
An Overview of
Kubernetes

Overview

In this chapter, we will have our first hands-on introduction to Kubernetes. This
chapter will give you a brief overview of the different components of Kubernetes
and how they work together. We will also try our hand at working with some
fundamental Kubernetes components.

By the end of this chapter, you will have a single-node Minikube environment set
up where you can run many of the exercises and activities in this book. You will be
able to understand the high-level architecture of Kubernetes and identify the roles
of the different components. You will also learn the basics required to migrate
containerized applications to a Kubernetes environment.

2

Pac
kt

 P
ub

lis
hin

g

2 | An Overview of Kubernetes

Introduction
We ended the previous chapter by providing a brief and abstract introduction to
Kubernetes, as well as some of its advantages. In this chapter, we will provide you with
a much more concrete high-level understanding of how Kubernetes works. First, we
will walk you through how to install Minikube, which is a handy tool that creates a
single-node cluster and provides a convenient learning environment for Kubernetes.
Then, we will take a 30,000-foot overview of all the components, including their
responsibilities and how they interact with each other. After that, we will migrate the
Docker application that we built in the previous chapter to Kubernetes and illustrate
how it can enjoy the benefits afforded by Kubernetes, such as creating multiple replicas,
and version updates. Finally, we will explain how the application responds to external
and internal traffic.

Having an overview of Kubernetes is important before we dive deeper into the different
aspects of it so that when we learn more specifics about the different aspects, you will
have an idea of where they fit in the big picture. Also, when we go even further and
explore how to use Kubernetes to deploy applications in a production environment, you
will have an idea of how everything is taken care of in the background. This will also
help you with optimization and troubleshooting.

Setting Up Kubernetes
Had you asked the question, "How do you easily install Kubernetes?" three years ago, it
would have been hard to give a compelling answer. Embarrassing, but true. Kubernetes
is a sophisticated system, and getting it installed and managing it well isn't an easy task.

However, as the Kubernetes community has expanded and matured, more and more
user-friendly tools have emerged. As of today, based on your requirements, there are a
lot of options to choose from:

• If you are using physical (bare metal) servers or virtual machines (VMs), Kubeadm is
a good fit.

• If you're running on cloud environments, Kops and Kubespray can ease Kubernetes
installation, as well as integration with the cloud providers. In fact, we will teach
you how to deploy Kubernetes on AWS using Kops in Chapter 11, Build Your Own HA
Cluster, and we will take another look at the various options we can use to set up
Kubernetes.Pac

kt
 P

ub
lis

hin
g

Setting Up Kubernetes | 3

• If you want to drop the burden of managing the Kubernetes control plane (which
we will learn about later in this chapter), almost all cloud providers have their
own Kubernetes managed service, such as Google Kubernetes Engine (GKE),
Amazon Elastic Kubernetes Service (EKS), Azure Kubernetes Service (AKS), and IBM
Kubernetes Service (IKS).

• If you just want a playground to study Kubernetes in, Minikube and Kind can help
you spin up a Kubernetes cluster in minutes.

We will use Minikube extensively throughout this book as a convenient learning
environment. But before we proceed to the installation process, let's take a closer look
at Minikube itself.

An Overview of Minikube

Minikube is a tool that can be used to set up a single-node cluster, and it provides
handy commands and parameters to configure the cluster. It aims at simplifying the
complexity of Kubernetes' installation. Unlike other tools, it packs a VM containing all
the core components of Kubernetes that get installed onto your host machine, all at
once. This allows it to support any operating system, as long as there is a virtualization
tool (also known as a Hypervisor) pre-installed. The following are the most common
Hypervisors supported by Minikube:

• VirtualBox (works for all operating systems)

• KVM (Linux-specific)

• Hyperkit (macOS-specific)

• Hyper-V (Windows-specific)

Regarding the required hardware resources, the minimum requirement is 2 GB RAM
and any dual-core CPU that supports virtualization (Intel VT or AMD-V), but you will, of
course, need a more powerful machine if you are trying out heavier workloads.

Just like any other modern software, Kubernetes provides a handy command-line client
called Kubectl that allows users to interact with the cluster conveniently. In the next
exercise, we will set up Minikube and use some basic Kubectl commands. We will go
into more detail about Kubectl in the next chapter.Pac

kt
 P

ub
lis

hin
g

4 | An Overview of Kubernetes

Exercise 2.01: Getting Started with Minikube and Kubernetes Clusters

In this exercise, we will use Ubuntu 18.04 as the base operating system to install
Minikube, using which we can start a single-node Kubernetes cluster easily. Once the
Kubernetes cluster has been set up, you should be able to check its status and use
kubectl to interact with it:

Note:

Since this exercise deals with software installations, you will need to be logged
in as root/superuser. A simple way to switch to being a root user is to run the
following command: sudo su -.

In step 9 of this exercise, we will create a regular user and then switch back to it.

1. First, ensure that VirtualBox is installed. You can confirm this by using the following
command:

which VirtualBox

You should see the following output:

Figure 2.1: Path of the VirtualBox executable binary

If VirtualBox has been successfully installed, the which command should show the
path of the executable, as shown in the preceding screenshot. If not, then please
ensure that you have installed VirtualBox as per the instructions provided in the
Preface.

2. Download the Minikube standalone binary by using the following command:

curl -Lo minikube https://github.com/kubernetes/minikube/releases/
download/<version>/minikube-<ostype-arch> && chmod +x minikube

In this command, <version> should be replaced with a specific version, such as
v1.5.2 (which is the version we will use in this chapter) or latest. Depending
on your host operating system, <ostype-arch> should be replaced with linux-
amd64 (for Ubuntu) or darwin-amd64 (for macOS).Pac

kt
 P

ub
lis

hin
g

Setting Up Kubernetes | 5

You should see the following output:

Figure 2.2: Downloading the Minikube binary

The preceding command contains two parts: the first command, curl, downloads
the Minikube binary, while the second command, chmod, changes the permission to
make it executable.

3. Move the binary into the system path (in the example, it's /usr/local/bin) so
that we can directly run Minikube, regardless of which directory the command is
run in:

mv minikube /usr/local/bin

When executed successfully, the move (mv) command does not give a response in
the Terminal.

4. After running the move command, we need to confirm that the Minikube
executable is now in the correct location:

which minikube

You should see the following output:

Figure 2.3: Path of the Minikube executable binary

NOTE

If the which minikube command doesn't give you the expected result, you may
need to explicitly add /usr/local/bin to your system path by running export
PATH=$PATH:/usr/local/bin.

5. You can check the version of Minikube using the following command:

minikube version
Pac

kt
 P

ub
lis

hin
g

6 | An Overview of Kubernetes

You should see the following output:

Figure 2.4: Getting the version of Minikube

6. Now, let's download Kubectl version v1.16.2 (so that it's compatible with the version
of Kubernetes that our setup of Minikube will create later) and make it executable
by using the following command:

curl -LO https://storage.googleapis.com/kubernetes-release/release/v1.16.2/
bin/<ostype>/amd64/kubectl && chmod +x kubectl

You should see the following output:

Figure 2.5: Downloading the Kubectl binary

7. Then, move it to the system path, just like we did for the executable of Minikube
earlier:

mv kubectl /usr/local/bin

8. Now, let's check whether the executable for Kubectl is at the correct path:

which kubectl

You should see the following response:

Figure 2.6: Path of the Kubectl binary

9. Since we are currently logged in as the root user, let's create a regular user called
k8suser by running the following command:

useradd k8suserPac
kt

 P
ub

lis
hin

g

Setting Up Kubernetes | 7

Enter your desired password when you are prompted for it. You will also be
prompted to enter other details, such as your full name. You may choose to skip
those details by simply pressing Enter. You should see an output similar to the
following:

Figure 2.7: Creating a new Linux user

Enter Y and hit Enter to confirm the final prompt for creating a user, as shown at
the end of the previous screenshot.

10. Now, switch user from root to k8suser:

su - k8suser

You should see the following output:

Figure 2.8: Switching to a new Linux user

11. Now, we can create a Kubernetes cluster using minikube start:

minikube start --kubernetes-version=v1.16.2Pac
kt

 P
ub

lis
hin

g

8 | An Overview of Kubernetes

It will take a few minutes to download the VM images and get everything set up.
After Minikube has started up successfully, you should see a response that looks
similar to the following:

Figure 2.9: Minikube first startup

As we mentioned earlier, Minikube starts up a VM instance with all the components
of Kubernetes inside it. By default, it uses VirtualBox, and you can use the
--vm-driver flag to specify a particular hypervisor driver (such as hyperkit
for macOS). Minikube also provides the --kubernetes-version flag so you
can specify the Kubernetes version you want to use. If not specified, it will use
the latest version that was available when the Minikube release was finalized. In
this chapter, to ensure compatibility of the Kubernetes version with the Kubectl
version, we have specified Kubernetes version v1.16.2 explicitly.

The following commands should help establish that the Kubernetes cluster that
was started by Minikube is running properly.

12. Use the following command to get the basic status of the various components of
the cluster:

minikube status

You should see the following response:

Figure 2.10: Status of various components of Minikube

Pac
kt

 P
ub

lis
hin

g

Kubernetes Components Overview | 9

13. Now, let's look at the version of the Kubectl client and Kubernetes server:

kubectl version --short

You should see the following response:

Figure 2.11: Getting the version of Minikube

14. Let's learn how many machines comprise the cluster and get some basic
information about them:

kubectl get node

You should see a response similar to the following:

Figure 2.12: Getting the list of nodes

After finishing this exercise, you should have Minikube set up with a single-node
Kubernetes cluster. In the next section, we will enter the Minikube VM to take a look at
how the cluster is composed and the various components of Kubernetes that make it
work.

Kubernetes Components Overview
By completing the previous exercise, you have a single-node Kubernetes cluster up and
running. Before playing your first concert, let's hold on a second and pull the curtains
aside to take a look backstage to see how Kubernetes is architected behind the scenes,
and then check how Minikube glues its various components together inside its VM.

Kubernetes has several core components that make the wheels of the machine turn.
They are as follows:

• API server

• Etcd

• Controller manager

• Scheduler

• Kubelet

Pac
kt

 P
ub

lis
hin

g

10 | An Overview of Kubernetes

These components are critical for the functioning of a Kubernetes cluster.

Besides these core components, you would deploy your applications in containers,
which are bundled together as pods. We will learn more about pods in Chapter 5, Pods.
These pods, and several other resources, are defined by something called API objects.

An API object describes how a certain resource should be honored in Kubernetes. We
usually define API objects using a human-readable manifest file, and then use a tool
(such as Kubectl) to parse it and hand it over to a Kubernetes API server. Kubernetes
then tries to create the resource specified in the object and match its state to the
desired state in the object definition, as mentioned in the manifest file. Next, we will
walk you through how these components are organized and behave in a single-node
cluster created by Minikube.

Minikube provides a command called minikube ssh that's used to gain SSH access
from the host machine (in our machine, it's the physical machine running Ubuntu 18.04)
to the minikube virtual machine, which serves as the sole node in our Kubernetes
cluster. Let's see how that works:

minikube ssh

You will see the following output:

Figure 2.13: Accessing the Minikube VM via SSH

NOTE

All the commands that will be shown later in this section are presumed to have
been run inside the Minikube VM, after running minikube ssh.

Pac
kt

 P
ub

lis
hin

g

Kubernetes Components Overview | 11

Container technology brings the convenience of encapsulating your application.
Minikube is not exceptional – it leverages containers to glue the Kubernetes
components together. In the Minikube VM, Docker is pre-installed so that it can
manage the core Kubernetes components. You can take a look at this by running
docker ps; however, the result may be overwhelming as it includes all the running
containers – both the core Kubernetes components and add-ons, as well as all the
columns – which will output a very large table.

To simplify the output and make it easier to read, we will pipe the output from docker
ps into two other Bash commands:

1. grep -v pause: This will filter the results by not displaying the "sandbox"
containers.

Without grep -v pause, you would find that each container is "paired" with a
"sandbox" container (in Kubernetes, it's implemented as a pause image). This is
because, as mentioned in the previous chapter, Linux containers can be associated
(or isolated) by joining the same (or different) Linux namespace. In Kubernetes,
a "sandbox" container is used to bootstrap a Linux namespace, and then the
containers that run the real application are able to join that namespace. Finer
details about how all this works under the hood have been left out of scope for the
sake of brevity.

2. awk '{print $NF}': This will only print the last column with a container name.

Thus, the final command is as follows:

docker ps | grep -v pause | awk '{print $NF}'

You should see the following output:

Figure 2.14: Getting the list of containers by running the Minikube VM

Pac
kt

 P
ub

lis
hin

g

12 | An Overview of Kubernetes

The highlighted containers shown in the preceding screenshot are basically the core
components of Kubernetes. We'll discuss each of these in detail in the following
sections.

etcd

A distributed system may face various kinds of failures (network, storage, and so on)
at any moment. To ensure it still works properly when failures arise, critical cluster
metadata and state must be stored in a reliable way.

Kubernetes abstracts the cluster metadata and state as a series of API objects. For
example, the node API object represents a Kubernetes worker node's specification, as
well as its latest status.

Kubernetes uses etcd as the backend key-value database to persist the API objects
during the life cycle of a Kubernetes cluster. It is important to note that nothing
(internal cluster resources or external clients) is allowed to talk to etcd without going
through the API server. Any updates to or requests from etcd are made only via calls to
the API server.

In practice, etcd is usually deployed with multiple instances to ensure the data is
persisted in a secure and fault-tolerant manner.

API Server

The API server allows standard APIs to access Kubernetes API objects. It is the only
component that talks to backend storage (etcd).

Additionally, by leveraging the fact that it is the single point of contact for
communicating to etcd, it provides a convenient interface for clients to "watch" any API
objects that they may be interested in. Once the API object has been created, updated,
or deleted, the client that is "watching" will get instant notifications so they can act
upon those changes. The "watching" client is also known as the "controller," which
has become a very popular entity that's used in both built-in Kubernetes objects and
Kubernetes extensions.

Note:

You will learn more about the API server in Chapter 4, How to Communicate with
Kubernetes (API Server), and about controllers in Chapter 7, Kubernetes Controllers.Pac

kt
 P

ub
lis

hin
g

Kubernetes Components Overview | 13

Scheduler

The scheduler is responsible for distributing the incoming workloads to the most
suitable node. The decision regarding distribution is made by the scheduler's
understanding of the whole cluster, as well as a series of scheduling algorithms.

Note

You will learn more about the scheduler in Chapter 18, Advanced Scheduling in
Kubernetes.

Controller Manager

As we mentioned earlier in the API Server subsection, the API server exposes ways to
"watch" almost any API object and notify the watchers about the changes in the API
objects being watched.

It works pretty much like a subscriber-publisher pattern. The controller manager acts
as a typical subscriber and watches the API objects that it is interested in, and then
attempts to make appropriate changes to move the current state toward the desired
state described in the object.

For example, if it gets an update from the API server saying that an application
claims two replicas, but right now there is only one living in the cluster, it will create
the second one to make the application adhere to its desired replica number. The
reconciliation process keeps running across the controller manager's life cycle to
ensure that all applications stay in their expected state.

The controller manager aggregates various kinds of controllers to honor the semantics
of API objects, such as Deployments and Services, which we will introduce later in this
chapter.

Where Is the Kubelet?

etcd, the API server, the scheduler, and the controller manager comprise the control
plane of Kubernetes. A machine that runs these components is called a master node.
The kubelet, on the other hand, is deployed on each worker machine.

In our single-node Minikube cluster, the kubelet is deployed on the same node that
carries the control plane components. However, in most production environments,
it is not deployed on any of the master nodes. We will learn more about production
environments when we deploy a multi-node cluster in Chapter 11, Deployments and HA
Kubernetes.

Pac
kt

 P
ub

lis
hin

g

14 | An Overview of Kubernetes

The kubelet primarily aims at talking to the underlying container runtime (for example,
Docker, containerd, or cri-o) to bring up the containers and ensure that the containers
are running as expected. Also, it's responsible for sending the status update back to the
API server.

However, as shown in the preceding screenshot, the docker ps command doesn't
show anything named kubelet. To start, stop, or restart any software and make it
auto-restart upon failure, usually, we need a tool to manage its life cycle. In Linux,
systemd has that responsibility. In Minikube, the kubelet is managed by systemd
and runs as a native binary instead of a Docker container. We can run the following
command to check its status:

systemctl status kubelet

You should see an output similar to the following:

Figure 2.15: Status of kubelet

By default, the kubelet has the configuration for staticPodPath in its config file
(which is stored at /var/lib/kubelet/config.yaml). Kubelet is instructed to
continuously watch the changes in files under that path, and each file under that path
represents a Kubernetes component. Let's understand what this means by first finding
staticPodPath in the kubelet's config file:

grep "staticPodPath" /var/lib/kubelet/config.yaml

You should see the following output:

Figure 2.16: Printing out the staticPodPath field from the manifest for kubeletPac
kt

 P
ub

lis
hin

g

Kubernetes Components Overview | 15

Now, let's see the contents of this path:

ls /etc/kubernetes/manifests

You should see the following output:

Figure 2.17: Exploring the manifests of Kubernetes components

As shown in the list of files, the core components of Kubernetes are defined by objects
that have a definition specified in YAML files. In the Minikube environment, in addition
to managing the user-created pods, the kubelet also serves as a systemd equivalent
in order to manage the life cycle of Kubernetes system-level components, such as the
API server, the scheduler, the controller manager, and other add-ons. Once any of
these YAML files is changed, the kubelet auto-detects that and updates the state of the
cluster so that it matches the desired state defined in the updated YAML configuration.

We will stop here without diving deeper into the design of Minikube. In addition to
"static components," the kubelet is also the manager of "regular applications" to ensure
that they're running as expected on the node, and evicts pods according to the API
specification or upon resource shortage.

kube-proxy

kube-proxy appears in the output of the docker ps command, but it was not present
at /etc/kubernetes/manifests when we explored that directory in the previous
subsection. This implies its role – it's positioned more as an add-on component instead
of a core one.

kube-proxy is designed as a distributed network router that runs on every node. Its
ultimate goal is to ensure that inbound traffic to a Service (this is an API object that we
will introduce later) endpoint can be routed properly. Moreover, if there are multiple
containers serving one application, it is able to balance the traffic in a round-robin
manner by leveraging the underlying Linux iptables/IPVS technology.

Pac
kt

 P
ub

lis
hin

g

16 | An Overview of Kubernetes

There are also some other add-ons such as CoreDNS, though we will skip those so that
we can focus on the core components and get a high-level picture of things.

Note

Sometimes, kube-proxy and CoreDNS are also considered core components
of a Kubernetes installation. To some extent, that's technically true as they're
mandatory in most cases; otherwise, the Service API object won't work. However,
in this book, we're leaning more toward categorizing them as "add-ons" as they
focus on the implementation of one particular Kubernetes API resource instead
of a general workflow. Also, kube-proxy and CoreDNS are defined in addon-
manager.yaml.tmpl instead of being portrayed on the same level as the other
core Kubernetes components.

Kubernetes Architecture
In the previous section, we gained a first impression of the core Kubernetes
components: etcd, the API server, the scheduler, the controller manager, and the
kubelet. These components, plus other add-ons, comprise the Kubernetes architecture,
which can be seen in the following diagram:

Figure 2.18: Kubernetes architecture

Pac
kt

 P
ub

lis
hin

g

Kubernetes Architecture | 17

At this point, we won't look at each component in too much detail. However, at a high-
level view, it's critical to understand how the components communicate with each other
and why they're designed in that way.

The first thing to understand is which components the API server can interact with.
From the preceding diagram, we can easily tell that the API server can talk to almost
every other component (except the container runtime, which is handled by the kubelet)
and that it also serves to interact with end users directly. This design makes the API
server act as the "heart" of Kubernetes. Additionally, the API server also scrutinizes
incoming requests and writes API objects into the backend storage (etcd). This, in
other words, makes the API server the throttle of security control measures such as
authentication, authorization, and auditing.

The second thing to understand is how the different Kubernetes components (except
for the API server) interact with each other. It turns out that there is no explicit
connection among them – the controller manager doesn't talk to the scheduler, nor
does the kubelet talk to kube-proxy.

You read that right – they do need to work in coordination with each other to
accomplish many functionalities, but they never directly talk to each other. Instead,
they communicate implicitly via the API server. More precisely, they communicate by
watching, creating, updating, or deleting corresponding API objects. This is also known
as the controller/operator pattern.

Container Network Interface

There are several networking aspects to take into consideration, such as how a pod
communicates with its host machine's network interface, how a node communicates
with other nodes, and, eventually, how a pod communicates with any pod across
different nodes. As the network infrastructure differs vastly in cloud or on-premise
environments, Kubernetes chooses to solve those problems by defining a specification
called the Container Network Interface (CNI). Different CNI providers can follow the
same interface and implement their own logic that adheres to the Kubernetes standards
to ensure that the whole Kubernetes network works. We will revisit the idea of the
CNI in Chapter 11, Cloud Deployments and HA Kubernetes. For now, let's return to our
discussion of how the different Kubernetes components work.Pac

kt
 P

ub
lis

hin
g

18 | An Overview of Kubernetes

Later in this chapter, Exercise 2.05, How Kubernetes Manages a Pod's Life Cycle, will
help you consolidate your understanding of this and clarify a few things, such as how
the different Kubernetes components operate synchronously or asynchronously to
ensure a typical Kubernetes workflow, and what would happen if one or more of these
components malfunctions. The exercise will help you better understand the overall
Kubernetes architecture. But before that, let's introduce our containerized application
from the previous chapter to the Kubernetes world and explore a few benefits of
Kubernetes.

Migrating Containerized Application to Kubernetes
In the previous chapter, we built a simple HTTP server called k8s-for-beginners,
and it runs as a Docker container. It works perfectly for a sample application. However,
what if you have to manage thousands of containers, and coordinate and schedule
them properly? How can you upgrade a service without downtime? How do you
keep a service healthy upon unexpected failure? These problems exceed the abilities
of a system that simply uses containers alone. What we need is a platform that can
orchestrate, as well as manage, our containers.

We have told you that Kubernetes is the solution that we need. Next, we will walk
you through a series of exercises regarding how to orchestrate and run containers in
Kubernetes using a Kubernetes native approach.

Pod Specification

A straightforward thought is that we wish to see what the equivalent API call or
command to run a container in Kubernetes is. As explained in Chapter 1, Understanding
Kubernetes and Containers, a container can join another container's namespace so
that they can access each other's resources (for example, network, storage, and so on)
without additional overhead. In the real world, some applications may need several
containers working closely, either in parallel or in a particular order (the output of
one will be processed by another). Also, some generic containers (for example, logging
agent, network throttling agent, and so on) may need to work closely with their target
containers.

Pac
kt

 P
ub

lis
hin

g

Migrating Containerized Application to Kubernetes | 19

Since an application may often need several containers, a container is not the
minimum operational unit in Kubernetes; instead, it introduces a concept called pods
to bundle one or multiple containers. Kubernetes provides a series of specifications
to describe how this pod is supposed to be, including several specifics such as images,
resource requests, startup commands, and more. To send this pod spec to Kubernetes,
particularly to the Kubernetes API server, we're going to use Kubectl.

Note

We will learn more about pods in Chapter 5, Pods, but we will use them in this
chapter for the purpose of simple demonstrations. You can refer to the complete
list of available pod specifications at this link: https://godoc.org/k8s.io/api/core/
v1#PodSpec.

Next, let's learn how to run a single container in Kubernetes by composing the pod spec
file (also called the specification, manifest, config, or configuration file). In Kubernetes,
you can use YAML or JSON to write this specification file, though YAML is commonly
used since it is more human-readable and editable.

Consider the following YAML spec for a very simple pod:

kind: Pod

apiVersion: v1

metadata:

 name: k8s-for-beginners

spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-beginners

Let's go through the different fields briefly:

• kind tells Kubernetes which type of object you want to create. Here, we
are creating a Pod. In later chapters, you will see many other kinds, such as
Deployment, StatefulSet, ConfigMap, and so on.

• apiVersion specifies a particular version of an API object. Different versions may
behave a bit differently.Pac

kt
 P

ub
lis

hin
g

https://godoc.org/k8s.io/api/core/v1#PodSpec
https://godoc.org/k8s.io/api/core/v1#PodSpec

20 | An Overview of Kubernetes

• metadata includes some attributes that can be used to uniquely identify the
pod, such as name and namespace. If we don't specify a namespace, it goes in the
default namespace.

• spec contains a series of fields describing the pod. In this example, there is one
container that has its image URL and name specified.

Pods are one of the simplest Kubernetes objects to deploy, so we will use them to learn
how to deploy objects using YAML manifests in the following exercise.

Applying a YAML manifest

Once we have a YAML manifest ready, we can use kubectl apply -f <yaml file>
or kubectl create -f <yaml file> to instruct the API server to persist the API
resources defined in this manifest. When you create a pod from scratch for the first
time, it doesn't make much difference which of the two commands you use. However,
we may often need to modify the YAML (let's say, for example, if we want to upgrade
the image version) and reapply it. If we use the kubectl create command, we have
to delete and recreate it. However, with the kubectl apply command, we can rerun
the same command and the delta change will be calculated and applied automatically
by Kubernetes. This is very convenient from an operational point of view. For example,
if we use some form of automation, it is much simpler to repeat the same command. So,
we will use kubectl apply across the following exercise, regardless of whether it's the
first time it's being applied or not.

Exercise 2.02: Running a Pod in Kubernetes

In the previous exercise, we started up Minikube and looked at the various Kubernetes
components running as pods. Now, in this exercise, we shall deploy our own pod. Follow
these steps to complete this exercise:

Note

If you have been trying out the commands from the Kubernetes Components
Overview section, don't forget to leave the SSH session by using the exit
command before beginning this exercise. Unless otherwise specified, all
commands using kubectl should run on the host machine and not inside the
Minikube VM.Pac

kt
 P

ub
lis

hin
g

Migrating Containerized Application to Kubernetes | 21

1. In Kubernetes, we use a spec file to describe an API object such as a pod. As
mentioned earlier, we will stick to YAML it is are more human-readable and
editable. Create a file named k8s-for-beginners-pod.yaml (using any text
editor of your choice) with the following content:

kind: Pod

apiVersion: v1

metadata:

 name: k8s-for-beginners

spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-beginners

Note

Please replace the image path in the last line of the preceding YAML file with the
path to your own image that you created in the previous chapter.

2. On the host machine, run the following command to create this pod:

kubectl apply -f k8s-for-beginners-pod.yaml

You should see the following output:

Figure 2.19: Creating k8s-for-beginners-pod

3. Now, we can use the following command to check the pod's status:

kubectl get pod

You should see the following response:

Figure 2.20: Getting the list of podsPac
kt

 P
ub

lis
hin

g

22 | An Overview of Kubernetes

Be default, kubectl get pod will list all the pods using a table format. In the
preceding output, we can see the k8s-for-beginners pod is running properly
and that it has one container that is ready (1/1). Moreover, Kubectl provides an
additional flag called -o so we can adjust the output format. For example, -o yaml
or -o json will return the full output of the pod API object in YAML or JSON
format, respectively, as it's stored version in Kubernetes' backend storage (etcd).

4. You can use the following command to get more information about the pod:

kubectl get pod -o wide

You should see the following output:

Figure 2.21: Getting more information about pods

As you can see, the output is still in the table format and we get additional
information such as IP (the internal pod IP) and NODE (which node the pod is
running on).

5. You can get the list of nodes in our cluster by running the following command:

kubectl get node

You should see the following response:

Figure 2.22: Getting the list of nodes

6. The IP listed in Figure 2.21 refers to the internal IP Kubernetes assigned for this
pod, and it's used for pod-to-pod communication, not for routing external traffic
to pods. Hence, if you try to access this IP from outside the cluster, you will get
nothing. You can try that using the following command from the host machine:

curl 172.17.0.4:8080

Note

Remember to change 172.17.0.4 to the value you get for your environment in
step 4, as seen in Figure 2.21.

Pac
kt

 P
ub

lis
hin

g

Migrating Containerized Application to Kubernetes | 23

The curl command will just hang and return nothing, as shown here:

Figure 2.23: Trying to access our application via pod IP

You will need to press Ctrl + C to abort it.

7. In most cases, end users don't need to interact with the internal pod IP. However,
just for observation purposes, let's walk into the cluster by opening an SSH session
to the Minikube VM:

minikube ssh

You will see the following response in the Terminal:

Figure 2.24: Accessing the Minikube VM via SSH

8. Now, try calling the IP from inside the Minikube VM to verify that it works:

curl 172.17.0.4:8080

You should get a successful response:

Figure 2.25: Accessing our application from inside the Minikube VM

With this, we have successfully deployed our application in a pod on the Kubernetes
cluster. We can confirm that it is working since we get a response when we call the
application from inside the cluster. Now, you may end the SSH session using the exit
command.

Service Specification

The last part of the previous section proves that network communication works great
among different components inside the cluster. But in the real world, you would not
expect users of your application to gain SSH access into your cluster to use your
applications. So, you would want your application to be accessed externally.

Pac
kt

 P
ub

lis
hin

g

24 | An Overview of Kubernetes

To facilitate just that, Kubernetes provides a concept called a Service to abstract the
network access to your application's pods. A Service acts as a network proxy to accept
network traffic from external users, and then distributes it to internal pods. However,
there should be a way to describe the association rule between the Service and the
corresponding pods. Kubernetes uses labels, which are defined in the pod definitions,
and label selectors, which are defined in the Service definition, to describe this
relationship.

Note

You will learn more about labels and label selectors in Chapter 6, Labels and
Annotations.

Let's consider the following sample spec for a Service:

kind: Service

apiVersion: v1

metadata:

 name: k8s-for-beginners

spec:

 selector:

 tier: frontend

 type: NodePort

 ports:

 - port: 80

 targetPort: 8080

Similar to a pod spec, here, we define kind and apiVersion, while name is defined
under the metadata field. Under the spec field, there are several critical fields to take
note of:

• selector defines the labels to be selected to match a relationship with the
corresponding pods, which, as you will see in the following exercise, are supposed
to be labeled properly.

• type defines the type of Service. If not specified, the default type is ClusterIP,
which means it's only used within the cluster, that is, internally. Here, we specify it
as NodePort. This means the Service will expose a port in each node of the cluster
and associate the port with the corresponding pods. Another well-known type is
called LoadBalancer, which is typically not implemented in a vanilla Kubernetes
offering. Instead, Kubernetes delegates the implementation to each cloud provider,
such as GKE, EKS, and so on.

Pac
kt

 P
ub

lis
hin

g

Migrating Containerized Application to Kubernetes | 25

• ports include a series of port fields, each with a targetPort field. The
targetPort field is the actual port that's exposed by the destination pod.

Thus, the Service can be accessed internally via <service ip>:<port>. Now, for
example, if you have an NGINX pod running internally and listening at port 8080,
then you should define targetPort as 8080. You can specify any arbitrary number
for the port field, such as 80 in this case. Kubernetes will set up and maintain the
mapping between <service IP>:<port> and <pod IP>:<targetPort>. In the
following exercise, we will learn how to access the Service from outside the cluster
and bring external traffic inside the cluster via the Service.

In the following exercise, we will define Service manifests and create them using
kubectl apply commands. You will learn that the common pattern for resolving
problems in Kubernetes is to find out the proper API objects, then compose the detailed
specs using YAML manifests, and finally create the objects to bring them into effect.

Exercise 2.03: Accessing a Pod via a Service

In the previous exercise, we observed that an internal pod IP doesn't work for anyone
outside the cluster. In this exercise, we will create Services that will act as connectors
to map the external requests to the destination pods so that we can access the pods
externally without entering the cluster. Follow these steps to complete this exercise:

1. Firstly, let's tweak the pod spec from Exercise 2.02, Running a Pod in Kubernetes, to
apply some labels. Modify the contents of the k8s-for-beginners-pod1.yaml
file, as follows:

kind: Pod

apiVersion: v1

metadata:

 name: k8s-for-beginners

 labels:

 tier: frontend

spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-beginners

Here, we added a label pair, tier: frontend, under the labels field.

2. Because the pod name remains the same, let's rerun the apply command so that
Kubernetes knows that we're trying to update the pod's spec, instead of creating a
new pod:

kubectl apply -f k8s-for-beginners-pod1.yaml

Pac
kt

 P
ub

lis
hin

g

26 | An Overview of Kubernetes

You should see the following response:

Figure 2.26: Updating k8s-for-beginners-pod

Behind the scenes, for the kubectl apply command, Kubectl generates the
difference of the specified YAML and the stored version in the Kubernetes server-
side storage (that is, etcd). If the request is valid (that is, we have not made any
errors in the specification format or the command), Kubectl will send an HTTP
patch to the Kubernetes API server. Hence, only the delta changes will be applied.
If you look at the message that's returned, you'll see it says pod/k8s-for-
beginners configured instead of created, so we can be sure it's applying the
delta changes and not creating a new pod.

3. You can use the following command to explicitly display the labels that have been
applied to existing pods:

kubectl get pod --show-labels

You should see the following response:

Figure 2.27: Getting the list of pods with labels

Now that the pod has the tier: frontend attribute, we're ready to create a
Service and link it to the pods.

4. Create a file named k8s-for-beginners-svc.yaml with the following content:

kind: Service

apiVersion: v1

metadata:

 name: k8s-for-beginners

spec:

 selector:

 tier: frontend

 type: NodePort

 ports:

 - port: 80

 targetPort: 8080

Pac
kt

 P
ub

lis
hin

g

Migrating Containerized Application to Kubernetes | 27

5. Now, let's create the Service using the following command:

kubectl apply -f k8s-for-beginners-svc.yaml

You should see the following response:

Figure 2.28: Creating the k8s-for-beginners-svc Service

6. Use the get command to return the list of created Services and confirm whether
our Service is online:

kubectl get service

You should see the following response:

Figure 2.29: Getting the list of Services

So, you may have noticed that the PORT(S) column outputs 80:32571/TCP. Port
32571 is an auto-generated port that's exposed on every node, which is done
intentionally so that external users can access it. Now, before moving on to the
next step, exit the SSH session.

7. Now, we have the "external port" as 32571, but we still need to find the external IP.
Minikube provides a utility we can use to easily access the NodePort Service:

minikube service k8s-for-beginners

You should see a response that looks similar to the following:

Figure 2.30: Getting the URL and port to access the NodePort Service

Depending on your environment, this may also automatically open a browser web
page so you can access the Service. From the URL, you will be able to see that the
Service port is 32606. The external IP is actually the IP of the Minikube VM.

Pac
kt

 P
ub

lis
hin

g

28 | An Overview of Kubernetes

8. You can also access our application from outside the cluster via the command line:

curl http://192.168.99.100:32571

You should see the following response:

Figure 2.31: Accessing the application

As a summary, in this exercise, we created a NodePort Service to enable external users
to access the internal pods without entering the cluster. Under the hood, there are
several layers of traffic transitions that make this happen:

• The first layer is from the external user to the machine IP at the auto-generated
random port (3XXXX).

• The second layer is from the random port (3XXXX) to the Service IP (10.X.X.X) at
port 80.

• The third layer is from the Service IP (10.X.X.X) to the ultimate pod IP at port 8080.

The following is a diagram illustrating these interactions:

Figure 2.32: Routing traffic from a user outside the cluster to the pod running our application

Services and Pods

In step 3 of the previous exercise, you may have noticed that the Service tries to match
pods by labels (the selector field under the spec section) instead of using a fixed pod
name or something similar. From a pod's perspective, it doesn't need to know which
Service is bringing traffic to it. (In some rare cases, it can even be mapped to multiple
Services; that is, multiple Services may be sending traffic to a pod.)
Pac

kt
 P

ub
lis

hin
g

Delivering Kubernetes-Native Applications | 29

This label-based matching mechanism is widely used in Kubernetes. It enables the
API objects to be loosely coupled at runtime. For example, you can specify tier:
frontend as the label selector, which will, in turn, be associated with the pods that are
labeled as tier: frontend.

Due to this, by the time the Service is created, it doesn't matter if the backing pods
exist or not. It's totally acceptable for backing pods to be created later, and after
they are created, the Service object will become associated with the correct pods.
Internally, the whole mapping logic is implemented by the service controller, which is
part of the controller manager component. It's also possible that a Service may have
two matching pods at a time, and later a third pod is created with matching labels, or
one of the existing pods gets deleted. In either case, the service controller can detect
such changes and ensure that users can always access their application via the Service
endpoint.

It's a very commonly used pattern in Kubernetes to orchestrate your application using
different kinds of API objects, and then glue them together by using labels or other
loosely coupled conventions. It's also the key part of container orchestration.

Delivering Kubernetes-Native Applications
In the previous sections, we migrated a Docker-based application to Kubernetes and
successfully accessed it from inside the Minikube VM, as well as externally. Now, let's
see what other benefits Kubernetes can provide if we design our application from the
ground up so that it can be deployed using Kubernetes.

Along with the increasing usage of your application, it may be common to run several
replicas of certain pods to serve a business functionality. In this case, grouping different
containers in a pod alone is not sufficient. We need to go ahead and create groups of
pods that are working together. Kubernetes provides several abstractions for groups
of pods, such as Deployments, DaemonSets, Jobs, CronJobs, and so on. Just like the
Service object, these objects can also be created by using a spec that's been defined in a
YAML file.

To start understanding the benefits of Kubernetes, let's use a Deployment to
demonstrate how to replicate (scale up/down) an application in multiple pods.

Abstracting groups of pods using Kubernetes gives us the following advantages:

• Creating replicas of pods for redundancy: This is the main advantage of
abstractions of groups of pods such as Deployments. A Deployment can create
several pods with the given spec. A Deployment will automatically ensure that the
pods that it creates are online, and it will automatically replace any pods that fail.

Pac
kt

 P
ub

lis
hin

g

30 | An Overview of Kubernetes

• Easy upgrades and rollbacks: Kubernetes provides different strategies that you
can use to upgrade your applications, as well as rolling versions back. This is
important because in modern software development, software is often developed
iteratively and updates are released frequently. An upgrade can change anything in
the Deployment specification. It can be an update of labels or any other field(s), an
image version upgrade, an update on its embedded containers, and so on.

Let's take a look at some notable aspects of the spec of a sample Deployment:

k8s-for-beginners-deploy.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: k8s-for-beginners

spec:

 replicas: 3

 selector:

 matchLabels:

 tier: frontend

 template:

 metadata:

 labels:

 tier: frontend

 spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-beginners

In addition to wrapping the pod spec as a "template," a Deployment must also specify its
own kind (Deployment), as well as the API version (apps/v1).

Note

For some historical reason, the spec name apiVersion is still being used.
But technically speaking, it literally means apiGroupVersion. In the preceding
Deployment example, it belongs to the apps group and is version v1.Pac

kt
 P

ub
lis

hin
g

Delivering Kubernetes-Native Applications | 31

In the Deployment spec, the replicas field instructs Kubernetes to start three pods
using the pod spec defined in the template field. The selector field plays the same
role as we saw in the case of the Service – it aims to associate the Deployment object
with specific pods in a loosely coupled manner. This is particularly useful if you want to
bring any preexisting pods under the management of your new Deployment.

The replica number defined in a Deployment or other similar API object represents the
desired state of how many pods are supposed to be running continuously. If some of
these pods fail for some unexpected reason, Kubernetes will automatically detect that
and create a corresponding number of pods to take their place. We will explore that in
the following exercise.

We'll see a Deployment in action in the following exercise.

Exercise 2.04: Scaling a Kubernetes Application

In Kubernetes, it's easy to increase the number of replicas running the application by
updating the replicas field of a Deployment spec. In this exercise, we'll experiment
with how to scale a Kubernetes application up and down. Follow these steps to
complete this exercise:

1. Create a file named k8s-for-beginners-deploy.yaml using the content shown
here:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: k8s-for-beginners

spec:

 replicas: 3

 selector:

 matchLabels:

 tier: frontend

 template:

 metadata:

 labels:

 tier: frontend

 spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-beginners

If you take a closer look, you'll see that this Deployment spec is largely based on the
pod spec from earlier exercises (k8s-for-beginners-pod1.yaml), which you can
see under the template field.

Pac
kt

 P
ub

lis
hin

g

32 | An Overview of Kubernetes

2. Next, we can use Kubectl to create the Deployment:

kubectl apply -f k8s-for-beginners-deploy.yaml

You should see the following output:

Figure 2.33: Creating the k8s-for-beginners Deployment

3. Given that the Deployment has been created successfully, we can use the following
command to show all the Deployment's statuses, such as their names, running
pods, and so on:

kubectl get deploy

You should get the following response:

Figure 2.34: Getting the list of Deployments

Note

As shown in the previous command, we are using deploy instead of
deployment. Both of these will work and deploy is an allowed short name for
deployment. You can find a quick list of some commonly used short names at
this link: https://kubernetes.io/docs/reference/kubectl/overview/#resource-types.

You can also view the short names by running kubectl get, without specifying
the resource type.

4. A pod called k8s-for-beginners exists that we created in the previous exercise.
To ensure that we see only the pods being managed by the Deployment, let's delete
the older pod:

kubectl delete pod k8s-for-beginnersPac
kt

 P
ub

lis
hin

g

https://kubernetes.io/docs/reference/kubectl/overview/#resource-types

Delivering Kubernetes-Native Applications | 33

You should see the following response:

Figure 2.35: Deleting the k8s-for-beginners pod

5. Now, get a list of all the pods:

kubectl get pod

You should see the following response:

Figure 2.36: Getting the list of pods

The Deployment has created three pods, and their labels (specified in the labels
field in step 1) happen to match the Service we created in the previous section. So,
what will happen if we try to access the Service? Will the network traffic going to
the Service be smartly routed to the new three pods? Let's test this out.

6. To see how the traffic is distributed to the three pods, we can simulate a number of
consecutive requests to the Service endpoint by running the curl command inside
a Bash for loop, as follows:

for i in $(seq 1 30); do curl <minikube vm ip>:<service node port>; done

Note

In this command, use the same IP and port that you used in the previous exercise
if you are running the same instance of Minikube. If you have restarted Minikube
or have made any other changes, please get the proper IP of your Minikube cluster
by following step 9 of the previous exercise.

Pac
kt

 P
ub

lis
hin

g

34 | An Overview of Kubernetes

Once you've run the command with the proper IP and port, you should see the
following output:

Figure 2.37: Repeatedly accessing our application

From the output, we can tell that all 30 requests get the expected response.

7. You can run kubectl logs <pod name> to check the log of each pod. Let's
go one step further and figure out the exact number of requests each pod has
responded to, which might help us find out whether the traffic was evenly
distributed. To do that, we can pipe the logs of each pod into the wc command to
get the number of lines:

kubectl logs <pod name> | wc -l

Run the preceding command three times, copying the pod name you obtained, as
shown in Figure 2.36:

Figure 2.38: Getting the logs of each of the three pod replicas running our application

Pac
kt

 P
ub

lis
hin

g

Delivering Kubernetes-Native Applications | 35

The result shows that the three pods handled 9, 10, and 11 requests, respectively.
Due to the small sample size, the distribution is not absolutely even (that is, 10 for
each), but it is sufficient to indicate the default round-robin distribution strategy
used by a Service.

Note

You can read more about how kube-proxy leverages iptables to perform
the internal load balancing by looking at the official documentation: https://
kubernetes.io/docs/concepts/services-networking/service/#proxy-mode-iptables.

8. Next, let's learn how to scale up a Deployment. There are two ways of
accomplishing this: one way is to modify the Deployment's YAML config, where we
can set the value of replicas to another number (such as 5), while the other way
is to use the kubectl scale command, as follows:

kubectl scale deploy k8s-for-beginners --replicas=5

You should see the following response:

Figure 2.39: Scaling the Deployment

9. Let's verify whether there are five pods running:

kubectl get pod

You should see a response similar to the following:

Figure 2.40: Getting the list of pods

The output shows that the existing three pods are kept and that two new pods are
created.

Pac
kt

 P
ub

lis
hin

g

https://kubernetes.io/docs/concepts/services-networking/service/#proxy-mode-iptables
https://kubernetes.io/docs/concepts/services-networking/service/#proxy-mode-iptables

36 | An Overview of Kubernetes

10. Similarly, you can specify replicas that are smaller than the current number. In our
example, let's say that we want to shrink the replica's number to 2. The command
for this would look as follows:

kubectl scale deploy k8s-for-beginners --replicas=2

You should see the following response:

Figure 2.41: Scaling the Deployment

11. Now, let's verify the number of pods:

kubectl get pod

You should see a response similar to the following:

Figure 2.42: Getting the list of pods

As shown in the preceding screenshot, there are two pods, and they are both
running as expected. Thus, in Kubernetes' terms, we can say, "the Deployment is in
its desired state."

12. We can run the following command to verify this:

kubectl get deploy

You should see the following response:

Figure 2.43: Getting the list of Deployments

Pac
kt

 P
ub

lis
hin

g

Pod Life Cycle and Kubernetes Components | 37

13. Now, let's see what happens if we delete one of the two pods:

kubectl delete pod <pod name>

You should get the following response:

Figure 2.44: Deleting one of the pod replicas

14. Check the status of the pods to see what has happened:

kubectl get pod

You should see the following response:

Figure 2.45: Getting the list of pods

We can see that there are still two pods. From the output, it's worth noting that the
first pod name is the same as the second pod in Figure 2.42 (this is the one that was
not deleted), but that the highlighted pod name is different from any of the pods
in Figure 2.42. This indicates that the highlighted one is the pod that was newly
created to replace the deleted one. The Deployment created a new pod so that the
number of running pods satisfies the desired state of the Deployment.

In this exercise, we have learned how to scale a deployment up and down. You can scale
other similar Kubernetes objects, such as DaemonSets and StatefulSets, in the same
way. Also, for such objects, Kubernetes will try to auto-recover the failed pods.

Pod Life Cycle and Kubernetes Components
The previous sections in this chapter briefly described the Kubernetes components and
how they work internally with each other. On the other hand, we also demonstrated
how to use some Kubernetes API objects (pods, Services, and Deployments) to compose
your applications.Pac

kt
 P

ub
lis

hin
g

38 | An Overview of Kubernetes

But how is a Kubernetes API object managed by different Kubernetes components? Let's
consider a pod as an example. Its life cycle can be illustrated as follows:

Figure 2.46: The process behind the creation of a pod

This entire process can be broken down as follows:

1. A user starts to deploy an application by sending a Deployment YAML manifest to
the Kubernetes API server. The API server verifies the request and checks whether
it's valid. If it is, it persists the Deployment API object to its backend datastore
(etcd).

Note

For any step that evolves by modifying API objects, interactions have to happen
between etcd and the API server, so we don't list the interactions as extra steps
explicitly.

2. By now, the pod hasn't been created yet. The controller manager gets a notification
from the API server that a Deployment has been created.

3. Then, the controller manager checks whether the desired number of replica pods
are running already.

Pac
kt

 P
ub

lis
hin

g

Pod Life Cycle and Kubernetes Components | 39

4. If there are not enough pods running, it creates the appropriate number of pods.
The creation of pods is accomplished by sending a request with the pod spec to the
API server. It's quite similar to how a user would apply the Deployment YAML, but
with the major difference being that this happens inside the controller manager in
a programmatic manner.

5. Although pods have been created, they're nothing but some API objects stored in
etcd. Now, the scheduler gets a notification from the API server saying that new
pods have been created and no node has been assigned for them to run.

6. The scheduler checks the resource usage, as well as existing pods allocation, and
then calculates the node that fits best for each new pod. At the end of this step, the
scheduler sends an update request to the API server by setting the pod's nodeName
spec to the chosen node.

7. By now, the pods have been assigned a proper node to run on. However, there are
no physical containers running. In other words, the application doesn't work yet.
Each kubelet (running on different worker nodes) gets notifications, indicating that
some pods are expected to be run. Each kubelet will then check whether the pods
to be run have been assigned the node that a kubelet is running on.

8. Once the kubelet determines that a pod is supposed to be on its node, it calls the
underlying container runtime (Docker, containerd, or cri-o, for instance) to spin up
the containers on the host. Once the containers are up, the kubelet is responsible
for reporting its status back to the API server.

With this basic flow in mind, you should now have a vague understanding of the
answers to the following questions:

• Who is in charge of pod creation? What's the state of the pod upon creation?

• Who is responsible for placing a pod? What's the state of the pod after placement?

• Who brings up the concrete containers?

• Who is in charge of the overall message delivery process to ensure that all
components work together?

In the following exercise, we will use a series of concrete experiments to help you
solidify this understanding. This will allow you to see how things work in practice.Pac

kt
 P

ub
lis

hin
g

40 | An Overview of Kubernetes

Exercise 2.05: How Kubernetes Manages a Pod's Life Cycle

As a Kubernetes cluster comprises multiple components, and each component works
simultaneously, it's usually difficult to know what's exactly happening in each phase
of a pod's life cycle. To solve this problem, we will use a film editing technique to "play
the whole life cycle in slow motion," so as to observe each phase. We will turn off the
master plane components and then attempt to create a pod. Then, we will respond to
the errors that we see, and slowly bring each component online, one by one. This will
allow us to slow down and examine each stage of the process of pod creation "frame by
frame." Follow these steps to complete this exercise:

1. First, let's delete the Deployment and Service we created earlier by using the
following command:

kubectl delete deploy k8s-for-beginners && kubectl delete service k8s-for-
beginners

You should see the following response:

Figure 2.47: Deleting pods from previous exercises

2. Prepare two Terminal sessions: one (host Terminal) to run commands on your host
machine and another (Minikube Terminal) to pass commands inside the Minikube
VM via SSH. Thus, your Minikube session will be initiated like this:

minikube ssh

You will see the following output:

Figure 2.48: Accessing the Minikube VM via SSH

Note

All kubectl commands are expected to be run in the host Terminal session, while
all docker commands are to be run in the Minikube Terminal session.

Pac
kt

 P
ub

lis
hin

g

Pod Life Cycle and Kubernetes Components | 41

3. In the Minikube session, clean up all stopped Docker containers:

docker rm $(docker ps -a -q)

You should see the following output:

Figure 2.49: Cleaning up all stopped Docker containers

You may see some error messages such as "You cannot remove a running container
...". This is because the preceding docker rm command runs against all containers
(docker ps -a -q), but it won't stop any running containers.

4. In the Minikube session, stop the kubelet by running the following command:

sudo systemctl stop kubelet

This command does not show any response upon successful execution.

Note

Later in this exercise, we will manually stop and start other Kubernetes
components, such as the API server, that are managed by the kubelet in a
Minikube environment. Hence, it's required that you stop the kubelet first in
this exercise; otherwise, the kubelet will automatically restart its managed
components.

Note that in typical production environments, unlike Minikube, it's not necessary to
run the kubelet on the master node to manage the master plane components; the
kubelet is only a mandatory component on worker nodes.

5. After 30 seconds, check the cluster's status by running the following command in
your host Terminal session:

kubectl get node

Pac
kt

 P
ub

lis
hin

g

42 | An Overview of Kubernetes

You should see the following response:

Figure 2.50: Getting the list of nodes

It's expected that the status of the minkube node is changed to NotReady because
the kubelet has been stopped.

6. In your Minikube session, stop kube-scheduler, kube-controller-manager,
and kube-apiserver. As we saw earlier, all of these are running as Docker
containers. Hence, you can use the following commands, one after the other:

docker stop $(docker ps | grep kube-scheduler | grep -v pause | awk '{print
$1}')

docker stop $(docker ps | grep kube-controller-manager | grep -v pause | awk
'{print $1}')

docker stop $(docker ps | grep kube-apiserver | grep -v pause | awk '{print
$1}')

You should see the following responses:

Figure 2.51: Stopping the containers running Kubernetes components

As we explained in the Kubernetes Components Overview section, the grep -v
pause | awk command can fetch the exact container ID of the required Docker
containers. Then, the docker pause command can pause that running Docker
container.

Now, the three major Kubernetes components have been stopped. Pac
kt

 P
ub

lis
hin

g

Pod Life Cycle and Kubernetes Components | 43

7. Now, you need to create a Deployment spec on your host machine. Create a file
named k8s-for-beginners-deploy2.yaml with the following content:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: k8s-for-beginners

spec:

 replicas: 1

 selector:

 matchLabels:

 tier: frontend

 template:

 metadata:

 labels:

 tier: frontend

 spec:

 containers:

 - name: k8s-for-beginners

 image: packtworkshops/the-kubernetes-workshop:k8s-for-beginners

8. Try to create the Deployment by running the following command on your host
session:

kubectl apply -f k8s-for-beginners-deploy2.yaml

You should see a response similar to this:

Figure 2.52: Trying to create a new Deployment

Unsurprisingly, we got a network timeout error since we intentionally stopped
the Kubernetes API server. If the API server is down, you cannot run any kubectl
commands or use any equivalent tools (such as Kubernetes Dashboard) that rely on
API requests:

Figure 2.53: Trying to get a list of nodesPac
kt

 P
ub

lis
hin

g

44 | An Overview of Kubernetes

9. Let's see what happens if we restart the API server and try to create the
Deployment once more. Restart the API server container by running the following
command in your Minikube session:

docker start $(docker ps -a | grep kube-apiserver | grep -v pause | awk
'{print $1}')

This command tries to find the container ID of the stopped container carrying the
API server, and then it starts it. You should get a response like this:

Figure 2.54: Starting up the container for the Kubernetes API server

10. Wait for 10 seconds. Then, check whether the API server is online. You can run any
simple kubectl command for this. Let's try getting the list of nodes by running the
following command in the host session:

kubectl get node

You should see the following response:

Figure 2.55: Getting the list of nodes

As you can see, we are able to get a response without errors.

11. Let's try to create the Deployment again:

kubectl apply -f k8s-for-beginners-deploy2.yaml

You should see the following response:

Figure 2.56: Trying to create the new Deployment

12. Let's check whether the Deployment has been created successfully by running the
following command:

kubectl get deploy

You should see the following response:

Figure 2.57: Getting the list of Deployments

Pac
kt

 P
ub

lis
hin

g

Pod Life Cycle and Kubernetes Components | 45

From the preceding screenshot, there seems to be something wrong as in the
READY column, we can see 0/1, which indicates that there are 0 pods associated
with this Deployment, while the desired number is 1 (which we specified in the
replicas field in the Deployment spec).

13. Let's check that all the pods that are online:

kubectl get pod

You should get a response similar to the following:

Figure 2.58: Getting the list of pods

We can see that our pod has not been created. This is because the Kubernetes API
server only creates the API objects; the implementation of any API object is carried
out by other components. For example, in the case of Deployment, it's kube-
controller-manager that creates the corresponding pod(s).

14. Now, let's restart kube-controller-manager. Run the following command in
your Minikube session:

docker start $(docker ps -a | grep kube-controller-manager | grep -v pause |
awk '{print $1}')

You should see a response similar to the following:

Figure 2.59: Starting up the container for the controller manager

15. After waiting for a few seconds, check the status of the Deployment by running the
following command in the host session:

kubectl get deploy

You should see the following response:

Figure 2.60: Getting the list of Deployments

As we can see, the pod that we are looking for is still not online.
Pac

kt
 P

ub
lis

hin
g

46 | An Overview of Kubernetes

16. Now, check the status of the pod:

kubectl get pod

You should see the following response:

Figure 2.61: Getting the list of pods

This is different from Figure 2.58, as in this case, one pod was created by kube-
controller-manager. However, we can see Pending under the STATUS column.
This is because assigning a pod to a suitable node is not the responsibility of kube-
controller-manager; it's the responsibility of kube-scheduler.

17. Before starting kube-scheduler, let's take a look at some additional information
about the pod:

kubectl get pod -o wide

You should see the following response:

Figure 2.62: Getting more information about the pod

The highlighted NODE column indicates that no node has been assigned to this pod.
This proves that the scheduler is not working properly, which we know because we
took it offline. If the scheduler were to be online, this response would indicate that
there is no place to land this pod.

Note

You will learn a lot more about pod scheduling in Chapter 17, Advanced Scheduling
in Kubernetes.

18. Let's restart kube-scheduler by running the following command in the Minikube
session:

docker start $(docker ps -a | grep kube-scheduler | grep -v pause | awk
'{print $1}')

Pac
kt

 P
ub

lis
hin

g

Pod Life Cycle and Kubernetes Components | 47

You should see a response similar to the following:

Figure 2.63: Starting up the container for the Kubernetes scheduler

19. We can verify that kube-scheduler is working by running the following command
in the host session:

kubectl describe pod k8s-for-beginners-66644bb776-kvwfr

Please get the pod name from the response you get at step 17, as seen in Figure 2.62.
You should see the following output:

Figure 2.64: Describing the pod

We are truncating the output screenshots for better presentation. Please take a
look at the following excerpt, highlighting the Events section:

Figure 2.65: Examining the events reported by the pod

In the Events section, we can see that kube-scheduler has tried scheduling, but
it reports that there is no node available. Why is that?

This is because, earlier, we stopped the kubelet, and the Minikube environment is
a single-node cluster, so there is no available node(s) with a functioning kubelet for
the pod to be placed.

20. Let's restart the kubelet by running the following command in the Minikube
session:

sudo systemctl start kubelet

This should not give any response in the Terminal upon successful execution.
Pac

kt
 P

ub
lis

hin
g

48 | An Overview of Kubernetes

21. In the host Terminal, verify the status of the Deployment by running the following
command in the host session:

kubectl get deploy

You should see the following response:

Figure 2.66: Getting the list of Deployments

Now, everything looks healthy as the Deployment shows 1/1 under the READY
column, which means that the pod is online.

22. Similarly, verify the status of the pod:

kubectl get pod -o wide

You should get an output similar to the following:

Figure 2.67: Getting more information about the pod

We can see Running under STATUS and that it's been assigned to the minikube
node.

In this exercise, we traced each phase of a pod's life cycle by breaking the Kubernetes
components and then recovering them one by one. Now, based on the observations we
made about this exercise, we have better clarity regarding the answers to the questions
that were raised before this exercise:

• Steps 12 – 16: We saw that in the case of a Deployment, a controller manager is
responsible for requesting the creation of pods.

• Steps 17 – 19: The scheduler is responsible for choosing a node to place in the
pod. It assigns the node by setting a pod's nodeName spec to the desired node.
Associating a pod to a node, at this moment, merely happened at the level of the
API object.

• Steps 20 – 22: The kubelet actually brings up the containers to get our pod running.

Throughout a pod's life cycle, Kubernetes components cooperate by updating a pod's
spec properly. The API server serves as the key component that accepts pod update
requests, as well as to report pod changes to interested parties.

Pac
kt

 P
ub

lis
hin

g

Pod Life Cycle and Kubernetes Components | 49

In the following activity, we will bring together the skills we learned in the chapter to
find out how we can migrate from a container-based environment to a Kubernetes
environment in order to run our application.

Activity 2.01: Running the Pageview App in Kubernetes

In Activity 1.01, Creating a Simple Page Count Application, in the previous chapter, we
built a web application called Pageview and connected it to a Redis backend datastore.
So, here is a question: without making any changes to the source code, can we
migrate the Docker-based application to Kubernetes and enjoy Kubernetes' benefits
immediately? Try it out in this activity with the guidelines given.

This activity is divided into two parts: in the first part, we will create a simple pod with
our application that is exposed to traffic outside the cluster by a Service and connected
to a Redis datastore running as another pod. In the second part, we will scale the
application to three replicas.

Connecting the Pageview App to a Redis Datastore Using a Service

Similar to the --link option in Docker, Kubernetes provides a Service that serves as
an abstraction layer to expose one application (let's say, a series of pods tagged with
the same set of labels) that can be accessed internally or externally. For example, as
we discussed in this chapter, a frontend app can be exposed via a NodePort Service so
that it can be accessed by external users. In addition to that, in this activity, we need to
define an internal Service in order to expose the backend application to the frontend
application. Follow these steps:

1. In Activity 1.01, Creating a Simple Page Count Application, we built two Docker
images – one for the frontend Pageview web app and another for the backend Redis
datastore. You can use the skills we learned in this chapter to migrate them into
Kubernetes YAMLs.

2. Two pods (each managed by a Deployment) for the application is not enough. We
also have to create the Service YAML to link them together.

Ensure that the targetPort field in the manifest is consistent with the exposed
port that was defined in the Redis image, which was 6379 in this case. In terms of
the port field, theoretically, it can be any port, as long as it's consistent with the
one specified in the Pageview application.

The other thing worth mentioning here is the name field of the pod for Redis
datastore. It's the symbol that's used in the source code of the Pageview app to
reference the Redis datastore.

Pac
kt

 P
ub

lis
hin

g

50 | An Overview of Kubernetes

Now, you should have three YAMLs – two pods and a Service. Apply them using
kubectl -f <yaml file name>, and then use kubectl get deploy,service
to ensure that they're created successfully.

3. At this stage, the Pageview app should function well since it's connected to
the Redis app via the Service. However, the Service only works as the internal
connector to ensure they can talk to each other inside the cluster.

To access the Pageview app externally, we need to define a NodePort Service.
Unlike the internal Service, we need to explicitly specify the type as NodePort.

4. Apply the external Service YAML using kubectl -f <yaml file name>.

5. Run minikube service <external service name> to fetch the Service URL.

6. Access the URL multiple times to ensure that the Pageview number gets increased
by one each time.

With that, we have successfully run the Pageview application in Kubernetes. But what
if the Pageview app is down? Although Kubernetes can create a replacement pod
automatically, there is still downtime between when the failure is detected and when
the new pod is ready.

A common solution is to increase the replica number of the application so that the
whole application is available as long as there is at least one replica running.

Running the Pageview App in Multiple Replicas

The Pageview app can certainly work with a single replica. However, in a production
environment, high availability is essential and is achieved by maintaining multiple
replicas across nodes to avoid single points of failure. (This will be covered in detail in
upcoming chapters.)

In Kubernetes, to ensure the high availability of an application, we can simply increase
the replica number. Follow these steps to do so:

1. Modify the Pageview YAML to change replicas to 3.

2. Apply these changes by running kubectl apply -f <pageview app yaml>.

3. By running kubectl get pod, you should be able to see three Pageview pods
running.

4. Access the URL shown in the output of the minikube service command multiple
times.

Check the logs of each pod to see whether the requests are handled evenly among
the three pods.

Pac
kt

 P
ub

lis
hin

g

Pod Life Cycle and Kubernetes Components | 51

5. Now, let's verify the high availability of the Pageview app. Terminate any arbitrary
pods continuously while keeping one healthy pod. You can achieve this manually or
automatically by writing a script. Alternatively, you can open another Terminal and
check whether the Pageview app is always accessible.

If you opt for writing scripts to terminate the pods, you will see results similar to the
following:

Figure 2.68: Killing pods via a script

Pac
kt

 P
ub

lis
hin

g

52 | An Overview of Kubernetes

Assuming that you take a similar approach and write a script to check whether the
application is online, you should see an output similar to the following:

Figure 2.69: Repeatedly accessing the application via the script

Note

The solution to this activity can be found in the appendix at the end of this book.

A Glimpse into the Advantages of Kubernetes for Multi-Node Clusters

You can only truly appreciate the advantages of Kubernetes after seeing it in the
context of a multi-node cluster. This chapter, like many of the other chapters in
this book, uses a single-node cluster (Minikube environment) to demonstrate the
features that Kubernetes provides. However, in a real-world production environment,
Kubernetes is deployed with multiple workers and master nodes. Only then can
you ensure that a fault in a single node won't impact the general availability of the
application. And reliability is just one of the many benefits that a multi-node Kubernetes
cluster can bring to us.

Pac
kt

 P
ub

lis
hin

g

Summary | 53

But wait – isn't it true that we can implement applications and deploy them in a highly
available manner without using Kubernetes? That's true, but that usually comes with
a lot of management hassle, both in terms of managing the application as well as the
infrastructure. For example, during the initial Deployment, you may have to intervene
manually to ensure that all redundant containers are not running on the same machine.
In the case of a node failure, you will have to not only ensure that a new replica is
respawned properly, but to guarantee high availability, you also need to ensure that
the new one doesn't land on the nodes that are already running existing replicas. This
can be achieved either by using a DevOps tool or injecting logic on the application
side. However, either way is very complex. Kubernetes provides a unified platform that
we can use to wire apps to proper nodes by describing the high-availability features
we want using Kubernetes primitives (API objects). This pattern frees the minds of
application developers, as they only need to consider how to build their applications.
Features that are required for high availability, such as failure detection and recovery,
are taken care of by Kubernetes under the hood.

Summary
In this chapter, we used Minikube to provision a single-node Kubernetes cluster and
gave a high-level overview of Kubernetes' core components, as well as its key design
rationale. After that, we migrated an existing Docker container to Kubernetes and
explored some basic Kubernetes API objects, such as pods, Services, and Deployments.
Lastly, we intentionally broke a Kubernetes cluster and restored it one component at a
time, which allowed us to understand how the different Kubernetes components work
together to get a pod up and running on a node.

Throughout this chapter, we have used Kubectl to manage our cluster. We provided a
quick introduction to this tool, but in the following chapter, we will take a closer look at
this powerful tool and explore the various ways in which we can use it.

Pac
kt

 P
ub

lis
hin

g

Pac
kt

 P
ub

lis
hin

g

	_e2q2xdltvrf2
	_6y0t6d9b0uwc
	_l6uhbr89es4d
	OLE_LINK1
	OLE_LINK2
	_uo7y32hvvvet
	OLE_LINK3
	OLE_LINK4
	_nn4gbswyox8f
	_vjk7l0enlfdb
	_3nehe3yhtdj7
	OLE_LINK5
	OLE_LINK6
	_httlbhjmxpr8
	OLE_LINK7
	OLE_LINK8
	OLE_LINK9
	OLE_LINK10
	OLE_LINK11
	_z5i2krpcvyrc
	_rzsv2zj1v1pi
	_u7426su480gx
	_mj1p338j89fc
	_b91kzweplr6s
	_f0wcrwr4ia2b
	OLE_LINK12
	OLE_LINK13
	OLE_LINK14
	OLE_LINK15
	OLE_LINK16
	OLE_LINK17
	OLE_LINK18
	OLE_LINK19
	OLE_LINK20
	OLE_LINK21
	OLE_LINK26
	OLE_LINK27
	OLE_LINK28
	OLE_LINK29
	OLE_LINK22
	OLE_LINK23
	OLE_LINK30
	OLE_LINK31
	_kndbh5l9wdmi
	OLE_LINK35
	OLE_LINK36

