
9
Antipatterns - Avoiding

Counterproductive Solutions
We have looked at a number of good processes, practices, and patterns for the AWS
cloud. Now, we will explore some that you want to avoid. Some of the examples that follow
are going to be countered by using the items in the first two sections. Others are not
inherently technology problems. You should be aware of the smells that they bring and
change course when you run into them. As your cloud craftsmanship improves, they will
be easier to spot before implementation. At the beginning of your cloud journey, we expect
failure to occur all the time. Be aware that refactoring is always going to be an option
moving past your minimum viable product. Often, speed is the most important dimension
to your product success. Taking on technical debt may be required to increase market
shares or drive new features.

We will briefly cover the following topics in this chapter:

Exploring counterproductive processes
Practices to avoid in general
Anti-patterns that you might come across

Exploring counterproductive processes
The first category we will explore is counterproductive processes. The cloud provides a
whole new set of features that you can take advantage of. Migrating existing processes to
your AWS-based product will work in most cases, but you will miss out on a great
opportunity to make things better. Doing things the same way in the cloud will lead you
back to where you are today. Consider how you add the greatest value for your customer
before you spend time repeating what you did before the cloud existed.

The sections that follow cover processes that can be used, but probably shouldn't.

Antipatterns - Avoiding Counterproductive Solutions Chapter 9

[142]

Lift and shift
Wholesale migration of your existing systems, products, practices, and patterns to AWS is
our first anti-pattern. You can do it, but seriously think about it. If your only objective is
cost savings and you have no plans to ever change your product offerings, go for
it. However, you will end up loading even more technical debt onto your teams. This will
make it even harder to change course when the market eventually shifts away from what
you are doing. Small experiments with cloud migration will be a better solution while
lessening your systemic risk.

Change control boards
If you have a complicated change review process, it's recommended that you reduce or
remove this process before you move to AWS. Following test-driven, peer reviewed
development practices for your product provides additional benefits without all the
bureaucracy typically found in a change control board (CCB). In conjunction with
desilofication (covered later in this chapter), the removal of this step will increase your
time-to-value immensely.

That's not to say that removing the CCB is going to be an easy task. CCB's are usually in
place to provide companies with a feeling of security and the ability to manage risk –
sometimes, deployments are seen as just plain risky.

Non-reproducibility
Manual processes are inherently risky. We have all typed in the wrong password or
forgotten to close a quote. Let your automation take care of as much as possible. If you find
yourself doing the same thing more than twice, seriously consider automating it. The whole
industry is moving in the direction of idempotence (the property of certain operations that
allows users to repeatedly make the same call without producing any change to the initial
result). The microservice and serverless patterns give us the ability to minimize variation
within our systems.

Antipatterns - Avoiding Counterproductive Solutions Chapter 9

[143]

Firefighting
Remember all that technical debt you created by ignoring the previous three smells? At
some point, things will start exploding (if they're not burning already). If you find yourself
trying to contain a tire fire, your product will suffer the most. All the time you could have
dedicated to delighting your users will be wasted dousing flare-ups. The next section will
cover some of the data we can use to speed up the smothering. Breathing in some smoke
occasionally is fine. Not ever seeing which direction you are going will asphyxiate your
product.

Can't fail attitude to system uptime
Being in a place where your product cannot fail is good if lives depend on your
system. Any place else, you need to expect breakdowns. If you are not running a mission-
critical system and people are telling you that failure is not an option, it might be time to
find another job. The number of combinations you can put together with AWS services,
coupled with duplication to ensure availability, integrity, and confidentiality increases the
odds of a deficiency. Chaotic engineering experiments can build confidence in a
system. Concise service level agreements help build consumer confidence and manage
customer expectations about possible downtime.

Practices to avoid in general
There is going to be some overlap here with the previous section, but we will focus on
behaviors at a higher level. As you move to the AWS cloud, you have an excuse to review
your traditional methods to ensure they are still applicable. In most cases, the technology is
not the largest inhibiting factor. A lack of shared understanding will be the biggest blocker.

The following sections cover some of the most common practices that should be avoided.

Silos
Conway's law (http://www.melconway.com/Home/Conways_Law.html) suggests that an
organization is bound to create software that mimics its structure. Think about this as you
move your workloads to the cloud. There is an opportunity to refactor your team, as well as
your systems and software. Organizational design is out of the scope of this book, but we
will touch on some patterns to aid you in implementing good development practices later
in the chapter.

http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html

Antipatterns - Avoiding Counterproductive Solutions Chapter 9

[144]

The outcome of those exercises will provide input to the desilofication that should be done
before you get too far in your cloud journey. An easy win in this analysis is usually to be
found in your testing and quality assurance areas. As we discussed earlier, moving these
processes forward in your development process will bear rewards in the velocity and
quality spaces. Involving your security teams straightaway will also lessen your process
waste.

Lock in
Organizational composition can also force you into sub-optimal patterns. Discussions with
the same old people can get you stuck in a rut that it is difficult to clamber out of. Out-of-
the-box thinking needs to be encouraged, as there is no box except the one you put yourself
into. On a similar note, try to avoid solutions with a single option. Try to choose
technologies that adhere to well-known standards and offer a pool of competing
alternatives.

Amazon offers a great many operating systems from which to choose for your instances.
EKS is built on Kubernetes, which is a mature project maintained by a well-
established foundation (https://www.cncf.io/projects/). Open source roots also give
you the ability to contribute back to the community and protect yourself from forced
retirement of a component.

Version control
Keeping track of components such as code, configurations, and credentials is crucial. There
are many people who will tell you that everyone should commit to master, while others
espouse the benefits of branches. We will not get into that. If you do not keep old revisions
of everything, it will catch up with you. Components must be handled in a way that allows
for retrieval of previous iterations. The ability to mix new options of one with the other
during testing is crucial to continual experimentation and long-term cloud success.

https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/
https://www.cncf.io/projects/

Antipatterns - Avoiding Counterproductive Solutions Chapter 9

[145]

Anti-patterns that you might come across
AWS is awesome. Companies like Hacker News, Reddit, and Instagram could never have
succeeded without its utility form. The challenge is not to recreate your current problems in
the cloud. For startups who are building from scratch, it is easy to fall into the same traps
that have historically slowed innovation and diminished security. The evolution of micro-
services occurred because dependency management and release coordination are difficult
problems to solve over the course of a lifetime for a large product.

The following sections cover some anti-patterns, usually used in traditional deployment
environments, that can be translated into AWS environments.

Monoliths
You certainly can paint yourself into a corner with AWS. In order to speed your product to
market, you will build a big ball of mud (https://en.wikipedia.org/wiki/Big_ball_of_
mud). Even large companies can find themselves in a mess with many services being
created, but with little forward-planning. As a counter to this, organizations like Amazon
and Netflix use microservices – small services tailored to do only one thing, but to do it
well.

The Rise of Microservices website (https://www.appcentrica.com/the-
rise-of-microservices/) details more about how microservices came
about, how and why they are used, and how to handle them in
production.

At some point, you will be able to take a breath and address all the technical debt you have
accumulated, or everything will blow up at a very inconvenient time. Recognizing when to
refactor is key. Using explicit techniques such as bounded context from the Domain-Driven
Design world (https://vaughnvernon.co/) will help you decompose your monolith into
microservices. Be advised though: as with everything there are trade-offs. Managing
several microservices, let alone many hundreds or even thousands of microservices, is, in
itself, a complicated task.

https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://www.appcentrica.com/the-rise-of-microservices/
https://vaughnvernon.co/
https://vaughnvernon.co/
https://vaughnvernon.co/
https://vaughnvernon.co/
https://vaughnvernon.co/
https://vaughnvernon.co/
https://vaughnvernon.co/
https://vaughnvernon.co/

Antipatterns - Avoiding Counterproductive Solutions Chapter 9

[146]

Single points of failure
Netflix has run into all kinds of issues on AWS. Estimates suggest that one-quarter of the
traffic on the internet is theirs. Amazon is always improving their products in order to
delight their customers, but also to eliminate single points of failure. Global customers
provide the insight to build more reliable services while maintaining availability and low
cost. Common occurrences of single points of failure in non-cloud environments were
usually found in the connectivity realm – or rather, networking (see the following
subsection). Other elements that can be seen as single points of failure are data stores and
web-service hosting environments/application servers, where only single instances are
used. Having environments without redundancy is usually a sign of bad design.

Networking
One key benefit of the Amazon Cloud is its abundance of addresses. In the past, the
Internet Protocol (IP) version 4 furnished us with a large address space. Now that there are
billions of mobile phones on the planet, we are running out of headroom. Network
Address Translation (NAT) supplied us with a workaround to the challenge. Although
NAT will keep us going for years to come, IPv6 is the future. Each person on the planet can
be assigned trillions of addresses at a time without exhausting the pool. Consider using
IPv6 for your internal networks moving forward to eliminate complex NATing schemes.
The flexibility to change easily outweighs the burden of NAT. If you must use NAT, ensure
that your DNS, load balancers, and instances can be quickly recreated in a new region (the
low-cost option). For critical components, ensure availability through fault-tolerant designs.
Don't forget about your gateways, networks, and routes.

Scaling
Netflix ran into more classes of failures as they scaled. They propagated feedback loops that
took their own systems offline. These downstream effects were mitigated by some new
patterns lifted from traditional engineering disciplines. First, they began using caches to
reduce to load on postliminary systems. Eventually, up-to-date systems were good enough
for many of their products. Next, came bulkheads. This construct allows developers to
mirror the divide provided by availability zones and regions in their software.

Antipatterns - Avoiding Counterproductive Solutions Chapter 9

[147]

Resilience
The following screenshot shows the Hystrix (https://github.com/Netflix/Hystrix)
dashboard for a Spring Boot (http://spring.io/projects/spring-boot) application. The
circuit breaker was one of the first patterns Netflix put into place to help product owners
provide graceful degradation in a consistent manner:

The preceding screenshot can be found at https://github.com/VanRoy/
spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.
png.

https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
http://spring.io/projects/spring-boot
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png
https://github.com/VanRoy/spring-cloud-dashboard/blob/master/screenshot-circuit-breaker.png

Antipatterns - Avoiding Counterproductive Solutions Chapter 9

[148]

When building resilient systems, timeouts are notoriously difficult to manage. Both
upstream and downstream dependencies can provide their own settings, and managing the
aggregates can be a delicate operation. By allowing for a valid response code in the event of
insufficient capacity, Netflix products exhibited graceful degradation in the event of any
timeout. Amazon adopted many of these models for their own retail properties. Rate
limiting, bulkheading, automatic retries, and response caching patterns equip your product
developers with tried and true methods to respond to cloud-scale traffic bursts.

Summary
We have looked at solutions that are ineffective and may result in undesired
consequences. Avoiding these cloud anti-patterns promotes increased quality and lower
defects throughout your cloud adventure. We have covered how to eschew recreating
organization barriers in AWS, recognize unsuitable cloud workloads, and regularly
detect opportunities for improvement. In the next chapter, we will identify how to collect
and learn from data that can help us avoid anomalies that haven't been widely encountered
in the cloud yet.

Further reading
AWS Networking Essential (https://subscription.packtpub.com/video/
virtualization_and_cloud/9781788299190).
Refer to Chapter 1, Breaking the Monolith for bounded context, and Chapter 4,
Client Patterns and Chapter 5, Reliability Patterns for patterns of the Microservices
Development Cookbook (https://subscription.packtpub.com/book/
application_development/9781788479509) book.
DevOps with Git (https://subscription.packtpub.com/video/application_
development/9781789618839).
resilience4j (https://github.com/resilience4j/resilience4j) delivers Java
exemplars you can reuse in your code.
Envoy (https://www.envoyproxy.io/) is a container-based solution that can
centralize many of the configuration responsibilities of developers.

https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788299190
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/book/application_development/9781788479509
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://subscription.packtpub.com/video/application_development/9781789618839
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://github.com/resilience4j/resilience4j
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/

