SOL INJECTION ATTACKS

INFORMATION IN THIS CHAPTER

e What Is an SQL Injection Attack?

e Why Are SQL Injection Attacks So Successful?

e How to Protect Yourself from an SQL Injection Attack

e Cleaning Up the Database After an SQL Injection Attack

What Is an SQL Injection Attack?

An SQL Injection Attack is probably the easiest attack to
prevent, while being one of the least protected against forms of
attack. The core of the attack is that an SQL command is
appended to the back end of a form field in the web or appli-
cation front end (usually through a website), with the intent of
breaking the original SQL Script and then running the SQL
script that was injected into the form field. This SQL injection
most often happens when you have dynamically generated SQL
within your front-end application. These attacks are most
common with legacy Active Server Pages (ASP) and Hypertext
Preprocessor (PHP) applications, but they are still a problem
with ASP.NET web-based applications. The core reason behind
an SQL Injection attack comes down to poor coding practices
both within the front-end application and within the database
stored procedures. Many developers have learned better
development practices since ASP.NET was released, but SQL
Injection is still a big problem between the number of legacy
applications out there and newer applications built by devel-
opers who didn’t take SQL Injection seriously while building the
application.

As an example, assume that the front-end web application
creates a dynamic SQL Script that ends up executing an SQL
Script similar to that shown in Example 6.1.

SELECT * FROM Orders WHERE OrderId=25

Example 6.1: A simple dynamic SQL statement as expected from the application.

Securing SQL Server

149



150 Chapter 6 SQL INJECTION ATTACKS

This SQL Script is created when the customer goes to the sales
order history portion of the company’s website. The value passed
in as the OrderId is taken from the query string in the URL, so the
query shown above is created when the customer goes to the URL
http://www.yourcompany.com/orders/orderhistory.aspx?Id=25.
Within the .NET code, a simple string concatenation is done to
put together the SQL Query. So any value that is put at the end of
the query string is passed to the database at the end of the select
statement. If the attacker were to change the query string to
something like “/orderhistory.aspx?id=25; delete from Orders,”
then the query sent to the SQL Server will be a little more
dangerous to run as shown in Example 6.2.

SELECT * FROM Orders WHERE ORderId=25; delete fromOrders;

Example 6.2: A dynamic SQL String that has had a delete statement concate-
nated to the end of it.

The way the query in Example 6.2 works is that the SQL
database is told via the semicolon “;” that the statement has
ended and that there is another statement that should be run. The
SQL Server then processes the next statement as instructed.

While the initial query is run as normal now, and without
any error being generated but when you look at the Orders
table, you won’t see any records in the Orders table because the
second query in that batch will have executed against
the database as well. Even if the attacker omits the value that
the query is expecting, they can pass in “; delete from Orders;”
and while the first query attempting to return the data from the
Orders table will fail, the batch will continue moving on to the
next statement, which will delete all the records in the Orders
table.

Many people will inspect the text of the parameters looking for
various key words in order to prevent these SQL Injection attacks.
However, this only provides the most rudimentary protection as
there are many, many ways to force these attacks to work. Some
of these techniques include passing in binary data, having the
SQL Server convert the binary data back to a text string, and then
executing the string. This can be proven by running the T/SQL
statement shown in Example 6.3.

DECLARE @v varchar(255)
SELECT @v = cast(0x73705F68656C706462 as varchar(255))
EXEC (@v)

Example 6.3: Code showing how a binary value can be used to hide a T/SQL
statement.



Chapter 6 SQL INJECTION ATTACKS 151

When data is being accepted from a user, either a customer
or an employee, one good way to ensure that the value won’t be
used for an SQL Injection attack is to validate that the data
being returned is of the expected data type. If a number is
expected, the front-end application should ensure that there is
in fact a number within the value. If a text string is expected,
then ensure that the text string is of the correct length, and it
does not contain any binary data within it. The front-end
application should be able to validate all data being passed in
from the user, either by informing the user of the problem and
allowing the user to correct the issue, or by crashing gracefully
in such a way that an error is returned and no commands are
sent to the database or the file system. Just because users
should be sending up valid data doesn’t mean that they are
going to. If users could be trusted, most of this book wouldn’t
be needed.

Note
The Database Isn't the Only Weak Spot

If a file name is going to be generated based on the user’s input, a few special values should be watched for. These
values are Windows file system key words that could be used to give attackers access to something they shouldn't have,
or could simply cause havoc on the front-end server.

o AUX

e C(LOCKS

e (COMI1-COMS8
e CON

e CONFIGS

e [PT1-LPT8

e NUL

e PRN

By allowing an attacker to create a file path using these special names, attackers could send data to a serial port by
using COM?1 (or whatever com port number they specify) or to a printer port using LPT1 (or whatever printer port they
specify). Bogus data could be sent to the system clock by using the CLOCKS$ value, or they could instruct the file
to be written to NUL, causing the file to simply disappear.

The same technique shown in Example 6.3 can be used to send
update statements into the database, causing values to be places



152

Chapter 6 SQL INJECTION ATTACKS

within the database that will cause undesirable side effects on the
websites powered by the databases. This includes returning
javascript to the client computers causing popups that show ads
for other projects, using HTML iframes to cause malicious soft-
ware to be downloaded, using HTML tags to redirect the browser
session to another website, and so on.

SQL Injection attacks aren’t successful against only in-house
applications. A number of third-party applications available for
purchase are susceptible to these SQL Injection attacks. When
purchasing third-party applications, it is often assumed that the
product is a secure application that isn’t susceptible to the
attack. Unfortunately, that isn’t the case, and any time a third-
party application is brought into a company, it should be
reviewed, with a full code review if possible, to ensure that the
application is safe to deploy. When a company deploys a third-
party application that is susceptible to attack and that appli-
cation is successfully attacked, it is the company that deployed
the application that will have to deal with the backlash for
having an insecure application and their customer data
compromised, not the company that produced and sold the
insecure application.

Many people think that SQL Injection attacks are a problem
unique to Microsoft SQL Server, and those people would be
wrong. SQL Injection attacks can occur against Oracle, MySQL,
DB2, Access, and so on. Any database that allows multiple
statements to be run in the same connection is susceptible to an
SQL Injection attack. Now some of the other database platforms
have the ability to turn off this function, some by default and
some via an optional setting. There are a number of tickets open
in the Microsoft bug-tracking website http://connect.microsoft.
com that are requesting that this ability be removed from
a future version of the Microsoft SQL Server product. While doing
so would make the Microsoft SQL Server product more secure, it
would break a large number of applications, many of which are
probably the ones that are susceptible to SQL Injection attacks.

Another technique that is easier to use against Microsoft SQL
Server 7 and 2000 is to use the sp_makewebtask system stored
procedure in the master database. If the attacker can figure out
the name of the webserver, which can usually be done pretty
easily by looking at the sysprocesses table, or the path to the
website, then the sp_makewebtask procedure can be used to
export lists of objects to HTML files on the web server to make it
easier for the attacker to see what objects are in the database.
Then they can simply browse to the website and see every table in
the database.



Chapter 6 SQL INJECTION ATTACKS 153

execmaster.dbo.sp_makewebtask "\\webl\wwwroot\tables.html",
"select = frominformation_schema.tables"

Code that an attacker could execute to export all table objects to an HTML file.

If xp_cmdshell is enabled on the server, then an attacker could
use xp_cmdshell to do the same basic thing just by using Bulk
Copy Protocol (BCP) instead of sp_makewebtask. The advantage
to sp_makewebtask is that xp_cmdshell doesn’t need to be
enabled, while the downside to sp_makewebtask is that it doesn’t
exist on Microsoft SQL Server 2005 and up. The downside to
xp_cmdshell is that, unless the application uses a login that is
a member of the sysadmin fixed server role, the xp_cmdshell
procedure will only have the rights that are granted by the proxy
account. An attacker can use the xp_cmdshell procedure to send
in the correct commands to give the account that is the proxy
account more permissions, or even change the account to one
that has the correct permissions. At this point BCP can be used to
output whatever data is wanted. The attacker could start with
database schema information, and then begin exporting your
customer information, or they could use this information to
change or delete the data from the database.

The catch to either of these techniques is that the NT File
System (NTES) permissions need to allow either the SQL Server
account or the account that the xp_cmdshell proxy account uses
to have network share and NTFS permissions to the web server.
On smaller applications where the web server and the database
server are running on the same machine, this is much, much
easier as the SQL Server is probably running as the local system
account that gives it rights to everything.

Note

There Are Lots of Protection Layers to Make Something Secure

Hopefully, by now you are starting to see how the various layers of the Microsoft SQL Server need to be secured
to make for a truly secure SQL Server. In this case we look specifically at NTFS permissions combined with the
xp_cmdshell proxy account, combined with the Windows account that the SQL Server is running under, combined with
the application account that logs into SQL having the minimum level of rights, and combined with parameterizing the
values from the web application all to create a more secure environment.

To fully protect from an SQL injection attack, the application account should only have the minimum rights needed
to function; it should have no rights to xp_cmdshell, which should be disabled (or removed from the server). The
SQL Server service should be running under a domain or local computer account that only has the rights needed to run as
a service and access the SAL Server folders. That Windows account should have no rights to the actual files that are
the website files, and it shouldn't be an administrator on the server that is running the SQL Server service



154 Chapter 6 SQL INJECTION ATTACKS

Note— Cont'd

or the web server. The resulting effective permissions that an SQL Server has are to access the database files and do
nothing else. Any other functions that the SQL Server instance is expected to perform either via an SQL Agent job or a CLR
procedure should be controlled through some sort of account impersonation.

At the application level the actual SQL Server error messages should be masked so that they aren't returned to
the client. If you have done these things, then even if attackers were able to successfully complete an SQL Injection
attack against the SQL Server they wouldn't be able to do much to the server as they wouldn't have any way to get
information back from the SQL Server (as the error messages are masked) and they wouldn't be able to get to the
shell and get software downloaded and installed from the outside. Once these things fail a few times, attackers will
probably just move on to an easier target.

The amount of time that an attacker will spend trying to successfully use an SQL Injection attack against a web-bhased
application will for the most part depend on the amount of value the target has. A smaller company such as
a wholesale food distributor probably won't be attacked very often, and the attacker will probably leave after a short
period of time. However, a bank or other financial company will provide a much more enticing target for the
attacker, and the attack will probably last much longer, with many more techniques being tried, as well as many
combinations of techniques until they successfully break into the database application.

Why Are SOL Injection Attacks
So Successful?

SQL Injection attacks are so successful for a few reasons, the
most common of which is that many newer developers simply
don’t know about the problem. With project timelines being so
short, these junior developers don’t have the time to research the
security implications of using dynamic SQL. These applications
then get left in production for months or years, with little to no
maintenance. These developers can then move through their
career without anyone giving them the guidance needed to
prevent these problems.

Now developers aren’t solely to blame for SQL Injection attack
problems. The IT Management should have policies in place in
order to ensure that newer developers that come in don’t have the
ability to write dynamic inline SQL against the database engine.
These policies should include rules like the following:

1. All database interaction must be abstracted through stored
procedures.

2. No stored procedure should have dynamic SQL unless there is
no other option.



Chapter 6 SQL INJECTION ATTACKS 155

3. Applications should have no access to table or view objects
unless required by dynamic SQL, which is allowed under rule #2.

4. All database calls should be parameterized instead of being
inline dynamic SQL.

5. No user input should be trusted and thought of as safe; all user
interactions are suspect.

Warning
SQL Injection Happens at All Levels

Unfortunately, not just small companies can have problems with SQL Injection attacks. In 2009, for example, ZD Net
reported that some of the international websites selling Kaspersky antivirus, specifically Kaspersky Iran, Taiwan,
and South Korea, were all susceptible to SQL Injection attacks. In the same article (http://bit.ly/AntiVirusSQLInject) ZD
Net also reported that websites of F-Secure, Symantec, BitDeffender, and Kaspersky USA all had problems with
SQL Injection attacks on their websites.

These are some of the major security companies of the day, and they are showing a total lack of security by letting
their websites fall prey to the simple injection attack. Considering just how simple it is to protect a website from an
SQL injection attack, the fact that some of the biggest security companies in the industry were able to have SQL
Injection problems on their production customer facing websites is just ridiculous.

Because of how intertwined various websites are with each other, real-estate listing providers and the realtors
which get their data from the listing providers, a lot of trust must exist between these companies and the people who
use one companies site without knowing that they are using another companies data. This places the company that is
showing the real-estate listings to their users in a position of trusting the advertising company to have a safe
application. However, this trust can backfire as on a few occasions various partner companies have suffered from SQL
Injection attacks, in some cases pushing out malicious software to the users of dozens, hundreds, or thousands of
different websites that display the data.

With the introduction of Object Relational Mappings (ORM)
such as Link to SQL and nHybernate, the SQL Injection problems
are greatly lessened as properly done ORM code will automatically
parameterize the SQL queries. However, if the ORM calls stored
procedures, and those stored procedures have dynamic SQL within
them, the application is still susceptible to SQL Injection attacks.

How to Protect Yourself from an SQL
Injection Attack

Once the command gets to the database to be run by the
database engine, it is too late to protect yourself from the SQL



156 Chapter 6 SQL INJECTION ATTACKS

Injection attack. The only way to truly protect your database
application from an Injection attack is to do so within the
application layer. Any other protection simply won’t be anywhere
nearly as effective. Some people think that doing a character
replacement within the T/SQL code will effectively protect you,
and it might to some extent. But depending on how the T/SQL is
set up and how the dynamic SQL string is built, it probably won'’t,
at least not for long.

NET Protection Against SQL Injection

The only surefire way to protect yourself is to parameterize
every query that you send to the database. This includes your
stored procedure calls, as well as your inline dynamic SQL calls.
In addition, you never want to pass string values that the front-
end application has allowed the user to enter directly into
dynamic SQL within your stored procedure calls. If you have
cause to use dynamic SQL within your stored procedures (and
yes, there are perfectly legitimate reasons for using dynamic
SQL), then the dynamic SQL needs to be parameterized just
like the code that is calling the stored procedure or inline
dynamic SQL Script. This is done by declaring parameters within
the T/SQL statement, and adding those parameters to the
SQLCommand object that has the SQL Command that you will be
running, as shown in Example 6.4 and Example 6.5.

Private Sub MySub()
Dim Connection As SglConnection
DimResults As DataSet
Dim SQLda As SqglDataAdapter
Dim SQLcmd As Sg1Command
SQLcmd = New Sg1Command
SQLcmd.CommandText = "sp_help_job"
SQLcmd.CommandType = CommandType.StoredProcedure
SQLcmd.Parameters.Add("job_name", SqlDbType.VarChar, 50)
SQLcmd.Parameters.Item("job_name").Value = "test"
Connection = New SglConnection("Data Source=
lTocalhost;Initial Catalog=msdb;Integrated
Security=SSPI;")
Using Connection
Connection.0Open()
SQLcmd.Connection = Connection
SQLda = New SqlDataAdapter(SQLcmd)
Results = New DataSet ()
SQLda.Fil1(Results)
End Using
'Do somethingwith the results fromthe Results variable here.



Chapter 6 SQL INJECTION ATTACKS

157

SQLcmd.Dispose()
SQLda.Dispose()
Results.Dispose()
Connection.Close()
Connection.Dispose()
End Sub

Example 6.4: VB.NET code showing how to use parameters to safely call
a stored procedure.

private void MySub()
{

SglConnection Connection =new SqlConnection("Data
Source=localhost;Initial Catalog=msdb;Integrated
Security=SSPI;");

DataSet Results =new DataSet();

SqglCommand SQLcmd = new Sq1Command () ;

SQLcmd.CommandText = "sp_help_job";

SQLcmd.CommandType = CommandType.StoredProcedure ;

SqlParameter parml =new SqlParameter();

parml.ParameterName = "job_name";

parml.DbType =DbType.String;

parml.Precision =25b;

parml.Value = "test";

SQLcmd.Parameters.Add(parml);

Connection.0Open();

SQLcmd.Connection = Connection;

SqlDataAdapter SQLda = new SqlDataAdapter(SQLcmd);

SQLda.FilT(Results);

//Do somethingwith the results fromthe Results variable

here.

SQLcmd.Dispose();

SQLda.Dispose();

Results.Dispose();

Connection.Close();

Connection.Dispose();

}

Example 6.5: C# code showing how to use parameters to safely call a stored
procedure.

As you can see in the above, .NET code using a parameter to
pass in the value is easy to do, adding just a couple of extra lines of
code. The same can be done with an inline dynamic SQL string, as
shown in Example 6.6 and Example 6.7.

Private Sub MySub()
Dim Connection As SglConnection
DimResults As DataSet
Dim SQLda As SglDataAdapter



158

Chapter 6 SQL INJECTION ATTACKS

Dim SQLcmd As Sq1Command
SQLcmd = New Sg1Command
SQLcmd.CommandText = "SELECT * FROM dbo.sysjobs WHERE name=
@job_name"
SQLcmd.Parameters.Add("job_name", Sq1DbType.VarChar, 50)
SQLcmd.Parameters.Item("job_name").Value = "test"
SQLcmd.CommandType = CommandType.Text;
Connection = New SqlConnection("Data
Source=localhost;Initial
Catalog=msdb;Integrated Security=SSPI;")
Using Connection
Connection.0pen()
SQLcmd.Connection = Connection
SQLda = New SqlDataAdapter(SQLcmd)
Results = New DataSet()
SQLda.Fil1(Results)
End Using
'Do somethingwith the results fromthe Results variable here.
SQLcmd.Dispose()
SQLda.Dispose()
Results.Dispose()
Connection.Close()
Connection.Dispose()

End Sub

Example 6.6: VB.NET code showing how to use parameters to safely call an
inline dynamic SQL String.

private void MySub()

{

SqlConnection Connection =new SglConnection("Data-
Source=localhost;Initial Catalog=msdb;Integrated
Security=SSPI;");

DataSet Results =new DataSet();

SqlCommand SQLcmd = new Sg1Command () ;

SQLcmd.CommandText = "SELECT * FROM dbo.sysjobs WHERE
name =@job_name";

SQLcmd.CommandType = CommandType.Text;

SqlParameter parml = new SqlParameter()

parml.ParameterName = "job_name";

parml.DbType =DbType.String;

parml.Precision = 255;

parml.Value = "test";

SQLcmd.Parameters.Add(parml);

Connection.Open();

SQLcmd.Connection = Connection;

SqlDataAdapter SQLda = new SqglDataAdapter(SQLcmd) ;

SQLda.Fil11(Results);

//Do something with the results fromthe Results variable
here.



Chapter 6 SQL INJECTION ATTACKS 159

SQLcmd.Dispose();

SQLda.Dispose();

Results.Dispose();

Connection.Close();
Connection.Dispose();
}

Example 6.7: C# code showing how to use parameters to safely call an inline
dynamic SQL String.

Once each parameter that is being passed into the database has
been protected, the .NET code (or whatever language is being
used to call the database) becomes safe. Any value that is passed
from the client side to the database will be passed into the data-
base as a value to the parameter. In the example code shown at the
beginning of this chapter, the string value that has been passed
into the application would then force an error to be returned from
the client Microsoft SQL Server database as the value would be
passed into a parameter with a numeric data type.

Note
Don’t Trust Anything or Anyone!

The golden rule when dealing with SQL Injection is to not trust any input from the website or front-end application. This
includes hidden fields and values from dropdown menus. Nothing should be passed from the front end to the database
without being cleaned and properly formatted, as any value passed in from the front end could be compromised.

Hidden fields are probably the SQL Injection attacker's best friend. Because they are hidden from the end user's view
and are only used by system processes, they are sometimes assumed to be safe values. However, changing the values
that are passed in from a safe value to a dangerous value is a trivial matter for a script kitty, much less a skilled attacker.

When dealing with SQL Injection, the mantra to remember is never, ever, trust anything that is sent to the
application tier from the end user, whether or not the end user knows that he submitted the value.

Using the sample query shown in the .NET sample code in
Examples 6.6 and 6.7, if the user were to pass in similar attack code
to what is shown in the SQL Server sample code in Example 6.2, the
query that would be executed against the database would look like
the one shown in Example 6.8. This resulting query is now safe to
run as the result which is executed against the database engine
contains all the attack code as a part of the value.

SELECT * FROM dbo.sysjobs WHERE name ='test; delete fromOrders';

Example 6.8: Sample T/SQL code showing the resulting T/SQL Code that would
be executed against the database if an attacker were to put in an attack code
against the prior sample .NET code.



160 Chapter 6 SQL INJECTION ATTACKS

In the sample code you can see that while the attack code has
been passed to the engine, it has been passed as part of the value
of the WHERE clause. However, because this is within the value of
the parameter, it is safe because the parameter is not executable.
If attackers were to pass in the same command with a single
quote in front of it, in an attempt to code the parameter, and then
execute their own code, the single quote would be automatically
doubled by the .NET layer when it passed to the SQL Server
database again, leaving a safe parameter value as shown in
Example 6.9.

SELECT " FROMdbo.sysjobs WHERE name ='test"; delete fromOrders';

Example 6.9: The resulting T/SQL code that would be executed against the
database when an attacker passes in an attack string with a single quote in an
attempt to bypass the protection provided by the .NET application layer.

Protecting Dynamic SQL within Stored
Procedures from SQL Injection Attack

When you have dynamic SQL within your stored procedures,
you need to use a double protection technique to prevent the
attack. The same procedure needs to be used to protect the
application layer and prevent the attack from succeeding at that
layer. However, if you use simple string concatenation within
your stored procedure, then you will open your database back up
to attack. Looking at a sample stored procedure and the resulting
T/SQL that will be executed against the database by the stored
procedure; we can see that by using the simple string concate-
nation, the database is still susceptible to the SQL Injection
attack, as shown in Example 6.10.

CREATE PROCEDURE sel_OrdersByCustomer
@LastName VARCHAR(50)

AS

DECLARE @cmd NVARCHAR(8000)

SET @cmd ="'SELECT *

FROM Orders

JOIN Customers ON Orders.Customerld = Customers.Customerld

WHERE Customers.lLastName =" + @LastName + "

EXEC (@cmd)

GO

/*The command that will be executed when the attacker passed
in'; DELETE FROM Orders.™/

SELECT *

FROM Orders



Chapter 6 SQL INJECTION ATTACKS

161

JOIN Customers ON Orders.Customerld = Customers.Customerld
WHERE Customers.LastName ='Smith'; DELETE FROM Orders"'

Example 6.10: T/SQL stored procedure that accepts a parameter from the
application layer and concatenates the passed-in value to the static portion of
the string, executing whatever attack code the attacker wishes against the
database engine.

Because of the value attack, the value being passed into the SQL
Server Engine is passed in through the application layer, and the
SQL Server engine does as it is instructed to do, which is to run the
query. However, if we parameterize the dynamic SQL within
the stored procedure, then the execute SQL code will be rendered
harmless just as it would be if the dynamic SQL was executed
against the database by the application layer. This is done via the
sp_executesql system stored procedure as shown in Example 6.11.

CREATE PROCEDURE sel_OrdersByCustomer
@LastName VARCHAR(50)

AS

DECLARE @cmd NVARCHAR(8000)

SET @cmd ='SELECT *

FROM Orders

JOIN Customers ON Orders.Customerld = Customers.CustomerId

WHERE Customers.lLastName =" + @LastName +""

EXEC sp_executesql @cmd, '‘@LastName VARCHAR(50)",
@LastName=@LastName

GO

/*The command that will be executedwhen the attacker passedin';
DELETE FROM Orders.™/

SELECT *

FROM Orders

JOIN Customers ON Orders.Customerld = Customers.CustomerlId

WHERE Customers.lLastName ='Smith"; DELETE FROM Orders"'

Example 6.11: T/SQL stored procedure that accepts a parameter from the
application layer and uses parameterization to safely execute the query passing
whatever attack code the users input safely against the database as a simple
string value.

Removing Extended Stored Procedures

In addition to running all code from the application layer as
parameterized commands instead of dynamically generated
T/SQL, you should also remove the system procedures that can
be used to export data. The procedures in question that you'll
want to remove are xp_cmdshell, xp_startmail, xp_sendmail,



162

Chapter 6 SQL INJECTION ATTACKS

sp_makewebtask, and sp_send_dbmail. You may also want to
remove the procedures that configure Database Mail such as
sysmail_add_account_sp and sysmail_add_profileaccount_sp, so
that attackers can’t use these procedures to give themselves a way
to e-mail out information from the database. Of course, you’ll
want to make sure that you aren’t using these procedures in any
released code and that you have Database Mail configured before
removing your ability to configure it.

Of course, removing system stored procedures poses a risk of
causing system upgrades to fail, so you'll want to keep copies of
these objects handy so that you can put the objects back before
database version upgrades.

Unfortunately, this isn’t a surefire way to prevent an attacker
from using these procedures. Crafty attackers can actually put
these procedures back after they see that they have been
removed. This is especially true of the extended stored proce-
dures called DLLs (Dynamic Link Libraries), which must be left in
their normal locations because other extended stored procedures
that you don’t want to remove are part of the same DLLs. The only
saving grace is that you have to be a highly privileged user within
the database engine to put an extended stored procedure into the
SQL Server engine. Thus, the only way that an attacker could
successfully put the extended stored procedures back would be to
log into the database with a highly privileged account. If your
application logs into the database engine using a highly privileged
account, all bets are off as the attacker now has the rights needed
to put the extended stored procedures back.

Not Using Best Practice Code Logic Can Hurt You

The application login process is probably the most important
one that an attacker may want to take advantage of. Many times
when developers are building a login process, the front-end
developer will simply look for records in a record set, and if there
are none will assume that the user didn’t login correctly. If there
are records in the record set, the developer will assume that the
user logged in correctly and so will grab the first record and use
that record to find the user’s permissions. Attackers wishing to
exploit this situation would be able to get past the login screen,
probably being logged in with a high level of permissions. This is
done by adding a small text string in the username field such as
“user’ OR 1=1 —“. What this will do is change the code shown in
Example 6.12 into the code shown in Example 6.13. Example 6.14
shows the T/SQL code that would be executed against the data-
base engine.



Chapter 6 SQL INJECTION ATTACKS 163

SELECT * FROM dbo.Users WHERE UserName ="'user' AND Password =
'password'

Example 6.12: The way a sample record set looks when validating a user
account.

SELECT * FROM dbo.Users WHERE UserName ="'user' OR 1=1 - AND
Password ='password'

Example 6.13: The way the code looks when the attack code has been inserted.
SELECT * FROM dbo.Users WHERE UserName ="'user' OR 1=1

Example 6.14: The executable part of the code against the database engine from
the prior sample code.

Because of the OR clause in the prior sample code, it doesn’t
matter if there is a record where the UserName column equals
user because the 1 = 1 section will tell the database to return
every record in the database.

As you can see in the sample code above, the code that gets
executed against the database engine would return the entire
User table. Assuming that the front-end application simply takes
the first record from the record set returned from the database,
the attacker would then be logged into the application, probably
with an administrative-level account. Preventing this sort of
attack is easy; refer back to the beginning of this section of this
chapter for the sample .NET code. Now that the user has been
logged in, potentially with administrative rights, the user doesn’t
need to use any additional dynamic SQL to get access to your
customer data, as he or she will now have full access through your
normal administrative system.

What to Return to the End User

The next important thing to configure within the front-end
application is what errors are returned to the end user. When the
database throws an error, you should be sure to mask the error
from the end user. The end user doesn’t have any need to know
the name of either the primary key or the foreign key that has
been violated. You might want to return something that the end
user can give to customer service or the help desk so that the
actual error message can be looked up.

What this has to do with SQL injection is important. If the
attacker is able to send in code that breaks the query and returns
an error, the error may well contain the name of a table or other
database object within the error message. For example, if the
attacker sends in an attack string of ““ Group by Customerld -”

to a query that looks like “SELECT * FROM Customers WHERE



164 Chapter 6 SQL INJECTION ATTACKS

UserName = ‘UserName’ AND Password = ‘Password’” creating
the query “SELECT * FROM Customers WHERE UserName =
‘UserName‘ Group by Customerld — AND Password = ‘Pass-
word’”. The default error message that SQL Server would return
gives the attackers more information than they had before. It tells
them the table name. The attacker can use this same technique to
figure out which columns are in the table. Over all, Being able to
see the actual SQL Server error message, even if the error doesn’t
give the attacker any database schema information it tells the
attacker that the attack attempt was successful. By using the
sp_MSforeachtable system stored procedure and the raiserror
function, the attackers could easily return the list of every table in
the database, giving them a wealth of information about the
database schema, which could then be used in future attacks.

Note
Why Are SQL Injection Attacks Still So Possible?

One major reason why SQL Injection attacks are still possible today is that there is so much bad information circulating
about how to protect yourself from an SQL injection attack. For example, an article published by Symantec at http://www.
symantec.com/connect/articles/detection-sgl-injection-and-cross-site-scripting-attacks says that all you need to protect
yourself is to verify the inputs using a regular expression that searches for the single quote and the double dash, as well as
the strings “sp” and “xp.” As you can see throughout this chapter, SQL Injection attacks can occur without tripping these
regular expressions, and considering the high number of false positives that looking for a single quote would give you
(especially if you like doing business with people of Irish descent), the protection would be minimal at best. If you were to
read this article and follow its instructions you would be leaving yourself open to SQL Injection attacks.

There is more useful information that an attacker could get
thanks to the error message being returned. For example, if the
users were to run a stored procedure in another database that
they didn’t have access to, the error message would return the
username of the use—for example, if the attacker sends in an
attack string “’; exec model.dbo.Working —“. It doesn’t matter if
the procedure exists or not, for the attacker won’t get that far. The
error returned from this call is shown in Example 6.15.

Msg 916, Level 14, State 1, Linel
The server principal "test" isnot able toaccess the database
"model" under the current security context.

Example 6.15: Error message returned by an attacker running a stored proce-
dure that doesn’t exist.



Chapter 6 SQL INJECTION ATTACKS 165

The model database is an excellent database to try this
against, as typically no users have access to the model database.
If the attacker gets an error message saying that the procedure
doesn’t exist, the attacker now knows that the login that the
application is logging into the database has some high-level
permissions, or the model database has some screwed-up
permissions.

After finding the username, the attacker can easily enough find
the name of the local database that the application is running
within. This can be done by trying to create a table in the data-
base. This is because the error message when creating a table
includes the database name. For example, if the attack code “’;
create table mytable (cl int);-" is sent, the error message shown
in Example 6.16 will be returned.

Msg 262, Level 14, State 1, Linel
CREATE TABLE permission denied in database 'MyApplication
Database'.

Example 6.16: Error message returned when creating a table when you don’t
have rights returning the name of the database to the attacker.

These various values can be used in later attacks to clear the
database of its data or to export the data from the database.

Cleaning Up the Database After an SOL
Injection Attack

There are a few different attacks that an attacker can
perform against an SQL Server database. As shown so far in this
chapter, delete commands can be passed into the SQL engine.
However, other commands can be executed as well. Usually,
attackers don’t want to delete data or take a system offline; they
instead want to use the SQL database to help launch other
attacks. A simple method is to identify tables and columns that
are used to display data on the website that uses the database
as a backend. Then extra data is included in the columns of
the database, which will allow attacking code to be executed
against the database. This can be done using an update state-
ment that puts an HTML iframe tag into each row of a table.
This way when customers view the website, they get the iframe
put into their web browser, which could be set to a height of
0 so that it isn’t visible. This hidden iframe could then install
viruses or spyware on the user’s computer without their
knowledge.



166 Chapter 6 SQL INJECTION ATTACKS

FAQ
IFRAME versus PopUp

Often people ask if a popup blocker would prevent this iframe attack from affecting the end user, and the
answer is no, it wouldn't. An iframe doesn't show a web browser popup on the users screen. An iframe is an inline
frame which shows within the displayed webpage. An iframe with a height of 0 would be totally invisible to the end
user, but it could be requesting data from a webpage on another website, passing information from the user's
computer back to this unknown website. The website that is called from the iframe could then exploit vulnerabilities
in the end user's web browser to install key loggers or command and control software turning the end user's
computer into a member of a bot-net.

Once this attack has occurred and viruses or spyware have
been installed on the customer’s computer, the most important
thing now is to stop additional users’ computers from being
attacked. This means going through every record of every table
looking for the attack code that is pushing the iframe to the
customer’s web browser. Obviously, you can go through each
table manually looking for the records in question, or you can
use the included sample code, shown in Example 6.17, which
searches through each column in every table for the problem
code and removes it. All you need to do is supply the variable
with the attack code. The only columns that are not cleaned
by this code are columns that use the TEXT or NTEXT data
types. This is because the TEXT and NTEXT data types require
special attention as they do not support the normal search
functions.

DECLARE @injected_value NVARCHAR(1000)

SET@injected_value ="Put the codewhichhas beeninjectedhere.'

/*Change nothing below this Tine.*/

SET@injected_value = REPLACE(@injected_value, "™, ")

CREATE TABLE #ms_ver (indexid INT, name sysname, internal_value
INT, character_value VARCHAR(50))

INSERT INTO ffms_ver

EXEC xp_msver 'ProductVersion'

DECLARE @database_name sysname, @table_schema sysname,
@table_name sysname, @column_name sysname, @cmd NVARCHAR
(4000),

@internal_value INT

SELECT @internal_value = internal_value

FROM #fms_ver



Chapter 6 SQL INJECTION ATTACKS 167

DECLARE cur CURSOR FOR SELECT TABLE_CATALOG, TABLE_SCHEMA,
TABLE_NAME, COLUMN_NAME
FROM INFORMATION_SCHEMA.columns c
JOIN systypes st ON c.DATA_TYPE = st.name
WHERE xtype IN (97, 167, 175, 231, 239, 241)

OPEN cur

FETCH NEXT FROM cur INTO @database_name, @table_schema,
@table_name, @column_name

WHILE @@FETCH_STATUS =0

BEGIN
SET @cmd ="'SELECT NULL

WHILE @@ROWCOUNT <> 0

BEGIN

IF@internal_value > 530000
SET @cmd = @cmd + ' SET ROWCOUNT 1000
UPDATE'
ELSE
SET @cmd = @cmd + ' UPDATE TOP (1000)"
SET@md =@cmd + ' ['+ @database_name +'].['+ @table_
schema +'].['+ @table_name +']
SET ['+ @column_name + '] = REPLACE([' + @column_name + '], "
"+ @injected_value+"™, ™)
WHERE [' + @column_name + '] LIKE"%' +@injected_value + '%"
END'
exec (@cmd)
FETCH NEXT FROM cur INTO @database_name, @table_schema,
@table_name, @column_name
END
CLOSE cur
DEALLOCATE cur
DROP TABLE #ms_ver

Example 6.17: T/SQL Code that will clean a database that has had its values
updated to send unvalued code to users.

Note
Notes About Using This Sample Code

Before running the included T/SQL code, be sure to make a full backup of the database in case of accidental
data modification. The larger the database that you run this against, the longer it will take. When running this sample
code, it is recommended that you change the output type from the default output style of grid to text by pressing
<cTRL>+T, in order to reduce the resources needed to run the query. The included code will execute against all
versions of Microsoft SQL Server from version 7 to 2008 R2.



168 Chapter 6 SQL INJECTION ATTACKS

Note

SQAL Injection is Serious Business

In case you hadn't guessed after reading this chapter, SQL Injection attacks are a very serious threat. Normally when
an SAL Injection attack is launched, it isnt launched against a single website. An attacker will often write a problem
that will check as many websites as possible before the attacker is taken off the Internet. The last successful large-scale
attack on the Internet (as of the writing of this book) successfully changed the data in tens of thousands of separate
databases that run tens of thousands of different websites. At the time of the attack, this was verified by searching on
Google for the text of the code that was inserted into the attacked databases and looking at the number of domains
that Google returned with matches.

Falling prey to these attacks puts users and customers at major risk, as these attacks often are trying to install
viruses or Trojan horses on the end user’'s computer, so that confidential data such as credit card numbers, and banking
usernames and passwords can be gathered by the attacker and used to commit future fraud against the users and
customers of the attacked websites. This can lead to months or years of credit report problems and the like.

One final point to keep in mind: If you use your own company's websites or services, then the SQL Injection attacker
is attempting to attack you as you are also a customer. So do yourself a favor and protect the database so that you
don't get viruses or Trojan horses installed on your computer through your own company’s website.

Summary

SQL Injection attacks pose some of the greatest dangers to the
database and customers because they are typically used to
directly affect the information that the customer sees and can be
rather easily used to attempt to push malicious code to clients’
computers. These attacks are very popular with attackers because
they are a relatively easy way to exploit systems design. They are
also popular because they are easy to reproduce once a site is
found to be compromisable, as it usually takes a long time to
correct all the potential attack points in a website. This length of
time leaves the website and database open to attack for a long
period of time as companies are usually unwilling to shut down
their customer facing websites while the website design is being
repaired.

Because of the way that the SQL Injection attacks work, the
Database Administrator, Database Developer, Application
Developer, and Systems Administrator all need to work together
to ensure that they are correctly protecting the data within the
database and the company network at large. As the database and
application developers begin getting in the habit of writing code
that isn’t susceptible to SQL Injection attacks, the current project



Chapter 6 SQL INJECTION ATTACKS 169

will become more secure, as will future projects that the team
members work on.

SQL Azure is just as susceptible to an SQL Injection attack as
any other SQL Instance. What the attacker can do within the
instance is much less dangerous simply because there are many
fewer features available. For example, protection against
xp_cmdshell isn’t a priority because xp_cmdshell isn’t available
on an SQL Azure instance. Neither are features such as database
mail or SQL mail, so protecting against attackers that plan to use
these vectors doesn’t need to be done. As time goes on, and more
features are added to SQL Azure, this may change; however, as of
this writing, this information is accurate.

References

“Wall Street Journal, Others, Hit in Mass SQL attack—SC Magazine US.” IT
Security News and Security Product Reviews—SC Magazine US. N.p., n.d. Web.
October 21, 2010.



