static and dynamic tracing, each providing complemen-
tary functionality. Static probes have a documented and stable interface, and
dynamic probes allow virtually unlimited observability as needed.

4.3.1 Static and Dynamic Tracing

One way to understand static and dynamic tracing is to examine the source and
CPU instructions involved. Consider the following code from the kernel block
device interface (illumos), usr/src/uts/common/os/bio.c:

The DTRACE_IO1 macro is an example of a static probe, which is added to the
code before compilation. There is no visible example of dynamic probes in the
source code, since these are added after compilation while the software is running.

The compiled instructions for this function are (truncated)

/*
 * Mark I/O complete on a buffer, release it if I/O is asynchronous,
 * and wake up anyone waiting for it.
 */
void
biodone(struct buf *bp)
{
        if (bp->b_flags & B_STARTED) {

   DTRACE_IO1(done, struct buf *, bp);
    bp->b_flags &= ~B_STARTED;

        }
[...]

> biodone::dis
biodone:           pushq  %rbp
biodone+1:         movq   %rsp,%rbp
biodone+4:         subq   $0x20,%rsp
biodone+8: movq   %rbx,-0x18(%rbp)



4.3 DTrace 135

When using dynamic tracing to probe the entry to the biodone() function, the
first instruction is changed:

The int instruction calls a soft interrupt, which is programmed to perform the
dynamic tracing action. When dynamic tracing is disabled, the instruction is
returned to its original state. This is live patching of the kernel address space, and
the technique used can vary between processor types.

Instructions are added only when dynamic tracing is enabled. When it is not
enabled, there are no additional instructions for instrumentation, and therefore no
probe effect. This is described as zero overhead when not in use. The overhead when
it is in use from the additional instructions is proportional to the rate at which the
probes fire: the rate of events that are traced, and the actions they perform.

DTrace can dynamically trace the entry and return of functions, and any
instruction in user-space. Since this dynamically builds probes from CPU instruc-
tions, which can vary between software releases, it is considered an unstable inter-
face. Any DTrace one-liners or scripts based on dynamic tracing may need
updating for newer releases of the software that they trace.

4.3.2 Probes

DTrace probes are named with a four-tuple:

The provider is the collection of related probes, similar to a software library. The
module and function are dynamically generated and specify the code location of the
probe. The name is the name of the probe itself.

biodone+0xc:        movq   %rdi,-0x8(%rbp)
biodone+0x10:        movq   %rdi,%rbx
biodone+0x13:        movl   (%rdi),%eax
biodone+0x15: testl  $0x2000000,%eax
[...]

> biodone::dis
biodone: int    $0x3
biodone+1:         movq   %rsp,%rbp
biodone+4:         subq   $0x20,%rsp
biodone+8: movq   %rbx,-0x18(%rbp)
biodone+0xc:        movq   %rdi,-0x8(%rbp)
biodone+0x10:        movq   %rdi,%rbx
biodone+0x13:        movl   (%rdi),%eax
biodone+0x15: testl  $0x2000000,%eax
[...]

provider:module:function:name
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When specifying these, wildcards (“*”) may be used. Leaving a field blank (“::”)
is equivalent to a wildcard (“:*:”). Blank left fields may also be dropped from the
probe specification (e.g., “:::BEGIN” == “BEGIN”).

For example:

is the start probe from the io provider. The module and function fields are left
blank, so these will match all locations of the start probe.

4.3.3 Providers

The DTrace providers available depend on your DTrace and operating system ver-
sion. They may include

� syscall: system call trap table 

� vminfo: virtual memory statistics 

� sysinfo: system statistics 

� profile: sampling at arbitrary rates 

� sched: kernel scheduling events 

� proc: process-level events: create, exec, exit

� io: block device interface tracing (disk I/O) 

� pid: user-level dynamic tracing 

� tcp: TCP protocol events: connections, send and receive 

� ip: IP protocol events: send and receive

� fbt: kernel-level dynamic tracing 

There are many additional providers for higher-level languages: Java, JavaScript,
Node.js, Perl, Python, Ruby, Tcl, and others.

Many of the providers are implemented using static tracing, so that they have a
stable interface. It’s preferable to use these (over dynamic tracing) where possible,
so that your scripts work for different versions of the target software. The trade-off
is that visibility is limited in comparison, as only the essentials are promoted to
the stable interface, to minimize maintenance and the documentation burden.

io:::start
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4.3.4 Arguments

Probes can provide data via a set of variables called arguments. The use of argu-
ments depends on the provider.

For example, the syscall provider provides entry and return probes for each sys-
tem call. These set the following argument variables:

� Entry: arg0, ..., argN: arguments to system call 

� Return: arg0 or arg1: return value; errno is also set

The fbt and pid providers set arguments similarly, allowing the data passed and
returned to kernel- or user-level functions to be examined.

To find out what the arguments are for each provider, refer to its documenta-
tion (you can also try dtrace(1) with the –lv options, which prints a summary).

4.3.5 D Language

The D language is awk-like and can be used in one-liners or scripts (the same as
awk). DTrace statements have the form

The action is a series of optional semicolon-delimited statements that are exe-
cuted when the probe fires. The predicate is an optional filtering expression. 

For example, the statement

traces the exec-success probe from the proc provider and performs the printing
action trace(pid) if the process name is equal to "httpd". The exec-success
probe is commonly used to trace the creation of new processes and instruments a
successful exec() system call. The current process name is retrieved using the
built-in variable execname, and the current process ID via pid.

4.3.6 Built-in Variables

Built-in variables can be used in calculations and predicates and can be printed
using actions such as trace() and printf(). Commonly used built-ins are listed
in Table 4.2.

probe_description /predicate/ { action }

proc:::exec-success /execname == "httpd"/ { trace(pid); }
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4.3.7 Actions

Commonly used actions include those listed in Table 4.3.

Table 4.2 Commonly Used Built-in Variables

Variable Description

execname on-CPU process name (string)

uid on-CPU user ID

pid on-CPU process ID

timestamp current time, nanoseconds since boot

vtimestamp time thread was on-CPU, nanoseconds

arg0..N probe arguments (uint64_t)

args[0]..[N] probe arguments (typed)

curthread pointer to current thread kernel structure

probefunc function component of probe description (string)

probename name component of probe description (string)

curpsinfo current process information

Table 4.3 Commonly Used Actions

Action Description

trace(arg) print arg

printf(format, arg, ...) print formatted string

stringof(addr) return a string from a kernel address

copyinstr(addr) return a string from a user-space address (this requires the 
kernel to perform a copy in from user-space to kernel-space)

stack(count) print kernel-level stack trace, truncated if a count is provided

ustack(count) print user-level stack trace, truncated if a count is provided

func(pc) return a kernel function name, from the kernel program 
counter (pc)

ufunc(pc) return a user function name, from the user program coun-
ter (pc)

exit(status) exit DTrace and return status

trunc(@agg, count) truncate the aggregation, either fully (delete all keys) or to 
the number of keys specified (count)

clear(@agg) delete values from an aggregation (keep keys)

printa(format, @agg) print aggregation, formatted
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The last three actions listed are for a special variable type called an aggregation.

4.3.8 Variable Types

Table 4.4 summarizes the types of variables, listed in order of usage preference
(aggregations are chosen first, then low to high overhead).

The thread-local variable has a per-thread scope. This allows data, such as time-
stamps, to be easily associated with a thread.

The clause-local variable is used for intermediate calculations and is valid only
during action clauses for the same probe description.

Multiple CPUs writing to the same scalar at the same time can lead to a cor-
rupt variable state, hence the “no.” It’s unlikely, but has happened, and has been
noticed for string scalars (leading to a corrupted string).

An aggregation is a special variable type that can be tallied per CPU and com-
bined later for passing to user-land. These have the lowest overhead and are used
for summarizing data in different ways. 

Actions that populate aggregations are listed in Table 4.5.

Table 4.4 Variable Types and Their Overhead

Type Prefix Scope Overhead
Multi-
CPU Safe

Example
Assignment

Aggregation @ global low yes @x = count();

Aggregation
with keys 

@[] global low yes @x[pid] = 
count();

Clause-local this-> clause
instance

very low yes this->x = 1;

Thread-local self-> thread medium yes self->x = 1;

Scalar none global low–
medium 

no x = 1;

Associative array none global medium–
high

no x[y] = 1;

Table 4.5 Aggregating Actions

Aggregating Action Description

count() count occurrences

sum(value) sum value

continues
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As an example of an aggregation and a histogram action, quantize(), the fol-
lowing shows the returned sizes for the read() syscall:

This one-liner gathers statistics while tracing and prints a summary when
dtrace ends, in this case, when Ctrl-C was typed. The first line of output,
dtrace: description . . . , is printed by default by dtrace, providing an indi-
cation of when tracing has begun.

The value column is the minimum size for the quantized range, and the count col-
umn is the occurrences for that range. The middle shows an ASCII representation of

min(value) record minimum of value

max(value) record maximum of value

quantize(value) record value as a power-of-two histogram

lquantize(value, min, max, step) record value as a linear histogram, with mini-
mum, maximum, and step provided

llquantize(value, factor, min_
magnitude, max_magnitude, steps)

record value as a hybrid log/linear histogram

# dtrace -n 'syscall::read:return { @["rval (bytes)"] = quantize(arg0); }'
dtrace: description 'syscall::read:return ' matched 1 probe
^C
  rval (bytes)
           value  ------------- Distribution ------------- count
              -1 |              0
               0 |@@@@@@@@@@@@@@           447
               1 |@@@              100
               2 |              5
               4 |              0
               8 |              2
              16 |              2
              32 |@@              53
              64 |              1
             128 |              0
             256 |              0
             512 |              4
            1024 |@             19
            2048 |              10
            4096 |@             34
            8192 |@@@@             130
           16384 |@@@@@@               170
           32768 |@@@@             125
           65536 |@@@@             114
          131072 |                5
          262144 |                5
          524288 |                0

Table 4.5 Aggregating Actions (Continued)

Aggregating Action Description
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the distribution. In this case, the most frequently returned size was zero bytes, which
occurred 447 times. Many of the returned reads were between 8,192 and 131,071
bytes, with 170 in the 16,384 to 32,767 range. This bimodal distribution would not
have been noticed in a tool that reported only an average.

4.3.9 One-Liners

DTrace allows you to write concise and powerful one-liners like those I demon-
strated earlier. Following are some more examples.

Trace open() system calls, printing the process name and file path name:

Note that Oracle Solaris 11 significantly modified the system call trap table 
(which is probed by DTrace to create the syscall provider), such that tracing 
open() on that system becomes

Summarize CPU cross calls by process name:

Sample kernel-level stacks at 99 Hz:

Many more DTrace one-liners are used throughout this book and are listed in
Appendix D.

4.3.10 Scripting

DTrace statements can be saved to a file for execution, allowing much longer
DTrace programs to be written.

dtrace -n 'syscall::open:entry { printf("%s %s", execname, copyinstr(arg0)); }'

dtrace -n 'syscall::openat:entry { printf("%s %s", execname, copyinstr(arg1)); }'

dtrace -n 'sysinfo:::xcalls { @[execname] = count(); }'

dtrace -n 'profile:::profile-99 { @[stack()] = count(); }'
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For example, the bitesize.d script shows requested disk I/O sizes by process name:

Since this file begins with an interpreter line (#!), it can be made executable
and then run from the command line.

The #pragma line sets quiet mode, which suppresses the default DTrace output
(which was seen in the earlier spa_sync() example and consists of the CPU, ID,
and FUNCTION:NAME columns).

The actual enabling in this script by the io:::start probe is straightforward.
The dtrace:::BEGIN probe fires at the start to print an informational message,
and dtrace:::END fires at the end to format and print the summary.

Here is some example output:

While tracing, most of the disk I/O was requested by the tar command, with sizes
shown above.

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
        printf("Tracing... Hit Ctrl-C to end.\n");
}

io:::start
{
        this->size = args[0]->b_bcount;
        @Size[pid, curpsinfo->pr_psargs] = quantize(this->size);
}

dtrace:::END
{
        printf("\n%8s  %s\n", "PID", "CMD");
        printa("%8d  %S\n%@d\n", @Size);
}

# ./bitesize.d
Tracing... Hit Ctrl-C to end.
^C

     PID  CMD
    3424  tar cf /dev/null .\0

           value  ------------- Distribution ------------- count
             512 |              0
            1024 |@@@               39
            2048 |@@@@@@               71
            4096 |@@@@@@@@@       111
            8192 |@@@@@@@@@@@@@@@@@@@@@         259
           16384 |             6
           32768 |@             8
           65536 |                 0
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bitesize.d is from a collection of DTrace scripts called the DTraceToolkit, which
can be found online.

4.3.11 Overheads

As has been mentioned, DTrace minimizes instrumentation overhead by use of
per-CPU kernel buffers and in-kernel aggregation summaries. By default, it also
passes data from kernel-space to user-space at a gentle asynchronous rate of once
per second. It has various other features that reduce overhead and improve safety,
including a routine whereby it will abort tracing if it detects that the system may
have become unresponsive.

The overhead cost of performing tracing is relative to the frequency of traces
and the actions they perform. Tracing block device I/O is typically so infrequent
(1,000 I/O per second or less) that the overheads are negligible. On the other hand,
tracing network I/O, when packet rates can reach millions per second, can cause
significant overhead.

The action also comes at a cost. For example, I frequently sample kernel stacks
at a rate of 997 Hz across all CPUs (using stack()) without a noticeable over-
head. Sampling user-level stacks is more involved (using ustack()), for which I
typically reduce the rate to 97 Hz.

There are also overheads when saving data into variables, especially associa-
tive arrays. While the use of DTrace typically comes without noticeable overhead,
you do need to be aware that it is possible, and to use some caution. 

4.3.12 Documentation and Resources

The reference for DTrace, which documents all actions, built-ins, and standard pro-
viders, is the Dynamic Tracing Guide, originally by Sun Microsystems and made
freely available online [2]. For background on dynamic tracing, the problems it
solves, and the evolution of DTrace, see [Cantrill 04] and [Cantrill 06].

Appendix D lists handy DTrace one-liners. Apart from their utility, they may be
a useful reference for learning DTrace, one line at a time.

For a reference of scripts and strategy, see the text DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X and FreeBSD [Gregg 11]. The scripts from this book are
available online [3].

The DTraceToolkit contains over 200 scripts and is currently hosted on my home
page [4]. Many of the scripts are wrapped in shell or Perl, to provide command-line
options and behavior like other Unix tools, for example, execsnoop:
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GUIs have also been built upon DTrace, including Oracle ZFS Appliance Analyt-
ics and Joyent Cloud Analytics.

4.4 SystemTap

SystemTap also provides static and dynamic tracing for user- and kernel-level code
and was conceived for Linux by a team from Red Hat, IBM, and Intel [Eigler 05],
at a time when no ports of DTrace for Linux were available. As with DTrace,
instrumentation points called probes can be programmed to perform arbitrary
actions, including counting events, recording timestamps, performing calculations,
printing values, summarizing data, and so forth. These actions are performed in
real time, while tracing is still enabled. SystemTap can be used from the com-
mand line as one-liners or scripts.

SystemTap sources other kernel frameworks for tracing: tracepoints for static
probes, kprobes for dynamic probes, and uprobes for user-level probes. These
sources are also used by other tools (perf, LTTng).

After several years of development, SystemTap has made good progress in
matching the DTrace feature set and in some cases has surpassed it. However, sta-
bility has been an issue, with some versions causing kernel panics or hangs.1

SystemTap has had other issues as well, though minor in comparison: slower start-
up time, confusing error messages, undocumented implicit functionality, and a
less-concise language.

# execsnoop -h
USAGE: execsnoop [-a|-A|-ehjsvZ] [-c command]
       execsnoop           # default output
                -a            # print all data
                -A          # dump all data, space delimited
                -e   # safe output, parseable
                -j            # print project ID
                -s           # print start time, us
                -v # print start time, string
                -Z             # print zonename

-c command  # command name to snoop
  eg,
        execsnoop -v   # human readable timestamps
        execsnoop -Z          # print zonename
        execsnoop -c ls  # snoop ls commands only

1. The SystemTap wiki has always reported “safe use on production systems” as “yes.” This is
despite bug 2725, reported in 2006, which induces a kernel hang when tracing all kernel
function probes. The latest comment from August 2012 for this issue reads: “Kernel bugs are
believed to be responsible for the remaining occurrences of such crashes.”


