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11
T H E  I N T E R N E T

So far, we’ve focused on computing that 
occurs on a single device. In this chapter  

and the next, we look at computing that  
spans multiple devices. We’re going to examine 

two significant innovations in computing, the internet 
and the world wide web, which are not the same thing! 
This chapter focuses on the internet, and we begin by 
defining key terms. Then we look at a layered model  
of networks and dig into some of the foundational  
protocols used on the internet.

Networking Terms Defined
To discuss the internet and networks in general, you first need to become 
familiar with some concepts and terms, which we cover here. A computer 



234   Chapter 11

network is a system that allows computing devices to communicate with 
each other, as illustrated in Figure 11-1. Networks can be connected wire-
lessly, using technologies like Wi-Fi, which transmits data using radio waves. 
Networks can also be connected with cables, such as copper wiring or fiber 
optics. Computing devices on a network must use a common communications 
protocol, a set of rules that describe how information is to be exchanged.

Figure 11-1: A computer network

The internet is a globally connected set of computer networks that 
all use a suite of common protocols. The internet is a network of networks, 
connecting networks from various organizations all around the world, as 
shown in Figure 11-2.

Figure 11-2: The internet: a network of networks
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A host or node is a single computing device attached to a network. A host 
can act as a server or a client on the network, or sometimes both. A network 
server is a host that listens for inbound network connections and provides 
services to other hosts. Examples are a web server and an email server. A net-
work client is a host that makes outbound connections and requests services 
from network servers. Example clients are smartphones or laptops running 
web browsers or email apps. A client makes a request to a server, and the server 
replies with a response, as illustrated in Figure 11-3.

Client Server

Request

Response

Figure 11-3: A client makes a request  
to a server, and the server responds

The term server, as just used, refers to any device that accepts inbound 
requests and provides services to clients. However, server can also refer to a 
class of computer hardware that’s specifically intended to act as a network 
server. These specialized computers are physically designed to be mounted 
into racks of computers in a datacenter and often include hardware redun-
dancy and management capabilities not found in a typical PC. However, any 
device with the right software can act as a server on a network. 

The Internet Protocol Suite
Physically connecting the networks of the world isn’t enough to allow the 
devices on those networks to communicate with each other. All participat-
ing computers need to communicate in the same way. The internet protocol 
suite standardizes the method of communication on the internet, ensuring 
that all devices on the network speak the same language. The two foun-
dational protocols in the internet protocol suite are Transmission Control 
Protocol (TCP) and Internet Protocol (IP), collectively known as TCP/IP. 

Network protocols operate in a layered model, and an implementation of 
such a model is referred to as a network stack (not to be confused with a stack 
in memory, as covered in Chapter 9). The protocols at the lowest layer inter-
act with the underlying networking hardware, whereas applications interact 
with protocols in the upper layers. Protocols in the intermediate layers pro-
vide services such as addressing and reliable delivery of data. A protocol at a 
certain layer doesn’t have to concern itself with the entire networking stack, 
only the layers with which it interfaces, simplifying the overall design. This is 
another example of encapsulation.
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The internet protocol suite is designed around a four-layer model. This 
is sometimes called the TCP/IP model. The four layers of the TCP/IP model, 
starting from the bottom up, are the link layer, the internet layer, the trans-
port layer, and the application layer, as shown in Figure 11-4.

Link layer

Internet layer

Transport layer

Application layer

Figure 11-4: The internet  
protocol suite model of  
networking

OSI — A NOT HE R NE T WOR K MODE L

Another commonly used model for network protocols is the Open Systems 
Interconnection (OSI) model. The OSI model divides protocols into seven layers 
rather than four. This model is often referenced in technical literature, but the 
internet is based on the internet protocol suite, so this book focuses on the TCP/
IP model.

These networking layers represent an abstraction, a model for us to 
use when discussing the operation of the internet. In practice, each layer is 
realized with specific networking protocols. Each network layer represents 
a scope of responsibilities, and protocols must fulfill the responsibilities of 
their assigned layer. Table 11-1 provides a description of each layer.

Table 11-1: Description of the Four Layers of the Internet Protocol Suite

Layer Description Example protocols

Application Protocols that operate at the application layer 
provide application-specific functionality, such 
as sending an email or retrieving a web page. 
These protocols accomplish tasks that end users (or 
backend services) wish to complete. Application 
layer protocols structure the data used in process-
to-process communication across a network. All the 
lower layer protocols exist as “plumbing” to sup-
port the application layer.

HTTP, SSH
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Layer Description Example protocols

Transport Transport layer protocols provide a communica-
tions channel for applications to send and receive 
data between hosts. An application structures data 
according to an application layer protocol and 
then hands off that data to a transport layer proto-
col for delivery to a remote host.

TCP, UDP

Internet Internet layer protocols provide a mechanism 
for communicating across networks. This layer is 
responsible for identifying hosts with addresses 
and enabling the routing of data from network to 
network across the internet. The transport layer 
relies on the internet layer for addressing and 
routing.

IP

Link Link layer protocols provide a way to communi-
cate on a local network. Protocols at this layer 
are closely associated with the type of network-
ing hardware on a local network, such as Wi-Fi. 
Protocols at the internet layer rely on link layer pro-
tocols to communicate on a local network.

Wi-Fi, Ethernet

Protocols at each layer communicate with the protocols in adjacent 
layers. An outgoing transmission from a host travels down through the 
network layers, from an application layer protocol, to a transport layer 
protocol, to an internet layer protocol, and finally to a link layer protocol. 
An incoming transmission to a host travels up through the network layers, 
reversing the order just described.

Although network hosts (such as a client or server) make use of pro-
tocols from all four layers, other types of networking hardware (such as 
switches and routers) only use protocols associated with lower layers. Such 
devices can perform their jobs without bothering to examine the higher 
layer protocol data contained in a network transmission.

An outgoing request from a client to a server, and its relationship to  
the networking layers, is illustrated in Figure 11-5.

Client
Sends request

Link
Internet

Transport
Application

Server
Receives request

Link
Internet

Transport
Application

Network 1

Router A

Link
Internet

Link
Internet

Network 2 Network 3

Routes request from 
Network 1 to Network 2

Router B

Routes request from 
Network 2 to Network 3

Figure 11-5: A network request travels through various network layers
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Let’s walk through the flow of Figure 11-5. An application on the client 
device forms a request using an application layer protocol. That request 
is handed off to a transport layer protocol, then to an internet layer pro-
tocol, and finally to a link layer protocol. All of this happens on the client 
device. At this point the request is transmitted onto the local network, 
labeled Network 1 in the diagram. The request makes its way across the 
internet, going from network to network. In this example, Router A routes 
the request from Network 1 to Network 2, and Router B routes the request 
from Network 2 to Network 3. Once the request reaches the destination 
server, it works its way up through the networking protocols, starting with a 
link layer protocol, and ending at an application layer protocol. A process 
running on the server receives the request, which is formatted according 
to the application layer protocol originally used by the client. The server 
process interprets the request and responds in an appropriate manner.

Let’s now take a look at each layer, starting from the bottom.

Link Layer
The lowest level of the internet protocol suite is the link layer. The physical 
and logical connections between hosts are known as network links. Link 
layer protocols are used by devices on the same network to communicate 
with each other. Each device on a link has a network address that uniquely 
identifies it. For many link layer protocols, this address is known as a media 
access control address (or MAC address). Link layer data is divided into small 
units known as frames, each including a header describing the frame, a pay-
load of data, and finally, a frame footer used to detect errors. This is illus-
trated in Figure 11-6.

Link layer
frame

Frame
header

Frame
footerFrame data

Figure 11-6: A link layer frame

The frame header contains source and destination MAC addresses. The 
header also includes a descriptor of the type of data carried in the frame 
data section.

If your home has a Wi-Fi network, Wi-Fi is the link between the hosts 
on your network. The Wi-Fi protocol, defined by the IEEE 802.11 specifica-
tions, doesn’t know or care what type of data is being sent over the wireless 
network; it simply enables communication between devices. Each device 
connected to the Wi-Fi network has a MAC address and receives frames sent 
to its address. MAC addresses are only useable on a local network; a com-
puter on a remote network cannot directly send data to a MAC address on 
your local network.

Another notable link layer technology is Ethernet, used for wired physi-
cal connections. Ethernet is defined by the IEEE 802.3 standards. Ethernet 
typically uses a cable with pairs of copper wires inside that ends in a con-
nector commonly known as RJ45, shown in Figure 11-7.
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Figure 11-7: The cable commonly used for Ethernet

All devices connected to the internet participate in the link layer. This 
is required, since it’s the link layer that provides connectivity (either wired 
or wireless) to a local network. A host, like a laptop or smartphone, partici-
pates in all layers, but certain networking devices operate at the link layer 
only. The most basic example of this is a hub. A network hub is a networking 
device that connects multiple devices on a local network without any intel-
ligence regarding the frames being sent. A simple hub might provide multi-
ple Ethernet ports for connecting devices. The hub simply retransmits every 
frame it receives on one physical port to all its other ports. A more intelli-
gent link layer device is a network switch, which examines the MAC addresses 
in the frames it receives and sends those frames to the physical port where 
the device with the destination MAC address is connected. 

N O T E 	 Please see Project #29 on page 254, where you can look at link layer devices and 
MAC addresses.

Internet Layer
The internet layer allows data to travel beyond the local network. The pri-
mary protocol used in this layer is simply called Internet Protocol (IP). It 
enables routing, the process of determining a path for data that’s transmit-
ted between networks. Every host on the internet is assigned an IP address, a 
number that uniquely identifies the host on the global internet. It’s also pos-
sible to have private IP addresses that aren’t directly exposed on the inter-
net. IP addresses are usually assigned by a server on the local network, and 
a device’s IP address typically changes when it connects to a new network. 
We’ll cover more on address assignment and private IP addresses later. 

Data sent over the internet layer is called a packet, which is enclosed in 
a link layer frame. Figure 11-8 illustrates the idea that a packet fits within a 
frame’s data section.

The IP packet header contains a source IP address and a destination IP 
address. The header also includes information that describes the packet, 
such as the IP version in use and the header length. The data section of the 
IP packet contains the payload that the IP layer is carrying.
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Link layer
frame

Internet layer
packet

Frame
header

Frame
footerFrame data

Packet dataPacket
header

Figure 11-8: A packet is contained in the data section of a frame

Two versions of Internet Protocol are in use on the internet today. 
Internet Protocol Version 4 (IPv4) is the dominant version in use, and the other 
active version is Internet Protocol Version 6 (IPv6). You may wonder what hap-
pened to IPv5. No such protocol ever existed, but an experimental protocol 
called Internet Stream Protocol identified its IP version as 5, and so IPv5 was 
skipped when the successor to IPv4 was developed. A significant difference 
between IPv4 and IPv6 is the size of an IP address. An IPv4 address is 32 bits 
in length, whereas an IPv6 address is 128 bits. This difference allows for a 
vastly larger number of addresses with IPv6. This change in address size is 
meant to help deal with the relatively short supply of IPv4 addresses. In this 
book, we focus on IPv4 addresses (and just refer to them as IP addresses), as 
they are still the primary means of addressing on the internet today.

A 32-bit IP address is typically displayed in dotted decimal notation, 
meaning the 32 bits are separated into four groups of 8 bits each, the 8-bit 
numbers are displayed in decimal (rather than hexadecimal or binary), and 
the four decimal numbers are separated by periods (dots). An example IP 
address, displayed in dotted decimal notation, is 192.168.1.23. Each 8-bit 
decimal number can be referred to as an octet.

Computers connected to the same local network have IP addresses that 
begin with the same leading bits and are said to be on the same subnet. 
Computers that are on the same subnet are able to communicate directly 
with each other at the link layer because they are operating on the same 
physical network. Computers that are on different subnets must send their 
traffic through a router, a device that connects subnets and operates at the 
internet layer.

Subnetting divides the IP address into two parts: the network prefix, 
which all devices on the same subnet share, and the host identifier, which is 
unique to a host on that subnet. The number of bits included in the net-
work prefix varies based on the network configuration.

Let’s look at an example. Assume a subnet uses a 24-bit network prefix, 
leaving us with 8 bits to represent the host. Also assume that a host on this 
subnet uses the example IP address from earlier—192.168.1.23. Given  
this IP address and network prefix, the IP address is divided as shown  
in Figure 11-9.

In this example, all hosts on the local subnet have an IP address that 
begins with 192.168.1. Each host has a different value for the last octet, with 23 
being assigned to this specific host. This example uses a 24-bit prefix length, 
meaning the prefix neatly aligns with the first three octets of the IP address. 
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This makes for a nice example, but the prefix length doesn’t always align with 
an octet boundary. A 25-bit prefix, for example, would also include the first bit 
of the last octet, leaving only 7 bits for identifying the host.

192.168.1.23

11000000 10101000 00000001 00010111

8 bits identify 
the host

24 leading bits 
identify the network

24-bit
network prefix

8-bit
host

Figure 11-9: An example IP address using a  
24-bit network prefix

The number of bits reserved for the network prefix is commonly 
expressed in one of two ways. Classless Inter-Domain Routing (CIDR) nota-
tion lists an IP address followed by a slash (/), and then the number of bits 
used for the network prefix. In our example this would be 192.168.1.23/24. 
Another common way to represent the number of prefix bits is with a subnet 
mask, a 32-bit number where a binary 1 is used for each bit that’s part of the 
network prefix and a 0 is used for each bit that’s part of the host number. 
Subnet masks are also written in dotted decimal notation, so our example 
of a 24-bit network prefix would result in a subnet mask of 255.255.255.0, as 
shown in Figure 11-10.

A binary 1 represents a bit that 
is part of the network prefix

255.255.255.0

11111111 11111111 11111111 00000000

  0 represents a 
bit that is part 
of the host ID

Figure 11-10: A 24-bit network prefix expressed  
as a subnet mask

Let’s look at how this is useful in practice. Say your computer has an IP 
address of 192.168.0.133 and a subnet mask of 255.255.255.224, or, expressed 
in CIDR notation, 192.168.0.133/27. Your computer wishes to connect to 
another computer with an IP address of 192.168.0.84. As mentioned earlier, 
two computers can communicate directly if they are on the same subnet, 
and if not, they must go through a router. So your computer must determine 
if the other computer is on the same subnet. How can it do this?
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Performing a bitwise logical AND of an IP address and its subnet mask 
produces the first address in a subnet. This first address, where the host 
bits are all 0, serves as an identifier for the subnet itself. This is commonly 
referred to as the network ID. Two computers that share a network ID are 
on the same subnet. A host can perform this AND operation against both 
its own IP address and the IP address it wishes to connect to, to see if they 
share a network ID and thus are on the same subnet. Let’s try this with our 
example computer’s IP address, as shown here:

  IP = 192.168.0.133   = 11000000.10101000.00000000.10000101
MASK = 255.255.255.224 = 11111111.11111111.11111111.11100000
 AND = 192.168.0.128   = 11000000.10101000.00000000.10000000 = The network ID

Now perform the same operation for the second computer in our 
example:

  IP = 192.168.0.84    = 11000000.10101000.00000000.01010100
MASK = 255.255.255.224 = 11111111.11111111.11111111.11100000
 AND = 192.168.0.64    = 11000000.10101000.00000000.01000000 = The network ID

As you can see from this example, this operation produced two dif-
ferent network IDs (192.168.0.128 and 192.168.0.64). This means that the 
second computer is not on the same subnet as your computer. To commu-
nicate, these computers need to send their messages through a router con-
necting the two subnets.

E X E RCISE 11-1: W HICH IP S A R E ON T HE S A ME SUBNE T ?

Is IP address 192.168.0.200 on the same subnet as your computer? Assume 
your computer has an IP address of 192.168.0.133 and a subnet mask of 
255.255.255.224.

Here’s another way to look at this: the network prefix describes the range 
of addresses that can be used on a subnet. The first address in that range is 
defined as the network prefix bits followed by all binary 0s for the host identi-
fier. Continuing with our example computer at 192.168.0.133, the first address 
on its subnet is 192.168.0.128. The last address in the range is the network pre-
fix bits followed by all binary 1s for the host identifier. In our example that’s 
192.168.0.159. The first and last addresses have special meanings—the first 
identifies the network, the last is the broadcast address (used for sending a mes-
sage to all hosts on the subnet). All the addresses in between can be used for 
hosts on the subnet. Our example IP address of 192.168.0.133 is clearly in this 
range (from 192.168.0.128 to 192.168.0.159), while the other computer with 
an IP address of 192.168.0.84 is outside this range.

You can also use the number of bits reserved for the host identifier to 
determine how many IP addresses are available for hosts on a subnet. In 
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our example, 27 bits are reserved for the network prefix, leaving 5 bits for 
host identifiers. These 5 bits give us 32 possible host addresses, since 25 is 
32. However, as mentioned earlier, the first and last addresses have special 
purposes, so really only 30 hosts can be identified using this network prefix. 
This aligns with our earlier findings: the first host identifier is 128, and 128 
+ 32 gives us 160, the first address in the next subnet, so 159 would be the 
last host in our range.  

N O T E 	 Please see Project #30 on page 255, where you can look at the internet layer using 
your Raspberry Pi.

Transport Layer
The transport layer provides a communications channel that applications may 
use to send and receive data. There are two commonly used transport layer 
protocols: Transmission Control Protocol (TCP) and User Datagram Protocol 
(UDP). TCP provides a reliable connection between two hosts. It ensures that 
errors are minimized, data arrives in order, lost data is resent, and so forth. 
Data sent with TCP is known as a segment. On the other hand, UDP is a “best 
effort” protocol, meaning its delivery is unreliable. UDP is preferred when 
speed is valued over reliability. Data sent with UDP is known as a datagram. 
Both protocols have their place, but to keep things simple, I cover only TCP 
for the remainder of the chapter. Figure 11-11 illustrates the idea that a TCP 
segment fits within a packet’s data section, which in turn fits within a frame’s 
data section.

As we saw earlier, the link layer includes a destination MAC address 
in the frame header to identify a local network interface, and the internet 
layer includes a destination IP address in the packet header to identify the 
host on the internet. That’s enough information to get a packet to a specific 
device on the internet. Once a packet has reached its destination host, the 
transport layer header includes a destination network port number that iden-
tifies the specific service or process that will receive the data. A host with a 
single IP address can have multiple active ports, each used for performing a 
different type of activity on the network.

Link layer 
frame

Internet layer 
packet

Transport layer 
segment

Frame 
header

Frame 
footer

Frame data

Packet dataPacket 
header

Segment dataSegment 
header

Figure 11-11: A TCP segment is contained in the data section of an IP packet

To use an analogy, an IP address is like the street address of an office 
building, and a network port number is like the office number of a worker 
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in that office building. The IP address uniquely identifies a host computer, 
just as a street address uniquely identifies an office building. Using internet 
protocol, a packet can be delivered to a host in the same way that a package 
can be delivered to an office building. However, once a packet arrives at the 
computer, the operating system must decide what to do with it. The packet 
isn’t intended for the OS itself, but for some process running on the com-
puter. In the same way, a package arriving at an office building likely isn’t 
intended for the mailroom worker but for someone else in the building. An 
operating system examines the port number and delivers the inbound data 
to the process listening on the specified port, just as a mailroom worker 
examines the name or office number on the package to deliver the package 
to the right person.

Network ports in the range of 0 to 1,023 are called well-known ports, 
whereas ports in the range of 1,024 to 49,151 can be registered with the 
Internet Assigned Numbers Authority (IANA) and are known as registered 
ports. Ports with a value greater than 49,151 are dynamic ports. Technically, 
any process with sufficient privileges can listen on any port that isn’t already 
in use on a system, potentially ignoring the typical use case for that port 
number. However, when a client application wishes to connect to a remote 
service on another computer, it needs to know what port to use, so it makes 
sense to standardize port numbers. For example, web servers typically lis-
ten on port 80 and port 443 (for encrypted connections). A web browser 
assumes that it should use port 80 or 443 unless directed otherwise.

E X E RCISE 11-2: R E SE A RCH COMMON POR T S

Find the port numbers for common application layer protocols. What are the 
port numbers for Domain Name System (DNS), Secure Shell (SSH), and Simple 
Mail Transfer Protocol (SMTP)? You can find this information online with a 
search, or by looking at the IANA registry, here: http://www.iana.org/assign-
ments/port-numbers. The IANA listings sometimes use an unexpected term for 
the service name. For example, DNS is simply listed as “domain.”

Servers use well-known ports to make it easy for clients to connect. 
However, most network communication is a two-way street (a client sends a 
request and a server responds), so the client needs to have an open port as 
well so that it can receive data from the server. A client only needs to tempo-
rarily open such a port, just long enough for it to complete its communica-
tion with a server. Such ports are called ephemeral ports and are assigned by 
the networking components in the operating system. For example, a client 
web browser connects to a web server on port 80, and an ephemeral port 
on the client is also opened, let’s say port number 61,348. The client sends 
its web request to port 80 on the server, and the server sends its response to 
port 61,348 on the client.

http://www.iana.org/assign�ments/port-�numbers.The
http://www.iana.org/assign�ments/port-�numbers.The


The Internet   245

An IP address plus a port number form an endpoint, and an instance of 
an endpoint is known as a socket. A socket can listen for new connections, 
or it can represent an established connection. If multiple clients connect to 
the same endpoint, each has its own socket.  

N O T E 	 Please see Project #31 on page 256, where you can look at the port usage of your 
Raspberry Pi.

Application Layer
The application layer is the final, topmost layer of the internet protocol suite. 
While the lower three layers provide a generalized foundation for com-
munication over the internet, the protocols at the application layer focus 
on accomplishing a specific task. For example, web servers use HyperText 
Transfer Protocol (HTTP) for retrieving and updating web content. Email 
servers use Simple Mail Transfer Protocol (SMTP) for sending and receiving 
email messages. File transfer servers use File Transfer Protocol (FTP) to, you 
guessed it, transfer files! In other words, the application layer is where we 
get to the protocols that describe the behavior of applications, whereas the 
lower layers of the stack are the “plumbing” that enables applications to do 
the things they want to do over the internet. Figure 11-12 provides a com-
pleted view of the four layers.

Link layer 
frame

Internet layer 
packet

Transport layer 
segment

Application layer 
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Frame
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Packet dataPacket
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Segment dataSegment
header

Application 
data

Figure 11-12: The application layer’s data is contained in the segment’s  
data section.

Figure 11-12 is a breakout view of how each layer fits in the lower layer’s 
data payload. Assembling all the layers together in Figure 11-13, we can 
see a representation of what is contained in a frame sent to a device on the 
internet.
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Figure 11-13: A frame containing an IP packet, a TCP segment,  
and application data
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We’ve walked through the contents of a network frame from the bottom 
up, starting with the layer closest to hardware. When a frame is received by 
a host, it is processed by the host in that same order, from the link layer up 
to the application layer. In contrast, when a frame is sent from a host, the 
frame is assembled in the reverse order. A process prepares application data 
that is enclosed in a segment, a packet, and finally, a frame. 

A Trip Through the Internet
Now that you’re familiar with each of the four layers in the TCP/IP network-
ing model, let’s look at an example of how data travels across the internet. 
We’ll see how various devices along the way interact with each of the network-
ing layers. Figure 11-14 illustrates this, showing a client in the upper left com-
municating with a server in the lower left.
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Internet

Transport
Application
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Link
Internet

Figure 11-14: Different devices interact at different layers of the networking stack

I’ll set up the scenario in Figure 11-14. A client device (upper left of dia-
gram) is connected to a wireless Wi-Fi network. That network is connected 
to the internet via a router. Somewhere else we have a server (lower left of 
diagram), which has a wired connection to the internet through a switch 
and router. A user of the client device opens a web browser and requests a 
web page hosted on the server. For simplicity, let’s assume that the client 
already knows the IP address of the server.

The web browser on the client “speaks” HTTP, the application layer pro-
tocol of the web, so it forms an HTTP request intended for the destination 
server. The browser then hands off the HTTP request to the operating sys-
tem’s TCP/IP software stack, asking that the data be delivered to the server—
specifically the server’s IP address and port 80, the standard port for HTTP. 
The TCP/IP software stack on the client operating system then encapsulates 
the HTTP payload in a TCP segment (transport layer), setting the destination 
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port to 80 in the segment header. If necessary, TCP divides the application 
layer data into multiple segments, each with its own header. The internet layer 
software on the client then wraps the TCP segment in an IP packet, which 
includes the destination IP address of the server in the packet header. If nec-
essary, IP divides the packet into multiple smaller fragments in preparation 
for transmission over the network link. At the link layer on the client, the IP 
packet is encapsulated in a frame with the MAC address of the local router 
in its header. This frame is wirelessly transmitted by the client device’s Wi-Fi 
hardware.

The wireless access point receives the frame. The access point, operating 
at the link layer, sends the frame along to the router. The router examines 
the internet layer packet to determine the destination IP address. To reach 
the server, the request needs to travel through multiple routers on  
the internet. The local router encapsulates the packet in a new frame, with  
a new destination MAC address (the address of the next router), and sends 
the new frame on its way. This routing process continues through multiple 
routers on the internet until the request reaches the router on the subnet 
where the server is connected. 

The last router encapsulates the packet in a frame suitable for the server’s 
local network. This frame’s header includes the MAC address of the server. 
The switch on the server’s subnet looks at the MAC address in the frame and 
forwards the frame out the appropriate physical port. There’s no need for 
the switch to look at any higher layers. The server receives the frame, and the 
driver for the network interface passes the TCP/IP packet up to the TCP/IP 
software stack, which in turn, hands off the HTTP data to the process listen-
ing on TCP port 80. Web server software, listening on port 80, handles the 
request. This includes replying to the client, and to do that, this entire pro-
cess happens again, except in reverse order.  

N O T E 	 Please see Project #32 on page 258, where you can see the route from your Raspberry 
Pi to a host on the internet.

Foundational Internet Capabilities 
Whereas TCP/IP provides the necessary plumbing for reliable transfer of 
data across the internet, other protocols provide additional foundational 
internet capabilities. These features are implemented as application layer 
protocols. Let’s now look at two such protocols (DHCP and DNS) and a  
system for translating IP addresses (NAT).

Dynamic Host Configuration Protocol
Every host on the internet needs an IP address, a subnet mask, and the IP 
address of its router (also called its default gateway) in order to communicate 
with other hosts. How are IP addresses assigned? A device can be given a 
static IP address, which requires someone to edit the configuration on the 
device and set its IP information manually. This is sometimes useful, but 
it requires the user to ensure that the IP address in question isn’t already 
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taken and is valid for the subnet. Most end users don’t have the expertise to 
manually configure the IP settings for their devices, nor do they want to deal 
with the hassle of manual configuration. Fortunately, most IP addresses are 
assigned dynamically using Dynamic Host Configuration Protocol (DHCP). With 
DHCP, when a device connects to a network, it receives an IP address and 
related information without user intervention.

For DHCP to be available on a network, a device on the network must 
be configured as a DHCP server. This server has a pool of IP addresses that 
it’s allowed to assign to devices on the network. The flow of DHCP is illus-
trated in Figure 11-15.

Discover

Offer

DHCP client DHCP server

Request

Acknowledge

“Yep.”

“Are there any DHCP servers out there?”

“Yeah, would you like this IP address?”

“That’s a nice address. Can I have it?”

Figure 11-15: A DHCP conversation

Let’s walk through Figure 11-15. When a device connects to a network, 
it broadcasts a message to discover any DHCP servers. A broadcast is a spe-
cial kind of packet that’s addressed to all hosts on the local network. When 
the DHCP server receives this broadcast, it offers an IP address to the cli-
ent device. If the client wishes to accept the offered IP address, it replies to 
the server with a request for the offered address. The DHCP server then 
acknowledges the request, and the IP address is assigned to the client. The 
IP address is leased to the client, and it eventually expires if the client does 
not renew its lease. 

N O T E 	 Please see Project #33 on page 258, where you can see the IP address your Raspberry 
Pi has leased using DHCP.

Private IP Addresses and Network Address Translation
The number of available IP addresses is limited, so most home internet 
service providers (ISPs) only assign a single IP address to a customer. This 
IP address is assigned to the device that’s directly attached to the ISP’s net-
work, usually a router. However, many customers have multiple devices on 
their home network. Let’s look at how multiple devices can share a single 
public IP address by leveraging private IP addresses and Network Address 
Translation.
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Certain ranges of IP addresses are considered private IP addresses, 
addresses intended to be used on private networks, such as those in homes 
or offices, where the devices aren’t directly connected to the internet. Any 
address that matches the pattern of 10.x.x.x, 172.16.x.x, or 192.168.x.x is a 
private IP address. Anyone can use these ranges of IP addresses without 
asking permission. The catch is that private IP addresses are nonroutable—
they can’t be used on the public internet. A DHCP server on a home net-
work can assign these addresses without worrying about whether any other 
network is using the same addresses. Unlike public IP addresses that must 
be unique, private IP addresses are intended to be used simultaneously on 
multiple private networks. It doesn’t matter if multiple networks use the 
same addresses, since the addresses won’t ever be seen outside of the pri-
vate network anyway. Private IP addresses solve the problem of an ISP only 
providing a single public IP address to a home or business, but how are pri-
vate IP addresses useful if they aren’t routable on the internet?

Network Address Translation (NAT) allows devices on a private network, 
often a home network, to all use the same public IP address on the internet. 
As packets flow through a NAT router, the router modifies the IP address 
information in those packets. When a packet originating from the private 
home network arrives at the NAT router, it modifies the source IP address 
field to match the public IP address, as shown in Figure 11-16.

ServerClient

Private network

The internet

To: 
Server’s IP address

From: 
Client’s IP address
(private)

To: 
Server’s IP address

From: 
Router’s IP address
(public)

NAT router

Figure 11-16: A NAT router replaces private IP addresses with its own public IP address

When a response comes back to the router, it sets the destination IP 
address to the private address of the host that originated the request. In 
this way, all traffic from the home appears to originate from the same pub-
lic IP address, even if there are actually multiple devices on the private net-
work. NAT also has the side benefit of security: the devices on the private 
network aren’t directly exposed to the public internet, so a malicious user 
on the internet can’t initiate a connection directly to a private device. Most 
routers sold to consumers for home use are NAT routers, often with built-in 
wireless access point capabilities as well.

Private IP addresses are valuable not only for home networks, but also 
for businesses that don’t want their computers exposed to the public inter-
net. Many corporate networks use a proxy server rather than a NAT router. A 
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proxy server is similar to a NAT router in that it allows devices on a private 
network to access the internet, but a proxy server differs in that it typically 
operates at the application layer rather than the internet layer. Proxies also 
usually provide additional features such as user authentication, traffic log-
ging, and content filtering. 

N O T E 	 Please see Project #34 on page 259, where you can see if the IP address your device 
is assigned is a public IP address or a private IP address.

The Domain Name System
We’ve seen that hosts on the internet are identified by IP addresses. 
However, most users of the internet rarely, if ever, directly deal with IP 
addresses. Although IP addresses work well for computers, they aren’t very 
user friendly. No one wants to remember sets of four numbers separated 
by periods. Fortunately, we have the Domain Name System (DNS) to make 
things easier for us. DNS is an internet service that maps names to IP 
addresses. This allows us to refer to a host by a name like www.example.com 
rather than by its IP address.

A computer’s full DNS name is known as a fully qualified domain name, 
or FQDN. A name like travel.example.com is an FQDN. This name is com-
posed of a short, local hostname (travel) and a domain suffix (example.com). 
The term hostname is often used interchangeably to mean either the com-
puter’s short name or the FQDN. Later in this section, we use hostname to 
mean a computer’s FQDN. A domain, like example.com, represents a group-
ing of network resources managed by an organization. Both example.com 
and travel.example.com are domain names. The former represents a net-
work domain; the latter represents a specific host on that domain.

Software needs to be able to query DNS to convert hostnames to IP 
addresses—this is known as resolving a hostname. To enable this functionality, 
hosts are configured with a list of the IP addresses of DNS servers. This list is usu-
ally provided by DHCP, and it typically is composed of DNS servers maintained 
by the internet service provider or running on the local network. When a client 
wants to connect to a server by name, it asks a DNS server for the IP address cor-
responding to that name. The server replies with the requested IP address, if it 
can. This is illustrated in Figure 11-17.

Query

Response

DNS client DNS server“The IP address is 10.1.2.3”

“What’s the IP address of example.com?”

Figure 11-17: A simplified DNS query. The IP address of example.com is not  
intended to be accurate.

http://www.example.com
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Once the client has the server’s IP, it proceeds to communicate with the 
server using the IP address, as described earlier. I’ve heard DNS described 
as the phone book of the internet, although that analogy may fall short for 
some readers since phone books aren’t as common as they once were!

You might assume that there’s a one-to-one mapping between IP 
addresses and names. That actually isn’t the case. A name can map to 
multiple IP addresses. In that scenario, different clients query DNS for a 
certain name, and they may all receive a different IP address as a response. 
This is useful for situations in which the load for a given service needs to 
be distributed across multiple servers. This can be done geographically,  
so that clients in Europe, for example, get a different IP address than cli-
ents in Asia, allowing clients in each region to connect to the IP address  
of a server that’s physically close to them.

The reverse is possible too: multiple names can map to the same IP address. 
In this scenario, a query for different names may return a single IP address. This 
is useful when a server hosts multiple instances of the same type of service, each 
identified by name. This is common in web hosting, where a single server hosts 
multiple websites, each identified by its DNS name.

Each entry in DNS is known as a record. There are various kinds of 
records; the most basic is an A record, which simply maps a hostname to an 
IP address. Other examples are CNAME (canonical name) records that map 
one hostname to another hostname, and MX (mail exchanger) records used 
for email services.

No single organization would want to undertake the task of managing 
the many, many DNS records that exist today. Fortunately, this isn’t needed; 
DNS is implemented in a way that allows for shared responsibility. A DNS 
name like www.example.com actually represents a hierarchy of records, and 
different DNS servers are responsible for maintaining the records at differ-
ent levels of the hierarchy. The DNS hierarchy, as applied to www.example 
.com, is illustrated in Figure 11-18.
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Figure 11-18: Example DNS hierarchy, highlighting www.example.com

At the top of this hierarchical tree is the root domain. The root domain 
doesn’t get a textual representation in a DNS name like www.example.com, 
but it’s an essential part of the DNS hierarchy. The root domain contains 

http://www.example.com
http://www.example
http://www.example.com
http://www.example.com
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records for all the top-level domains (TLDs) like .com, .org, .edu, .net, and so 
forth. As of 2020, there are 13 root name servers worldwide, each responsi-
ble for knowing the details of all the top-level domain servers. Let’s say you 
want to look up a record in a domain that ends with .com. A root server can 
point you to a TLD server that knows about domains under .com.

A top-level DNS server is responsible for knowing about all the second-
level domains under its hierarchy. A top-level DNS server for .com could 
point you to the second-level DNS server for example.com. The DNS serv-
ers for second-level domains maintain records for hosts and third-level 
domains that fall under second-level domains. This means that the DNS 
server(s) for example.com are responsible for maintaining the records for 
hosts like www.example.com and mail.example.com. This pattern continues, 
allowing for nested domains. Once a domain is registered under a top-level 
domain, the owner of that domain can create as many records as needed 
under their domain.

As mentioned earlier, when a computer needs to find the IP address for 
an FQDN, it sends a request to its configured DNS server. What does the DNS 
server do with this request? If the server has recently looked up the requested 
record, it may have a copy of that record stored in its cache, and it can imme-
diately return the IP address to the client. If the DNS server doesn’t have 
the response in cache, it may query other DNS servers as needed to get the 
answer. This involves starting at the root and working down the hierarchy of 
servers to find the record in question. Once the server has the record, it can 
cache it so that it can immediately respond to future queries for that record. 
Eventually the cached record is removed to ensure that the server always pro-
vides reasonably recent data.  

N O T E 	 Please see Project #35 on page 260, where you can look up information  
in DNS.

Networking Is Computing
Let’s take a moment to consider how the internet fits in with the broader 
picture of computing that we’ve already covered in this book. Networking 
may seem like a tangential topic, but really it isn’t so far removed from com-
puting in general. The internet is composed of hardware and software work-
ing together to allow communication between devices. Data sent over the 
internet boils down to 0s and 1s, represented in various forms such as volt-
ages on a wire. From the perspective of a computer, a networking interface 
like a Wi-Fi or Ethernet adapter is just another I/O device. An operating 
system interacts with such adapters via device drivers, and the OS includes 
software libraries that allow applications to easily communicate over the 
internet. Networking devices like routers and switches are computers too, 
although highly specialized ones. The internet, and networking in general, 
is an extension of local computing, allowing for data transfer and processing 
beyond the boundaries of a single device.

http://www.example.com


The Internet   253

Summary
In this chapter we covered the internet, a globally connected set of com-
puter networks that all use a suite of common protocols. You learned 
about the four layers of the internet protocol suite—the link layer, the 
internet layer, the transport layer, and the application layer. You saw how 
data travels through the internet and how devices interact at various lay-
ers. You learned how DHCP provides networking configuration data, 
how NAT allows devices on private networks to connect to the internet, 
and how DNS provides friendly names that can be used in place of IP 
addresses. In the next chapter you’ll learn about the World Wide Web,  
a set of resources delivered by HTTP over the internet.
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PROJEC T #29: E X A MINE T HE L INK L AY E R

Prerequisite: A Raspberry Pi, running Raspberry Pi OS. I recommend that you flip to Appendix B 
and read the entire “Raspberry Pi” section if you haven’t already.

In this project, you’ll use your Raspberry Pi to check out the link layer of your local network. 
Let’s start with the following command, which lists the MAC address of your Ethernet adapter:

$ ifconfig eth0 | grep ether

The output should look something like the following:

        ether b8:27:eb:12:34:56  txqueuelen 1000  (Ethernet)

In this example, the MAC address is b8:27:eb:12:34:56. That’s a hexadecimal representation 
of a 48-bit number. Remember, each hex character represents 4 bits, so that’s 12 characters ×  
4 bits = 48 bits.

The first 24 bits of a MAC address represent the vendor/manufacturer of the hardware. This num-
ber is known as an organizationally unique identifier (OUI) and is managed by the Institute of Electrical 
and Electronics Engineers (IEEE). In this case the OUI is B827EB, which is assigned to the Raspberry Pi 
Foundation. You can see the current OUI listings here: http://standards-oui.ieee.org/oui.txt.

Your Raspberry Pi’s Wi-Fi adapter has its own MAC address. View it like this:

$ ifconfig wlan0 | grep ether
        ether b8:27:eb:78:9a:bc  txqueuelen 1000  (Ethernet)

On my system, the OUI (the first 24 bits of the MAC address) of the Wi-Fi adapter is the same 
as the OUI of the Ethernet adapter. This is because both adapters are internal Raspberry Pi hard-
ware and use the OUI for the Raspberry Pi Foundation.

From your Raspberry Pi, you can also see the MAC address of other devices on your local 
network. To do this you can use a tool called arp-scan that attempts to connect to every computer 
on your local network and retrieve its MAC address.

First, install the tool:

$ sudo apt-get install arp-scan

Then run this command (that’s a lowercase L at the end of the command, not the number 1):

$ sudo arp-scan -l

You should get a list of IP addresses (which we cover elsewhere in this chapter) and MAC 
addresses, plus a column that attempts to match the MAC prefix to the manufacturer. I got 10 results 
on my local network, some of which I didn’t immediately recognize. You may see some duplicate 
results returned, indicated with DUP in the third column. The returned list typically does not include 
the address of the computer from which you ran the scan.

http://standards-�oui.ieee.org/oui.txt.Your
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You may have some results in the third column that show as (Unknown). This means that the 
arp-scan tool wasn’t able to match the OUI number to a known manufacturer, probably because 
the tool is using an outdated version of the OUI list. You can try to fix this by downloading the cur-
rent list of OUI numbers from IEEE and then running the scan again, like this:

$ get-oui
$ sudo arp-scan -l

When I see multiple devices on my home network that I can’t identify right away, I have an 
immediate urge to figure out what they are! As a bonus challenge for you, identify every device 
returned from arp-scan. Now, this may be impractical if you’re running this tool on a network you 
don’t control (say, at a coffee shop or library), but if you’re at home, this is something you can 
do. You’ll probably need to log on to each device on your network and dig through its settings 
to find its IP address or MAC address and see if it matches one of the entries returned from arp-
scan. Hint: use the ifconfig utility on Linux or Mac, or the ipconfig tool on Windows. On mobile 
devices, look at the user interface for network settings.

PROJEC T #30: E X A MINE T HE IN T E R NE T L AY E R

Prerequisite: A Raspberry Pi, running Raspberry Pi OS.
In this project, you’ll look at the internet layer using your Raspberry Pi. Let’s begin with the 

following command, which lists all the network interfaces on your device and their associated IP 
addresses.

$ ifconfig 

You’ll typically see three interfaces: eth0, lo, and wlan0. The lo interface is a special case; 
it’s the loopback interface. It’s used for processes running on the Pi that wish to communicate with 
each other using TCP/IP, but without actually sending any traffic over the network. That is, the traf-
fic stays on the device. The loopback interface has an IP address of 127.0.0.1. This is a special 
address that is not routable and can’t be used as an address on the local subnet, because any 
attempt to deliver messages to that address results in the messages coming right back to the send-
ing computer. In other words, every computer considers 127.0.0.1 to be its own IP address.

As we covered in the previous project, eth0 is the wired Ethernet interface and wlan0 is the 
wireless Wi-Fi interface. If you’re connected to a network on either or both of these interfaces, you 
should see an IP address beside the text inet in the ifconfig output. You may also see an IPv6 
address listed beside inet6. Here’s example wlan0 output from ifconfig:

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 192.168.1.138  netmask 255.255.255.0  broadcast 192.168.1.255
        inet6 fe80::8923:91b2:13e0:ed2a  prefixlen 64  scopeid 0x20<link>

(continued)
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In this output you can see that the assigned IP address is 192.168.1.138. The netmask value 
(subnet mask) is 255.255.255.0, and the broadcast address is 192.168.1.255.

The ifconfig command gives us information about the various network interfaces on the 
Raspberry Pi, but it doesn’t tell us about how routing is configured. Let’s take a look at that using 
the ip route command. I’ve included sample output here; your results may vary.

$ ip route
default via 192.168.1.1 dev wlan0 src 192.168.1.138 metric 303
192.168.1.0/24 dev wlan0 proto kernel scope link src 192.168.1.138 metric 303 

This command’s output can be a little difficult to interpret. In short, the first line gives the default 
route. This is where packets should be sent when there isn’t a specific route that applies. In this partic-
ular example, every packet that doesn’t match a specific routing rule should be sent to 192.168.1.1. 
That means that 192.168.1.1 is the IP address of the local router, also known as the default gateway.

The next line is a routing entry that tells you that any packet sent to an IP address in the range 
of 192.168.1.0/24 should be sent through device wlan0. That’s the Wi-Fi adapter on the local 
subnet. In other words, this routing rule ensures that communication with IP addresses on the local 
subnet happens directly, without going through a router.

To summarize, this output tells you that any packet sent to an IP address that matches 
192.168.1.0/24 should be sent directly to the destination address via the wlan0 interface. Any other 
traffic uses the default route, which sends traffic to the router at 192.168.1.1. The end result is that 
local subnet traffic is sent directly to the target device, while traffic to devices on other subnets, 
likely on the internet, is sent to the default gateway.

PROJEC T #31: E X A MINE POR T US AGE

Prerequisite: A Raspberry Pi, running Raspberry Pi OS.
In this project, you’ll see which network ports are in use on a Raspberry Pi. You’ll then exam-

ine ports on other computers. Let’s begin with the following command that shows you the listening 
and established TCP sockets on your Raspberry Pi.

$ netstat -nat

Let’s break down the -nat options used in the command. The n option indicates that numeric 
output should be used to show the port numbers. The a option means show all connections (both 
listening and established), and t means limit the output to TCP. On my device, I see a list like so:

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN
tcp        0     36 192.168.1.138:22         192.168.1.125:52654    ESTABLISHED
tcp        0      0 192.168.1.138:22         192.168.1.125:51778    ESTABLISHED
tcp6       0      0 :::22                   :::*                    LISTEN
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Here you see four sockets, all related to SSH. I can tell they are related to SSH because  
all the sockets are using port 22. I have SSH enabled on my Raspberry Pi to allow remote  
terminal connections. The first and last lines show that the Pi is listening on port 22 for new 
incoming SSH connections using both TCP and TCP over IPv6. The middle two lines show that  
I have two established SSH connections to this device, both of them from my laptop (with an  
IP of 192.168.1.125) to the Pi (with an IP of 192.168.1.138). Note how both the established  
connections go to the same server port on the Pi (22), whereas the client port on my laptop  
varies (52654 and 51778), as they are ephemeral ports.

Run the command again, this time adding the p option and prefixing the command with sudo:

$ sudo netstat -natp

This gives you the same list, but with the process ID (PID) and program name to which the 
socket belongs. Any traffic sent to the socket is directed to the PID, which handles the traffic and 
responds as needed. On my computer I see that the program using this port is sshd—the daemon 
for SSH.

Now that you’ve examined which ports are in use on your Raspberry Pi, let’s examine the 
ports on a remote computer. For this, you’ll use a tool called nmap, which must first be installed on 
your Raspberry Pi:

$ sudo apt-get install nmap

Once the tool is installed, select a target host that you wish to scan. This can be either a 
device on your network (say your router or a laptop) or a host on the internet. Note that repeatedly 
scanning a host that you don’t control may look suspicious to the administrators of that server, so I 
strongly recommend that you only scan devices that you own.

In my case, I decided to scan my default gateway, which happens to be at 192.168.1.1. The 
following nmap command scans for open TCP ports on the specified IP address. Try this on your 
Raspberry Pi, replacing the IP address with the address of the device you wish to scan. If you 
want to scan your own router, see Project #30 for a reminder of how to get the IP address of your 
default gateway.

$ nmap -sT 192.168.1.1

A partial listing of the results from my scan showed these ports:

PORT      STATE SERVICE
53/tcp    open  domain
80/tcp    open  http

This tells me that the device acts not only as a router, but as a DNS server (port 53) and web 
server (port 80). It’s normal for a home router to provide these services.
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PROJEC T #32: T R ACE T HE ROU T E TO A HOS T ON T HE IN T E R NE T

Prerequisite: A Raspberry Pi, running Raspberry Pi OS. 
In this project, you’ll examine the route a packet travels from your Raspberry Pi to a host on the 

internet. First, you need to choose a host on the internet. This can be a website like www.example.com, 
or the IP address or FQDN of any internet host you happen to know. Once you’ve decided on a host, 
enter the following command, replacing www.example.com with the name or IP address of the host you 
wish to see.

$ traceroute www.example.com 

The traceroute tool attempts to show the routers that are encountered on a packet’s journey 
across the internet. The output should be read line by line. Each line is sequentially numbered and 
shows the name (if available) and IP address of the router encountered at that step of the packet’s 
trip. If there is no response after a short time, the output displays an asterisk (*) and moves on to the 
next router. You may also see more than one IP address per line, indicating multiple possible routes.

PROJEC T #33: SE E YOUR L E A SE D IP A DDR E SS

Prerequisite: A Raspberry Pi, running Raspberry Pi OS.
In this project, you’ll look at the lease information associated with your Raspberry Pi’s IP 

address obtained from a DHCP server. Of course, this assumes that your Raspberry Pi is configured 
to use DHCP (which is the default) rather than a static IP address. To do this, look at the system log:

$ cat /var/log/syslog | grep leased

Expect to see output similar to the following:

Jan 24 19:17:09 pi dhcpcd[341]: eth0: leased 192.168.1.104 for 604800 seconds

Here you can see that IP address 192.168.1.104 was leased from a DHCP server for use on 
network interface eth0, the Ethernet interface on the Raspberry Pi. Your output likely shows a differ-
ent IP address and perhaps a different interface, maybe wlan0.

By default, the syslog file is periodically cleared, and its contents are moved to a backup file. 
Because of this, you may not see a DHCP entry in your syslog file. You can release your current IP 
address, request a new one, and look again for the lease entry like so:

$ sudo dhclient –r wlan0
$ sudo dhclient wlan0
$ cat /var/log/syslog | grep leased

Replace wlan0 with eth0 if you want to do this for Ethernet rather than Wi-Fi.

http://www.example.com
http://www.example.com
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PROJEC T #34: IS YOUR DE V ICE’S IP PUBL IC OR PR I VAT E?

Prerequisite: A Raspberry Pi, running Raspberry Pi OS.
In this project, you’ll see if the IP address of your Raspberry Pi is public or private. If your 

device has a private IP address, you’ll also find the public IP address that is used for your commu-
nication over the internet. As before, you can use the following utility to see your device’s assigned 
IP address(es).

$ ifconfig 

When looking for your device’s assigned IP address, you’ll likely see an entry for 127.0.0.1; 
you can ignore this one since it’s used for loopback (see Project #30). As mentioned earlier, any 
address that matches the pattern of 10.x.x.x, 172.16.x.x, or 192.168.x.x is a private IP address. 
Now, even if you have a private IP address like one of these, when you access resources on the 
internet, you’re also indirectly making use of a public IP address. This is the address that web-
sites or other internet services see when you connect to them. If you’re on a home network, that 
public IP address is likely assigned to your router. If you’re on a business network, that public IP 
address may be assigned to a proxy device on the edge of your corporate network. In either 
case, all the network traffic from inside your local network to the internet originates from that 
public address.

To find the public IP address that your device uses when connecting to a device on the 
internet, one option is to log on to your router or proxy server and check its network configura-
tion. If you know how to query your router or proxy server for this information, feel free to do so. 
However, since every model of network device is somewhat different, I won’t walk you through the 
steps here.

A more universal option is to query an online service that can return your current public IP 
address. This is possible because every internet server that your device connects to knows your IP 
address; it’s simply a matter of finding a service that’s willing to tell you what IP address it sees. If 
you’re running a web browser on your device, perhaps the simplest thing to do is query Google 
for something like “my IP address.” This usually returns the information you want.

If you’re working from a terminal, like on the Raspberry Pi, you can use the curl utility to make 
an HTTP request to a website that returns your current IP address. The following are a few exam-
ples of services that are available for this at the time of this writing:

$ curl http://ipinfo.io/ip
$ curl http://checkip.amazonaws.com/
$ curl http://ipv4.icanhazip.com/
$ curl http://ifconfig.me/ip

Any of these should return your public IP address to the terminal window. Compare this 
address with the address you got earlier from ifconfig. If they are the same, then your device 
is directly assigned a public IP address. If they differ, then your device likely has a private IP 
assigned to it, and you’re connecting to the internet through a NAT router or proxy server.
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PROJEC T #35: F IND INFOR M AT ION IN DNS

Prerequisite: A Raspberry Pi, running Raspberry Pi OS.
In this project, you’ll use your Raspberry Pi to query DNS records. Let’s begin by looking up 

the IP address of a website. You’ll use the host utility to do this. The following command returns the 
IP address of www.example.com, the hostname of the site I’m interested in. Feel free to substitute the 
name of another host you wish to look up.

$ host www.example.com

You should see output that gives the IP address of the host. You may also see an IPv6 address. 
Depending on the hostname you queried, you may get back multiple records, since a DNS name 
can map to multiple IP addresses. You may also learn that the name you typed is actually an alias 
for a different name, which in turn maps to an IP address.

DNS also allows for reverse lookups, where you specify an IP address and a hostname 
is returned. This doesn’t always work, since DNS records need to be in place to support it. To 
give this a try, just use host with an IP address. In the following command, replace a.b.c.d with 
your public IP address that you found in Project #34, or any other public IP address you wish to 
query. Again, this works only for IP addresses that have DNS records in place to support reverse 
lookups.

$ host a.b.c.d

By default, the host utility uses the DNS server your device is configured to use. You may also 
query a specific DNS server using host by specifying the IP address of that server. Internet service 
providers include DNS services for their customers, but many free alternate DNS services are avail-
able as well. For example, at the time of this writing, Google provides a DNS server at 8.8.8.8 
and Cloudflare provides a DNS server at 1.1.1.1. If you want to use the DNS server at 1.1.1.1 to 
look up www.example.com, you could enter this:

$ host www.example.com 1.1.1.1

This should output IP address information as before, along with some text indicating which 
DNS server was used for the lookup.

If you’re curious about the details of the DNS query, you can use the -v option with the host 
command, which provides verbose output.

$ host -v www.example.com

http://www.example.com
http://www.example.com

	Contents in Detail
	Acknowledgments
	Introduction
	Who Is This Book For?
	About This Book
	About Exercises and Projects
	My Computing Journey

	Chapter 1: Computing Concepts
	Defining a Computer
	Analog and Digital
	The Analog Approach
	Going Digital

	Number Systems 
	Decimal Numbers
	Binary Numbers

	Bits and Bytes
	Prefixes
	Hexadecimal
	SI Prefixes for Binary Data
	Summary

	Chapter 2: Binary in Action
	Representing Data Digitally
	Digital Text
	ASCII

	Digital Colors and Images
	Interpreting Binary Data
	Approaches for Representing Colors and Images
	Binary Logic
	Summary

	Chapter 3: Electrical Circuits
	Electrical Terms Defined
	Electric Charge
	Electric Current
	Voltage
	Resistance
	Water Analogy

	Ohm’s Law
	Circuit Diagrams
	AC and DC
	Kirchhoff’s Voltage Law
	Circuits in the Real World
	Light-­Emitting Diodes
	Summary
	Project #1: Build and Measure a Circuit
	Project #2: Build a Simple LED Circuit

	Chapter 4: Digital Circuits
	What Is a Digital Circuit?
	Logic with Mechanical Switches
	The Amazing Transistor
	Logic Gates
	Exercise 4-1: Design a Logical OR with Transistors
	Designing with Logic Gates
	Exercise 4-2: Design a Circuit with Logic Gates
	Integrated Circuits
	Summary 
	Project #3: 
Build Logical Operators (AND, OR) with Transistors
	Project #4: Construct a Circuit with Logic Gates

	Chapter 5: Math with Digital Circuits
	Binary Addition
	Exercise 5-1: Practice Binary Addition
	Half Adders
	Full Adders
	A 4-bit Adder
	Signed Numbers
	Exercise 5-2: Find the Two’s Complement
	Two’s Complement Terminology
	Unsigned Numbers
	Summary
	Exercise 5-3: Add Two Binary Numbers and Interpret as Signed and Unsigned
	Project #5: Build a Half Adder

	Chapter 6: Memory and Clock Signals 
	Sequential Logic Circuits and Memory
	The SR Latch
	Using the SR Latch in a Circuit
	Universal Logic Gates
	Clock Signals
	JK Flip-­Flops
	T Flip-­Flops
	Using a Clock in a 3-Bit Counter
	Summary
	Project #6: 
Construct an SR Latch Using NOR Gates
	Project #7: 
Construct a Basic Vending Machine Circuit
	Project #8: 
Add a Delayed Reset to the Vending Machine Circuit
	Project #9: 
Using a Latch as a Manual Clock
	Project #10: 
Test a JK Flip-­Flop
	Project #11: 
Construct a 3-bit Counter

	Chapter 7: Computer Hardware 
	Computer Hardware Overview
	Main Memory
	Exercise 7-1: 
Calculate the Required Number of Bits
	Central Processing Unit (CPU)  
	Instruction Set Architectures
	CPU Internals
	Clock, Cores, and Cache

	Beyond Memory and Processor
	Secondary Storage
	Input/Output

	Exercise 7-2: 
Get to Know the Hardware Devices in Your Life
	Bus Communication
	Summary
	8
	Machine Code and Assembly Language
	Software Terms Defined
	An Example Machine Instruction
	Calculating a Factorial in Machine Code
	Branching and the Status Register
	Exercise 8-1: Use Your Brain as a CPU
	Summary
	Project #12: Factorial in Assembly
	Project #13: Examining Machine Code

	Chapter 9: High-­Level Programming
	High-­Level Programming Overview
	Introduction to C and Python
	Comments
	Variables
	Variables in C
	Variables in Python

	Stack and Heap Memory
	The Stack
	The Heap

	Math
	Logic
	Bitwise Operators

	Exercise 9-1: Bitwise Operators
	Boolean Operators

	Program Flow
	If Statements
	Looping

	Functions
	Defining Functions
	Calling Functions
	Using Libraries

	Object-­Oriented Programming
	Compiled or Interpreted
	Calculating a Factorial in C
	Exercise 9-2: Run a C Program in Your Mind
	Summary
	Project #14: Examine Variables
	Project #15: 
Change the Type of Value Referenced by a Variable in Python
	Project #16: Stack or Heap
	Project #17: Write a Guessing Game
	Project #18: Use a Bank Account Class in Python
	Project #19: Factorial in C

	Chapter 10: Operating Systems
	Programming Without an Operating System
	Operating Systems Overview
	Operating System Families
	Kernel Mode and User Mode
	Exercise 10-1: 
Get to Know the Operating Systems in Your Life
	Kernel Mode Components in Windows
	Processes
	Threads
	Physical and Logical Cores
	Virtual Memory
	Application Programming Interface (API) 
	The User Mode Bubble and System Calls
	APIs and System Calls
	Operating System Software Libraries
	Windows Subsystem for Linux
	Application Binary Interface
	Device Drivers
	Filesystems
	Services and Daemons
	Security
	Summary
	Project #20: Examine Running Processes
	Project #21: Create a Thread and Observe It
	Project #22: Examine Virtual Memory
	Project #23: Try the Operating System API
	Project #24: Observe System Calls
	Project #25: Use glibc
	Project #26: View Loaded Kernel Modules
	Project #27: 
Examine Storage Devices and FileSystems
	Project #28: View Services

	Chapter 11: The Internet
	Networking Terms Defined
	The Internet Protocol Suite
	OSI—Another Network Model
	Link Layer
	Internet Layer

	Exercise 11-1: Which IPs Are on the Same Subnet?
	Transport Layer

	Exercise 11-2: Research Common Ports
	Application Layer

	A Trip Through the Internet
	Foundational Internet Capabilities 
	Dynamic Host Configuration Protocol
	Private IP Addresses and Network Address Translation
	The Domain Name System

	Networking Is Computing
	Summary
	Project #29: Examine the Link Layer
	Project #30: Examine the Internet Layer
	Project #31: Examine Port Usage
	Project #32: 
Trace the Route to a Host on the Internet
	Project #33: See Your Leased IP Address
	Project #34: Is Your Device’s IP Public or Private?
	Project #35: Find Information in DNS

	Chapter 12: The World Wide Web
	Overview of the World Wide Web
	The Distributed Web
	The Addressable Web

	Exercise 12-1: Identify the Parts of a URL
	The Linked Web
	The Protocols of the Web
	The Searchable Web

	The Languages of the Web
	Structuring the Web with HTML
	Styling the Web with CSS
	Scripting the Web with JavaScript
	Structuring the Web’s Data with JSON and XML

	Web Browsers
	Rendering a Page
	The User Agent String

	Web Servers
	Summary
	Project #36: Examine HTTP Traffic
	Project #37: Run Your Own Web Server
	Project #38: Return HTML from Your Web Server
	Project #39: Add CSS to Your Website
	Project #40: Add JavaScript to Your Website

	Chapter 13: Modern Computing
	Apps
	Native Apps
	Web Apps

	Virtualization and Emulation
	Virtualization
	Emulation

	Process Virtual Machines
	Cloud Computing
	The History of Remote Computing
	The Categories of Cloud Computing

	The Deep Web and Dark Web
	Bitcoin
	Bitcoin Basics
	Bitcoin Wallets
	Bitcoin Transactions
	Bitcoin Mining

	Bitcoin Beginnings
	Virtual Reality and Augmented Reality
	The Internet of Things
	Summary
	Project #41: Final Project

	Appendix A: Answers to Exercises
	Chapter 3: Electrical Circuits
	3-1: Using Ohm’s Law
	3-2: Find the Voltage Drops

	Chapter 4: Digital Circuits
	4-1: Design a Logical OR with Transistors
	4-2: Design a Circuit with Logic Gates

	Chapter 5: Math with Digital Circuits
	5-1: Practice Binary Addition
	5-2: Find the Two’s Complement
	5-3: Add Two Binary Numbers and Interpret as Signed and Unsigned

	Chapter 7: Computer Hardware
	7-1: Calculate the Required Number of Bits

	Chapter 8: Machine Code and Assembly Language
	8-1: Use Your Brain as a CPU

	Chapter 9: High-­Level Programming
	9-1: Bitwise Operators
	9-2: Run a C Program in Your Mind

	Chapter 11: The Internet
	11-1: Which IPs Are on the Same Subnet?
	11-2: Research Common Ports

	Chapter 12: The World Wide Web
	12-1: Identify the Parts of a URL

	1-2: Binary to Decimal
	1-3: Decimal to Binary
	1-4: Binary to Hexadecimal
	1-5: Hexadecimal to Binary
	2-1: Create Your Own System for Representing Text
	2-2: Encode and Decode ASCII
	2-3: Create Your Own System for Representing Grayscale
	2-4: Create Your Own Approach for Representing Simple Images
	2-5: Write a Truth Table for a Logical Expression

	Appendix B: Resources
	Buying Electronic Components for the Projects
	7400 Part Numbers
	Shopping

	Powering Digital Circuits
	USB Charger
	Breadboard Power Supply
	Power from a Raspberry Pi
	AA Batteries

	Troubleshooting Circuits
	Raspberry Pi
	Why Raspberry Pi
	Parts Needed
	Setting Up a Raspberry Pi
	Using Raspberry Pi OS
	Working with Files and Folders


	Index
	Blank Page



