
Ian Miell
Aidan Hobson Sayers

SECOND EDITION

CHAPTER 3

M A N N I N G

IN PRACTICE

Save 50% on this book – eBook, pBook, and MEAP. Enter pcdip40 in the
Promotional Code box when you checkout. Only at manning.com.

Docker in Practice, Second Edition
by Ian Miell and Aidan Hobson Sayers

ISBN 9781617294808
384 pages
$39.99

http://manning.com
https://www.manning.com/books/docker-in-practice-second-edition
https://www.manning.com/books/docker-in-practice-second-edition

Docker in Practice
Second Edition

Ian Miell and Aidan Hobson Sayers

Chapter 3

 Copyright 2019 Manning Publications
To pre-order or learn more about these books go to www.manning.com

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Erin Twohey, corp-sales@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Marija Tudor

ISBN: 9781617294808
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 24 23 22 21 20 19

http://www.manning.com

iii

 contents
3.1 From VM to container 2
3.2 Saving and restoring your work 13
3.3 Environments as processes 22

Using Docker as a
 lightweight virtual machine
Virtual machines (VMs) have become ubiquitous in software development and
deployment since the turn of the century. The abstraction of machines to software
has made the movement and control of software and services in the internet age
easier and cheaper.

TIP A virtual machine is an application that emulates a computer, usually
to run an operating system and applications. It can be placed on any (com-
patible) physical resources that are available. The end user experiences the
software as though it were on a physical machine, but those managing the
hardware can focus on larger-scale resource allocation.

This chapter covers
 Converting a virtual machine to a Docker image

 Managing the startup of your container’s services

 Saving your work as you go

 Managing Docker images on your machine

 Sharing images on the Docker Hub

 Playing—and winning—at 2048 with Docker
1

2 CHAPTER 3 Using Docker as a lightweight virtual machine
Docker isn’t a VM technology. It doesn’t simulate a machine’s hardware and it doesn’t
include an operating system. A Docker container is not, by default, constrained to spe-
cific hardware limits. If Docker virtualizes anything, it virtualizes the environment in
which services run, not the machine. Moreover, Docker can’t easily run Windows soft-
ware (or even that written for other Unix-derived operating systems).

 From some standpoints, though, Docker can be used much as a VM. For develop-
ers and testers in the internet age, the fact that there’s no init process or direct hard-
ware interaction is not usually of great significance. And there are significant
commonalities, such as its isolation from the surrounding hardware and its amenabil-
ity to more fine-grained approaches to software delivery.

 This chapter will take you through the scenarios in which you could use Docker as
you previously might have used a VM. Using Docker won’t give you any obvious func-
tional advantages over a VM, but the speed and convenience Docker brings to the
movement and tracking of environments can be a game-changer for your develop-
ment pipeline.

3.1 From VM to container
In an ideal world, moving from VMs to containers would be a simple matter of run-
ning configuration management scripts against a Docker image from a distribution
similar to the VM’s. For those of us who aren’t in that happy state of affairs, this sec-
tion will show how you can convert a VM to a container—or containers.

TECHNIQUE 11 Converting your VM to a container

The Docker Hub doesn’t have all possible base images, so for some niche Linux distri-
butions and use cases, people need to create their own. For example, if you have an
existing application state in a VM, you may want to put that state inside a Docker
image so that you can iterate further on that, or to benefit from the Docker ecosystem
by using tooling and related technology that exists there.

 Ideally you’d want to build an equivalent of your VM from scratch using standard
Docker techniques, such as Dockerfiles combined with standard configuration man-
agement tools (see chapter 7). The reality, though, is that many VMs aren’t carefully
configuration-managed. This might happen because a VM has grown organically as
people have used it, and the investment needed to recreate it in a more structured
way isn’t worth it.

PROBLEM
You have a VM you want to convert to a Docker image.

SOLUTION
Archive and copy the filesystem of the VM and package it into a Docker image.

 First we’re going to divide VMs into two broad groups:

 Local VM —VM disk image lives on and VM execution happens on your com-
puter.

 Remote VM —VM disk image storage and VM execution happen somewhere else.

3From VM to container

d
The principle for both groups of VMs (and anything else you want to create a Docker
image from) is the same—you get a TAR of the filesystem and ADD the TAR file to / of
the scratch image.

TIP The ADD Dockerfile command (unlike its sibling command COPY)
unpacks TAR files (as well as gzipped files and other similar file types) when
they’re placed in an image like this.

TIP The scratch image is a zero-byte pseudo-image you can build on top of.
Typically it’s used in cases like this where you want to copy (or add) a com-
plete filesystem using a Dockerfile.

We’ll now look at a case where you have a local VirtualBox VM.
 Before you get started, you need to do the following:

1 Install the qemu-nbd tool (available as part of the qemu-utils package on
Ubuntu).

2 Identify the path to your VM disk image.
3 Shut down your VM.

If your VM disk image is in the .vdi or .vmdk format, this technique should work well.
Other formats may experience mixed success. The following code demonstrates how you
can turn your VM file into a virtual disk, which allows you to copy all the files from it.

$ VMDISK="$HOME/VirtualBox VMs/myvm/myvm.vdi"
 $ sudo modprobe nbd
 $ sudo qemu-nbd -c /dev/nbd0 -r $VMDISK3((CO1-3))
 $ ls /dev/nbd0p*
 /dev/nbd0p1 /dev/nbd0p2
$ sudo mount /dev/nbd0p2 /mnt
 $ sudo tar cf img.tar -C /mnt .
 $ sudo umount /mnt && sudo qemu-nbd -d /dev/nbd0

Unmounts and cleans
up after qemu-nbd

NOTE To choose which partition to mount, run sudo cfdisk /dev/nbd0 to
see what’s available. Note that if you see LVM anywhere, your disk has a non-
trivial partitioning scheme—you’ll need to do some additional research into
how to mount LVM partitions.

If your VM is kept remotely, you have a choice: either shut down the VM and ask your
operations team to perform a dump of the partition you want, or create a TAR of your
VM while it’s still running.

Listing 3.1 Extracting the filesystem of a VM image

Sets up a variable pointing
to your VM disk imageInitializes a kernel

module required
by qemu-nbd

Connects the VM
disk to a virtual
device node

Lists the partition
numbers available to
mount on this disk

Mounts the selecte
partition at /mnt
with qemu-nbd

Creates a TAR file
called img.tar
from /mnt

4 CHAPTER 3 Using Docker as a lightweight virtual machine
 If you get a partition dump, you can mount this fairly easily and then turn it into a
TAR file as follows:

$ sudo mount -o loop partition.dump /mnt
$ sudo tar cf $(pwd)/img.tar -C /mnt .
$ sudo umount /mnt

Alternatively, you can create a TAR file from a running system. This is quite simple
after logging into the system:

$ cd /
$ sudo tar cf /img.tar --exclude=/img.tar --one-file-system /

You now have a TAR of the filesystem image that you can transfer to a different
machine with scp.

WARNING Creating a TAR from a running system may seem like the easiest
option (no shutdowns, installing software, or making requests to other
teams), but it has a severe downside—you could copy a file in an inconsistent
state and hit strange problems when trying to use your new Docker image. If
you must go this route, first stop as many applications and services as possible.

Once you’ve got the TAR of your filesystem, you can add it to your image. This is the
easiest step of the process and consists of a two-line Dockerfile.

FROM scratch
ADD img.tar /

You can now run docker build . and you have your image!

NOTE Docker provides an alternative to ADD in the form of the docker import
command, which you can use with cat img.tar | docker import - new_im-
age _name. But building on top of the image with additional instructions will
require you to create a Dockerfile anyway, so it may be simpler to go the
ADD route, so you can easily see the history of your image.

You now have an image in Docker, and you can start experimenting with it. In this
case, you might start by creating a new Dockerfile based on your new image, to exper-
iment with stripping out files and packages.

Listing 3.2 Extracting a partition

Listing 3.3 Extracting the filesystem of a running VM

Listing 3.4 Adding an archive to a Docker image

5From VM to container
 Once you’ve done this and are happy with your results, you can use docker export
on a running container to export a new, slimmer TAR that you can use as the basis for
a newer image, and repeat the process until you get an image you’re happy with.

 The flow chart in figure 3.1 demonstrates this process.

Route taken

Got TAR

Make image Strip image

Export image

Image can be
stripped more

Image cannot be stripped
more or is small enough

Use image to
save money!

Figure 3.1 Image-stripping flowchart

DISCUSSION
This technique demonstrates a few fundamental principles and techniques that are
useful in contexts other than converting a VM to a Docker image.

 Most broadly, it shows that a Docker image is essentially a set of files and some
metadata: the scratch image is an empty filesystem over which a TAR file can be laid.
We’ll return to this theme when we look at slim Docker images.

 More specifically, you’ve seen how you can ADD a TAR file to a Docker image, and
how you can use the qemu-nbd tool.

 Once you have your image, you might need to know how to run it like a more tra-
ditional host. Because Docker containers typically run one application process only,
this is somewhat against the grain, and it’s covered in the next technique.

TECHNIQUE 12 A host-like container

We’ll now move on to one of the more contentious areas of discussion within the
Docker community—running a host-like image, with multiple processes running from
the start.

6 CHAPTER 3 Using Docker as a lightweight virtual machine
 This is considered bad form in parts of the Docker community. Containers are not
virtual machines—there are significant differences—and pretending there aren’t can
cause confusion and issues down the line.

 For good or ill, this technique will show you how to run a host-like image and dis-
cuss some of the issues around doing this.

NOTE Running a host-like image can be a good way to persuade Docker
refuseniks that Docker is useful. As they use it more, they’ll understand the
paradigm better and the microservices approach will make more sense to
them. At the company we introduced Docker into, we found that this mono-
lithic approach was a great way to move people from developing on dev serv-
ers and laptops to a more contained and manageable environment. From
there, moving Docker into testing, continuous integration, escrow, and
DevOps workflows was trivial.

PROBLEM
You want a normal host-like environment for your container with multiple processes
and services set up.

SOLUTION
Use a base container designed to run multiple processes.

 For this technique you’re going to use an image designed to simulate a host, and
provision it with the applications you need. The base image will be the phusion/
baseimage Docker image, an image designed to run multiple processes.

 The first steps are to start the image and jump into it with docker exec.

user@docker-host$ docker run -d phusion/baseimage
 3c3f8e3fb05d795edf9d791969b21f7f73e99eb1926a6e3d5ed9e1e52d0b446e
 user@docker-host$ docker exec -i -t 3c3f8e3fb05d795 /bin/bash
 root@3c3f8e3fb05d:/# The prompt to

the started
container
terminal

Listing 3.5 Running the phusion base image

Differences between VMs and Docker containers
These are a few of the differences between VMs and Docker containers:

 Docker is application-oriented, whereas VMs are operating-system oriented.
 Docker containers share an operating system with other Docker containers. In

contrast, VMs each have their own operating system managed by a hypervisor.
 Docker containers are designed to run one principal process, not manage mul-

tiple sets of processes.

Starts the image in
the backgroundReturns the

ID of the new
container

Passes the container ID to
docker exec and allocates
an interactive terminal

7From VM to container
In this code, docker run will start the image in the background, starting the default
command for the image and returning the ID of the newly created container.

 You then pass this container ID to docker exec, which is a command that starts a
new process inside an already running container. The -i flag allows you to interact
with the new process, and -t indicates that you want to set up a TTY to allow you to
start a terminal (/bin/bash) inside the container.

 If you wait a minute and then look at the processes table, your output will look
something like the following.

root@3c3f8e3fb05d:/# ps -ef
 UID PID PPID C STIME TTY TIME CMD
root 1 0 0 13:33 ? 00:00:00 /usr/bin/python3 -u /sbin/my_init
 root 7 0 0 13:33 ? 00:00:00 /bin/bash
 root 111 1 0 13:33 ? 00:00:00 /usr/bin/runsvdir -P /etc/service
 root 112 111 0 13:33 ? 00:00:00 runsv cron
 root 113 111 0 13:33 ? 00:00:00 runsv sshd
root 114 111 0 13:33 ? 00:00:00 runsv syslog-ng
root 115 112 0 13:33 ? 00:00:00 /usr/sbin/cron -f
root 116 114 0 13:33 ? 00:00:00 syslog-ng -F -p /var/run/syslog-ng.pid

➥ --no-caps
root 117 113 0 13:33 ? 00:00:00 /usr/sbin/sshd -D
root 125 7 0 13:38 ? 00:00:00 ps -ef The ps command

currently being run

You can see that the container starts up much like a host, initializing services such as
cron and sshd that make it appear similar to a standard Linux host.

DISCUSSION
Although this can be useful in initial demos for engineers new to Docker or genuinely
useful for your particular circumstances, it’s worth being aware that it’s a somewhat
controversial idea.

 The history of container use has tended toward using them to isolate workloads to
“one service per container.” Proponents of the host-like image approach argue that
this doesn’t violate that principle, because the container can still fulfill a single dis-
crete function for the system within which it runs.

 More recently, the growing popularity of both the Kubernetes’ pod and docker-
compose concepts has made the host-like container relatively redundant—separate
containers can be conjoined into a single entity at a higher level, rather than manag-
ing multiple processes using a traditional init service.

Listing 3.6 Processes running in a host-like container

Runs a ps command to list
all the running processes A simple init process

designed to run all
the other services

The bash process started
by docker exec and acting
as your shell

runsvdir runs the services
defined in the passed-in
/etc/service directory.

The three standard services (cron, sshd,
and syslog) are started here with the
runsv command.

8 CHAPTER 3 Using Docker as a lightweight virtual machine
 The next technique looks at how you can break up such a monolithic application
into microservice-style containers.

TECHNIQUE 13 Splitting a system into microservice containers

We’ve explored how to use a container as a monolithic entity (like a classical server)
and explained that it can be a great way to quickly move a system architecture onto
Docker. In the Docker world, however, it’s generally considered a best practice to split
up your system as much as possible until you have one service running per container
and have all containers connected by networks.

 The primary reason for using one service per container is the easier separation of
concerns through the single-responsibility principle. If you have one container doing
one job, it’s easier to put that container through the software development lifecycle of
development, test, and production while worrying less about its interactions with
other components. This makes for more agile deliveries and more scalable software
projects. It does create management overhead, though, so it’s good to consider
whether it’s worth it for your use case.

 Putting aside the discussion of which approach is better for you right now, the best-
practice approach has one clear advantage—experimentation and rebuilds are much
faster when using Dockerfiles, as you’ll see.

PROBLEM
You want to break your application up into distinct and more manageable services.

SOLUTION
Create a container for each discrete service process.

 As we’ve touched upon already, there’s some debate within the Docker community
about how strictly the “one service per container” rule should be followed, with part of
this stemming from a disagreement over the definitions—is it a single process, or a
collection of processes that combine to fulfill a need? It often boils down to a state-
ment that, given the ability to redesign a system from scratch, microservices is the
route most would chose. But sometimes practicality beats idealism—when evaluating
Docker for our organization, we found ourselves in the position of having to go the
monolithic route in order get Docker working as quickly and easily as possible.

 Let’s take a look at one of the concrete disadvantages of using monoliths inside
Docker. First, the following listing shows you how you’d build a monolith with a data-
base, application, and web server.

NOTE These examples are for explanation purposes and have been simpli-
fied accordingly. Trying to run them directly won’t necessarily work.

FROM ubuntu:14.04
RUN apt-get update && apt-get install postgresql nodejs npm nginx
WORKDIR /opt
COPY . /opt/ # {*}

Listing 3.7 Setting up a simple PostgreSQL, NodeJS, and Nginx application

9From VM to container
RUN service postgresql start && \
 cat db/schema.sql | psql && \
 service postgresql stop
RUN cd app && npm install
RUN cp conf/mysite /etc/nginx/sites-available/ && \
 cd /etc/nginx/sites-enabled && \
 ln -s ../sites-available/mysite

TIP Each Dockerfile command creates a single new layer on top of the previ-
ous one, but using && in your RUN statements effectively ensures that several
commands get run as one command. This is useful because it can keep your
images small. If you run a package update command like apt-get update
with an install command in this way, you ensure that whenever the packages
are installed, they’ll be from an updated package cache.

The preceding example is a conceptually simple Dockerfile that installs everything
you need inside the container and then sets up the database, application, and web
server. Unfortunately, there’s a problem if you want to quickly rebuild your con-
tainer—any change to any file under your repository will rebuild everything starting
from the {*} onwards, because the cache can’t be reused. If you have some slow steps
(database creation or npm install), you could be waiting for a while for the con-
tainer to rebuild.

 The solution to this is to split up the COPY . /opt/ instruction into the individual
aspects of the application (database, app, and web setup).

FROM ubuntu:14.04
RUN apt-get update && apt-get install postgresql nodejs npm nginx
WORKDIR /opt
COPY db /opt/db -+
RUN service postgresql start && \ |- db setup
 cat db/schema.sql | psql && \ |
 service postgresql stop -+
COPY app /opt/app -+
RUN cd app && npm install |- app setup
RUN cd app && ./minify_static.sh -+
COPY conf /opt/conf -+
RUN cp conf/mysite /etc/nginx/sites-available/ && \ +
 cd /etc/nginx/sites-enabled && \ |- web setup
 ln -s ../sites-available/mysite -+

In the preceding code, the COPY command is split into two separate instructions. This
means the database won’t be rebuilt every time code changes, as the cache can be
reused for the unchanged files delivered before the code. Unfortunately, because the
caching functionality is fairly simple, the container still has to be completely rebuilt
every time a change is made to the schema scripts. The only way to resolve this is to
move away from sequential setup steps and create multiple Dockerfiles, as shown in
listings 3.9 through 3.11.

Listing 3.8 Dockerfile for a monolithic application

10 CHAPTER 3 Using Docker as a lightweight virtual machine
FROM ubuntu:14.04
RUN apt-get update && apt-get install postgresql
WORKDIR /opt
COPY db /opt/db
RUN service postgresql start && \
 cat db/schema.sql | psql && \
 service postgresql stop

FROM ubuntu:14.04
RUN apt-get update && apt-get install nodejs npm
WORKDIR /opt
COPY app /opt/app
RUN cd app && npm install
RUN cd app && ./minify_static.sh

FROM ubuntu:14.04
RUN apt-get update && apt-get install nginx
WORKDIR /opt
COPY conf /opt/conf
RUN cp conf/mysite /etc/nginx/sites-available/ && \
 cd /etc/nginx/sites-enabled && \
 ln -s ../sites-available/mysite

Whenever one of the db, app, or conf folders changes, only one container will need to
be rebuilt. This is particularly useful when you have many more than three containers
or there are time-intensive setup steps. With some care, you can add the bare mini-
mum of files necessary for each step and get more useful Dockerfile caching as a
result.

 In the app Dockerfile (listing 3.10), the operation of npm install is defined by a
single file, package.json, so you can alter your Dockerfile to take advantage of Dock-
erfile layer caching and only rebuild the slow npm install step when necessary, as
follows.

FROM ubuntu:14.04
RUN apt-get update && apt-get install nodejs npm
WORKDIR /opt
COPY app/package.json /opt/app/package.json
RUN cd app && npm install
COPY app /opt/app
RUN cd app && ./minify_static.sh

Now you have three discrete, separate Dockerfiles where formerly you had one.

Listing 3.9 Dockerfile for the postgres service

Listing 3.10 Dockerfile for the nodejs service

Listing 3.11 Dockerfile for the nginx service

Listing 3.12 Faster Dockerfile for the nginx service

11From VM to container
DISCUSSION
Unfortunately, there’s no such thing as a free lunch—you’ve traded a single simple
Dockerfile for multiple Dockerfiles with duplication. You can address this partially by
adding another Dockerfile to act as your base image, but some duplication is not
uncommon. Additionally, there’s now some complexity in starting your image—in
addition to EXPOSE steps making appropriate ports available for linking and altering
of Postgres configuration, you need to be sure to link the containers every time they
start up. Fortunately there’s tooling for this called Docker Compose, which we’ll cover in
technique 76.

 So far in this section you’ve taken a VM, turned it into a Docker image, run a host-
like container, and broken a monolith into separate Docker images.

 If, after reading this book, you still want to run multiple processes from within a
container, there are specific tools that can help you do that. One of these—Supervis-
ord—is treated in the next technique.

TECHNIQUE 14 Managing the startup of your container’s services

As is made clear throughout the Docker literature, a Docker container is not a VM.
One of the key differences between a Docker container and a VM is that a container is
designed to run one process. When that process finishes, the container exits. This is
different from a Linux VM (or any Linux OS) in that it doesn’t have an init process.

 The init process runs on a Linux OS with a process ID of 1 and a parent process ID
of 0. This init process might be called “init” or “systemd.” Whatever it’s called, its job is
to manage the housekeeping for all other processes running on that operating system.

 If you start to experiment with Docker, you may find that you want to start multiple
processes. You might want to run cron jobs to tidy up your local application log files,
for example, or set up an internal memcached server within the container. If you take
this path, you may end up writing shell scripts to manage the startup of these sub-
processes. In effect, you’ll be emulating the work of the init process. Don’t do that!
The many problems arising from process management have been encountered by
others before and have been solved in prepackaged systems.

 Whatever your reason for running multiple processes inside a container, it’s
important to avoid reinventing the wheel.

PROBLEM
You want to manage multiple processes within a container.

SOLUTION
Use Supervisor to manage the processes in your container.

 We’ll show you how to provision a container running both Tomcat and an Apache
web server, and have it start up and run in a managed way, with the Supervisor applica-
tion (http://supervisord.org/) managing process startup for you.

 First, create your Dockerfile in a new and empty directory, as the following listing
shows.

http://supervisord.org/

12 CHAPTER 3 Using Docker as a lightweight virtual machine
FROM ubuntu:14.04
 ENV DEBIAN_FRONTEND noninteractive
 RUN apt-get update && apt-get install -y python-pip apache2 tomcat7
 RUN pip install supervisor
 RUN mkdir -p /var/lock/apache2
 RUN mkdir -p /var/run/apache2
 RUN mkdir -p /var/log/tomcat
 RUN echo_supervisord_conf > /etc/supervisord.conf
 ADD ./supervisord_add.conf /tmp/supervisord_add.conf
 RUN cat /tmp/supervisord_add.conf >> /etc/supervisord.conf
 RUN rm /tmp/supervisord_add.conf
 CMD ["supervisord","-c","/etc/supervisord.conf"]

You only need to run Supervisor
now on container startup

You’ll also need configuration for Supervisor, to specify what applications it needs to
start up, as shown in the next listing.

[supervisord]
 nodaemon=true

apache
[program:apache2]
 command=/bin/bash -c "source /etc/apache2/envvars && exec /usr/sbin/apache2

➥ -DFOREGROUND"

tomcat
[program:tomcat]
 command=service start tomcat
 redirect_stderr=true
 stdout_logfile=/var/log/tomcat/supervisor.log
 stderr_logfile=/var/log/tomcat/supervisor.error_log

You build the image using the standard single-command Docker process because
you’re using a Dockerfile. Run this command to perform the build:

docker build -t supervised .

You can now run your image!

Listing 3.13 Example Supervisor Dockerfile

Listing 3.14 supervisord_add.conf

Starts from ubuntu:14.04

Sets an environment
variable to indicate that this
session is non-interactive

Installs python-pip (to install
Supervisor), apache2, and tomcat7

Installs
Supervisor
with pip

Creates housekeeping
directories needed to
run the applications

Creates a default
supervisord configura-
tion file with the
echo_supervisord
_conf utility

Copies the
Apache and
Tomcat
supervisord
configuration
settings into
the image,
ready to add
to the default
configuration

Appends the Apache and Tomcat
supervisord configuration settings to
the supervisord configuration file

Removes the file you
uploaded, as it’s no
longer needed

Declares the global configuration
section for supervisord

Doesn’t daemonize the
Supervisor process, as it’s
the foreground process
for the container

Section declaration
for a new program

Commands to start up the programs declared in the section

Section declaration for a new program

Commands to start up the
programs declared in the section

Configuration
pertaining to logging

13Saving and restoring your work
$ docker run -p 9000:80 --name supervised supervised
 2015-02-06 10:42:20,336 CRIT Supervisor running as root (no user in config

➥ file)
 2015-02-06 10:42:20,344 INFO RPC interface 'supervisor' initialized
2015-02-06 10:42:20,344 CRIT Server 'unix_http_server' running without any

➥ HTTP authentication checking
2015-02-06 10:42:20,344 INFO supervisord started with pid 1
 2015-02-06 10:42:21,346 INFO spawned: 'tomcat' with pid 12
 2015-02-06 10:42:21,348 INFO spawned: 'apache2' with pid 13
 2015-02-06 10:42:21,368 INFO reaped unknown pid 29
2015-02-06 10:42:21,403 INFO reaped unknown pid 30
2015-02-06 10:42:22,404 INFO success: tomcat entered RUNNING state, process

➥ has stayed up for > than 1 seconds (startsecs)
 2015-02-06 10:42:22,404 INFO success: apache2 entered RUNNING state, process

➥ has stayed up for > than 1 seconds (startsecs)

If you navigate to http://localhost:9000, you should see the default page of the
Apache server you started up.

 To clean up the container, run the following command:

docker rm -f supervised

DISCUSSION
This technique used Supervisor to manage multiple processes in your Docker con-
tainer.

 If you’re interested in alternatives to Supervisor, there’s also runit, which was used
by the phusion base image covered in technique 12.

3.2 Saving and restoring your work
Some people say that code isn’t written until it’s committed to source control—it
doesn’t always hurt to have the same attitude about containers. It’s possible to save
state with VMs by using snapshots, but Docker takes a much more active approach in
encouraging the saving and reusing of your existing work.

 We’ll cover the “save game” approach to development, the niceties of tagging,
using the Docker Hub, and referring to specific images in your builds. Because these
operations are considered so fundamental, Docker makes them relatively simple and
quick. Nonetheless, this can still be a confusing topic for Docker newbies, so in the
next section we’ll take you through the steps to a fuller understanding of this subject.

Listing 3.15 Run the supervised container

Maps the container’s port 80 to the host’s port
9000, gives the container a name, and specifies
the image name you’re running, as tagged with
the build command previously

Starts up the
Supervisor
process

Starts up the
Supervisor
process

Starts up the
managed processes

Managed processes have been deemed by
Supervisor to have successfully started.

14 CHAPTER 3 Using Docker as a lightweight virtual machine
TECHNIQUE 15 The “save game” approach: Cheap source control

If you’ve ever developed any kind of software, you’ve likely exclaimed, “I’m sure it was
working before!” at least once. Perhaps your language was not as sober as this. The
inability to restore a system to a known good (or maybe only “better”) state when
you’re hurriedly hacking away at code to hit a deadline or fix a bug is the cause of
many broken keyboards.

 Source control has helped significantly with this, but there are two problems in
this particular case:

 The source may not reflect the state of your “working” environment’s filesystem.
 You may not be willing to commit the code yet.

The first problem is more significant than the second. Although modern source con-
trol tools like Git can easily create local throwaway branches, capturing the state of
your entire development filesystem isn’t the purpose of source control.

 Docker provides a cheap and quick way to store the state of your container’s devel-
opment filesystem through its commit functionality, and that’s what we’re going to
explore here.

PROBLEM
You want to save the state of your development environment.

SOLUTION
Regularly commit your container so you can recover state at that point.

 Let’s imagine you want to make a change to your to-do application from chapter 1.
The CEO of ToDoCorp isn’t happy and wants the title of the browser to show “ToDo-
Corp’s ToDo App” instead of “Swarm+React - TodoMVC.”

 You’re not sure how to achieve this, so you probably want to fire up your applica-
tion and experiment by changing files to see what happens.

$ docker run -d -p 8000:8000 --name todobug1 dockerinpractice/todoapp
 3c3d5d3ffd70d17e7e47e90801af7d12d6fc0b8b14a8b33131fc708423ee4372
$ docker exec -i -t todobug1 /bin/bash 2((CO7-2))

The docker run command starts the to-do application in a container in the back-
ground (-d), mapping the container’s port 8000 to port 8000 on the host
(-p 8000:8000), naming it todobug1 (--name todobug1) for easy reference, and
returning the container ID. The command started in the container will be the default
command specified when the dockerinpractice/todoapp image was built. We’ve
built it for you and made it available on the Docker Hub.

 The second command will start /bin/bash in the running container. The name
todobug1 is used, but you can also use the container ID. The -i makes this exec run
interactively, and -t makes sure that the exec will work as a terminal would.

Listing 3.16 Debugging the application in a terminal

15Saving and restoring your work
 Now you’re in the container, so the first step in experimenting is to install an edi-
tor. We prefer vim, so we used these commands:

apt-get update
apt-get install vim

After a little effort, you realize that the file you need to change is local.html. You
therefore change line 5 in that file as follows:

<title>ToDoCorp's ToDo App</title>

Then word comes through that the CEO might want the title to be in lowercase, as
she’s heard that it looks more modern. You want to be ready either way, so you commit
what you have at the moment. In another terminal you run the following command.

$ docker commit todobug1
 ca76b45144f2cb31fda6a31e55f784c93df8c9d4c96bbeacd73cad9cd55d2970

The new image ID of the
container you’ve committed

You’ve now committed your container to an image that you can run from later.

NOTE Committing a container only stores the state of the filesystem at the
time of the commit, not the processes. Docker containers aren’t VMs, remem-
ber! If your environment’s state depends on the state of running processes
that aren’t recoverable through standard files, this technique won’t store the
state as you need it. In this case, you’ll probably want to look at making your
development processes recoverable.

Next, you change local.html to the other possible required value:

<title>todocorp's todo app</title>

Commit again:

$ docker commit todobug1
071f6a36c23a19801285b82eafc99333c76f63ea0aa0b44902c6bae482a6e036

You now have two image IDs that represent the two options (ca76b45144f2 cb31f
da6a31e55f784c93df8c9d4c96bbeacd73cad9cd55d2970 and 071f6a36c23a19801285
b82eafc99333c76f63ea0aa0b44902c6bae482a6e036 in our example, but yours will be
different). When the CEO comes in to evaluate which one she wants, you can run up
either image and let her decide which one to commit.

Listing 3.17 Committing container state

Turns the container you
created earlier into an image

16 CHAPTER 3 Using Docker as a lightweight virtual machine
 You do this by opening up new terminals and running the following commands.

$ docker run -p 8001:8000 \
 ca76b45144f2cb31fda6a31e55f784c93df8c9d4c96bbeacd73cad9cd55d2970
 $ docker run -p 8002:8000 \
 071f6a36c23a19801285b82eafc99333c76f63ea0aa0b44902c6bae482a6e036

Maps the container’s port 8000 to the host’s port
8002 and specifies the uppercase image ID

In this way you can present the uppercase option as available on http://localhost
:8001 and the lowercase option on http://localhost:8002.

NOTE Any dependencies external to the container (such as databases,
Docker volumes, or other services called) aren’t stored on commit. This tech-
nique doesn’t have any external dependencies so you don’t need to worry
about that.

DISCUSSION
This technique demonstrated docker commit’s functionality, and how it might be
used in a development workflow. Docker users tend to be directed toward using
docker commit only as part of a formal commit-tag-push workflow, so it’s good to
remember that it has other uses too.

 We find this to be a useful technique when we’ve negotiated a tricky sequence of
commands to set up an application. Committing the container, once successful, also
records your bash session history, meaning that a set of steps for regaining the state
of your system is available. This can save a lot of time! It’s also useful when you’re
experimenting with a new feature and are unsure whether you’re finished, or when
you’ve recreated a bug and want to be as sure as possible that you can return to the
broken state.

 You may well be wondering whether there’s a better way to reference images than
with long random strings of characters. The next technique will look at giving these
containers names you can more easily reference.

TECHNIQUE 16 Docker tagging

You’ve now saved the state of your container by committing, and you have a random
string as the ID of your image. It’s obviously difficult to remember and manage the
large numbers of these image IDs. It would be helpful to use Docker’s tagging func-
tionality to give readable names (and tags) to your images and remind you what they
were created for.

 Mastering this technique will allow you to see what your images are for at a glance,
making image management on your machine far simpler.

Listing 3.18 Running up both committed images as containers

Maps the container’s port 8000 to the host’s
port 8001 and specifies the lowercase image ID

17Saving and restoring your work
PROBLEM
You want to conveniently reference and store a Docker commit.

SOLUTION
Use the docker tag command to name your commits.

 In its basic form, tagging a Docker image is simple.

$ docker tag \
 071f6a36c23a19801285b82eafc99333c76f63ea0aa0b44902c6bae482a6e036 \
 imagename

The name you want
to give your image

This gives your image a name that you can refer to, like so:

docker run imagename

This is much easier than remembering random strings of letters and numbers!
 If you want to share your images with others, there’s more to tagging than this,

though. Unfortunately, the terminology around tags can be rather confusing. Terms
such as image name and repository are used interchangeably. Table 3.1 provides some
definitions.

Perhaps the most confusing terms in this table are “image” and “repository.” We’ve
been using the term image loosely to mean a collection of layers that we spawn a con-
tainer from, but technically an image is a single layer that refers to its parent layer
recursively. A repository is hosted, meaning that it’s stored somewhere (either on your
Docker daemon or on a registry). In addition, a repository is a collection of tagged
images that make up the filesystem for a container.

 An analogy with Git can be helpful here. When cloning a Git repository, you check
out the state of the files at the point you requested. This is analogous to an image. The
repository is the entire history of the files at each commit, going back to the initial

Listing 3.19 A simple docker tag command

Table 3.1 Docker tagging terms

Term Meaning

Image A read-only layer.

Name The name of your image, such as “todoapp.”

Tag As a verb, it refers to giving an image a name. 
As a noun, it’s a modifier for your image name.

Repository A hosted collection of tagged images that together
create the filesystem for a container.

The docker
tag command

The image ID you want
to give a name to

18 CHAPTER 3 Using Docker as a lightweight virtual machine
commit. You therefore check out the repository at the head’s “layer.” The other “lay-
ers” (or commits) are all there in the repository you’ve cloned.

 In practice, the terms “image” and “repository” are used more or less interchange-
ably, so don’t worry too much about this. But be aware that these terms exist and are
used similarly.

 What you’ve seen so far is how to give an image ID a name. Confusingly, this name
isn’t the image’s “tag,” although people often refer to it as that. We distinguish
between the action “to tag” (verb) and the “tag” (noun) you can give to the image
name. This tag (noun) allows you to name a specific version of the image. You might
add a tag to manage references to different versions of the same image. For example,
you could tag an image with a version name or the date of commit.

 A good example of a repository with multiple tags is the Ubuntu image. If you pull
the Ubuntu image and then run docker images, you’ll get output similar to the fol-
lowing listing.

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu trusty 8eaa4ff06b53 4 weeks ago 192.7 MB
ubuntu 14.04 8eaa4ff06b53 4 weeks ago 192.7 MB
ubuntu 14.04.1 8eaa4ff06b53 4 weeks ago 192.7 MB
ubuntu latest 8eaa4ff06b53 4 weeks ago 192.7 MB

The Repository column lists the hosted collection of layers called “ubuntu”. Often this
is referred to as the “image.” The Tag column here lists four different names (trusty,
14.04, 14.04.1, and latest). The Image ID column lists identical image IDs. This is
because these differently tagged images are identical.

 This shows that you can have a repository with multiple tags from the same image
ID. In theory, though, these tags could later point to different image IDs. If “trusty”
gets a security update, for example, the image ID may be changed with a new commit
by the maintainers and tagged with “trusty”, “14.04.2”, and “latest”.

 The default is to give your image a tag of “latest” if no tag is specified.

NOTE The “latest” tag has no special significance in Docker—it’s a default for
tagging and pulling. It doesn’t necessarily mean that this was the last tag set for
this image. The “latest” tag of your image may be an old version of the image,
as versions built later may have been tagged with a specific tag like “v1.2.3”.

DISCUSSION
In this section we covered Docker image tagging. In itself, this technique is relatively
simple. The real challenge we’ve found—and focused on here—is navigating the
loose use of terminology among Docker users. It’s worth re-emphasizing that when
people talk about an image, they might be referring to a tagged image, or even a

Listing 3.20 An image with multiple tags

19Saving and restoring your work
repository. Another particularly common mistake is referring to an image as a con-
tainer: “Just download the container and run it.” Colleagues at work who have been
using Docker for a while still frequently ask us, “What’s the difference between a con-
tainer and an image?”

 In the next technique you’ll learn how to share your now-tagged image with others
using a Docker image hub.

TECHNIQUE 17 Sharing images on the Docker Hub

Tagging images with descriptive names would be even more helpful if you could share
these names (and images) with other people. To satisfy this need, Docker comes with
the ability to easily move images to other places, and Docker Inc. created the Docker
Hub as a free service to encourage this sharing.

NOTE To follow this technique, you’ll need a Docker Hub account that you
have logged into previously by running docker login on your host machine.
If you haven’t set one up, you can do so at http://hub.docker.com. Just follow
the instructions to register.

PROBLEM
You want to share a Docker image publicly.

SOLUTION
Use the Docker Hub registry to share your image.

 As with tagging, the terminology around registries can be confusing. Table 3.2
should help you understand how the terms are used.

As you’ve seen previously, it’s possible to tag an image as many times as you like. This
is useful for “copying over” an image so that you have control of it.

 Let’s say your username on the Docker Hub is “adev”. The following three com-
mands show how to copy the “debian:wheezy” image from the Docker Hub to be
under your own account.

Table 3.2 Docker registry terms

Term Meaning

Username Your Docker registry username.

Registry Registries hold images. A registry is a store you can upload images
to or download them from. Registries can be public or private.

Registry host The host on which the Docker registry runs.

Docker Hub The default public registry hosted at https://hub.docker.com.

Index The same as a registry host. It appears to be a deprecated term.

http://hub.docker.com
https://hub.docker.com

20 CHAPTER 3 Using Docker as a lightweight virtual machine

),
docker pull debian:wheezy
 docker tag debian:wheezy adev/debian:mywheezy1
 docker push adev/debian:mywheezy1

Pushes the newly
created tag

You now have a reference to the Debian wheezy image you downloaded that you can
maintain, refer to, and build on.

 If you have a private repository to push to, the process is identical, except that you
must specify the address of the registry before the tag. Let’s say you have a repository
that’s served from http://mycorp.private.dockerregistry. The following listing will tag
and push the image.

docker pull debian
 docker tag debian:wheezy \
mycorp.private.dockerregistry/adev/debian:mywheezy1
 docker push mycorp.private.dockerregistry/adev/debian:mywheezy1

Pushes the newly created tag to the private registry. Note that the
private registry server’s address is required both when tagging and
pushing, so that Docker can be sure it’s pushing to the right place.

The preceding commands won’t push the image to the public Docker Hub but will
push it to the private repository, so that anyone with access to resources on that service
can pull it.

DISCUSSION
You now have the ability to share your images with others. This is a great way to share
work, ideas, or even issues you’re facing with other engineers.

 Just as GitHub isn’t the only publicly available Git server, Docker Hub isn’t the only
publicly available Docker registry. But like GitHub, it’s the most popular. For example,
RedHat has a hub at https://access.redhat.com/containers.

 Again, like Git servers, public and private Docker registries might have different
features and characteristics that make one or the other appeal to you. If you’re evalu-
ating them, you might want to think about things like cost (to buy, subscribe to, or
maintain), adherence to APIs, security features, and performance.

 In the next technique, we’ll look at how specific images can be referenced to help
avoid issues that arise when the image reference you’re using is unspecific.

Listing 3.21 Copying a public image and pushing to adev’s Docker Hub account

Listing 3.22 Copying a public image and pushing to adev’s private registry

Pulls the Debian image
from the Docker Hub Tags the wheezy image with

your own username (adev)
and tag (mywheezy1)

Pulls the Debian image
from the Docker Hub

Tags the wheezy image 
with your registry
(mycorp.private.dockerregistry
username (adev), and tag
(mywheezy1)

https://access.redhat.com/containers

21Saving and restoring your work
TECHNIQUE 18 Referring to a specific image in builds

Most of the time you’ll be referring to generic image names in your builds, such as
“node” or “ubuntu” and will proceed without problem.

 If you refer to an image name, it’s possible that the image can change while the tag
remains the same, as paradoxical as it sounds. The repository name is only a refer-
ence, and it may be altered to point to a different underlying image. Specifying a tag
with the colon notation (such as ubuntu:trusty) doesn’t remove this risk either, as
security updates can use the same tag to automatically rebuild vulnerable images.

 Most of the time you’ll want this—the maintainers of the image may have found an
improvement, and patching security holes is generally a good thing. Occasionally,
though, this can cause you pain. And this is not merely a theoretical risk: this has hap-
pened to us on a number of occasions, breaking continuous delivery builds in a way
that’s difficult to debug. In the early days of Docker, packages would be added to and
removed from the most popular images regularly (including, on one memorable
occasion, the disappearance of the passwd command!), making builds that previously
worked suddenly break.

PROBLEM
You want to be sure that your build is from a specific and unchanging image.

SOLUTION
To be absolutely certain that you’re building against a given set of files, specify a spe-
cific image ID in your Dockerfile.

 Here’s an example (which will likely not work for you):

FROM 8eaa4ff06b53
 RUN echo "Built from image id:" > /etc/buildinfo
 RUN echo "8eaa4ff06b53" >> /etc/buildinfo
 RUN echo "an ubuntu 14.4.01 image" >> /etc/buildinfo
 CMD ["echo","/etc/buildinfo"]

The built image will by default output the
information you recorded in the /etc/buildinfo file.

To build from a specific image (or layer) ID like this, the image ID and its data must
be stored locally on your Docker daemon. The Docker registry won’t perform any
kind of lookup to find the image ID in layers of images available to you on the Docker
Hub, or in any other registry you may be configured to use.

 Note that the image you refer to need not be tagged—it could be any layer you
have locally. You can begin your build from any layer you wish. This might be useful
for certain surgical or experimental procedures you want to perform for Dockerfile
build analysis.

Listing 3.23 Dockerfile with a specific image ID

Builds from a specific
image (or layer) ID Runs commands within this

image to record the image
you built from within a file
in the new image

22 CHAPTER 3 Using Docker as a lightweight virtual machine
 If you want to persist the image remotely, it’s best to tag and push the image to a
repository that’s under your control in a remote registry.

WARNING It’s worth pointing out that almost the opposite problem can occur
when a Docker image that was previously working suddenly does not. Usually
this is because something on the network has changed. One memorable
example of this was when our builds failed to apt-get update one morning.
We assumed it was a problem with our local deb cache and tried debugging
without success until a friendly sysadmin pointed out that the particular ver-
sion of Ubuntu we were building from was no longer supported. This meant
that the network calls to apt-get update were returning an HTTP error.

DISCUSSION
Although it might sound a little theoretical, it’s important to understand the advan-
tages and disadvantages of being more specific about the image you want to build
or run.

 Being more specific makes the result of your action more predictable and debug-
gable, as there’s less ambiguity about which Docker image is or was downloaded. The
disadvantage is that your image may not be the latest available, and you may therefore
miss out on critical updates. Which state of affairs you prefer will depend on your par-
ticular use case and what you need to prioritize in your Docker environment.

 In the next section, you’ll apply what you’ve learned to a somewhat playful real-
world scenario: winning at 2048.

3.3 Environments as processes
One way of viewing Docker is to see it as turning environments into processes. VMs
can be treated in the same way, but Docker makes this much more convenient and
efficient.

 To illustrate this, we’ll show you how the speedy spin-up, storage, and recreation of
container state can allow you to do something otherwise (almost) impossible—win-
ning at 2048!

TECHNIQUE 19 The “save game” approach: Winning at 2048

This technique is designed to provide you with a little light relief while showing you
how Docker can be used to revert state easily. If you’re not familiar with 2048, it’s an
addictive game where you push numbers around a board. The original version is avail-
able online at http://gabrielecirulli.github.io/2048 if you want to get acquainted with
it first.

PROBLEM
You want to save container state regularly in order to revert to a known state if neces-
sary.

SOLUTION
Use docker commit to “save game” whenever you are unsure whether you will survive
in 2048.

http://gabrielecirulli.github.io/2048

23Environments as processes
 We’ve created a monolithic image on which you can play 2048 within a Docker
container that contains a VNC server and Firefox.

 To use this image you’ll need to install a VNC client. Popular implementations
include TigerVNC and VNC Viewer. If you don’t have one, a quick search for “vnc cli-
ent” on the package manager on your host should yield useful results.

 To start up the container, run the following commands.

$ docker run -d -p 5901:5901 -p 6080:6080 --name win2048 imiell/win2048
 $ vncviewer localhost:1

Use VNC to get GUI access
to the container

First you run a container from the imiell/win2048 image that we’ve prepared for you.
You start this in the background and specify that it should open two ports (5901
and 6080) to the host. These ports will be used by the VNC server started automatically
inside the container. You also give the container a name for easy use later: win2048.

 You can now run your VNC viewer (the executable may differ depending on what
you have installed) and instruct it to connect to your local computer. Because the
appropriate ports have been exposed from the container, connecting to localhost will
actually connect to the container. The :1 after localhost is appropriate if you have
no X displays on your host, other than a standard desktop—if you do, you may need
to choose a different number and look at the documentation for your VNC viewer to
manually specify the VNC port as 5901.

 Once you’re connected to the VNC server, you’ll be prompted for a password. The
password for VNC on this image is “vncpass”. You’ll then see a window with a Firefox
tab and a 2048 table preloaded. Click on it to give it focus, and play until you’re ready
to save the game.

 To save the game, you tag the named container after committing it:

$ docker commit win2048 1((CO14-1))
 4ba15c8d337a0a4648884c691919b29891cbbe26cb709c0fde74db832a942083
 $ docker tag 4ba15c8d337 my2048tag:$(date +%s)

Tags the commit with the
current time as an integer

An image ID was generated by committing the win2048 container, and now you want
to give it a unique name (because you may be creating a number of these images). To
do this, you can use the output of date +%s as part of the image name. This outputs

Listing 3.24 Start the 2048 container

Listing 3.25 Commit and tag the game state

Run the imiell/win2048
image as a daemon

Commits the
win2048 container The tag that references

your commit

24 CHAPTER 3 Using Docker as a lightweight virtual machine
the number of seconds since the first day of 1970, providing a unique (for our pur-
poses), constantly increasing value. The $(command) syntax just substitutes the output
of command at that position. If you prefer, you can run date +%s manually and paste
the output as part of the image name instead.

 You can then continue playing until you lose. Now comes the magic! You can
return to your save point with the following commands.

$ docker rm -f win2048
$ docker run -d -p 5901:5901 -p 6080:6080 --name win2048 my2048tag:$mytag

$mytag is a tag selected from the docker images command. Repeat the tag, rm, and
run steps until you complete 2048.

DISCUSSION
We hope that was fun. This example is more fun than practical, but we have used—
and seen other developers use—this technique to great effect, especially when their
environments are complex and the work they’re doing is somewhat forensic and
tricky.

Summary
 You can create a Docker container that looks like a “normal” host. Some con-

sider this to be bad practice, but it may benefit your business or fit your use
case.

 It’s relatively easy to convert a VM to a Docker image to make the initial move
to Docker.

 You can supervise services on your containers to mimic their previous VM-like
operation.

 Committing is the correct way to save your work as you go.
 You can specify a particular Docker image to build from by using its build ID.
 You can name your images and share them with the world on the Docker Hub

for free.
 You can even use Docker’s commit capability to win at games like 2048!

Listing 3.26 Return to the saved game

	contents
	Using Docker as a lightweight virtual machine
	3.1 From VM to container
	Problem
	Solution
	Discussion
	Problem
	Solution
	Discussion
	Problem
	Solution
	Discussion
	Problem
	Solution
	Discussion

	3.2 Saving and restoring your work
	Problem
	Solution
	Discussion
	Problem
	Solution
	Discussion
	Problem
	Solution
	Discussion
	Problem
	Solution
	Discussion

	3.3 Environments as processes
	Problem
	Solution
	Discussion
	Summary

	Promo

