

Learn MongoDB 4.x

A guide to understanding MongoDB development and

administration for NoSQL developers

Doug Bierer

BIRMINGHAM - MUMBAI

Learn MongoDB 4.x
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, without the prior written permission of the publisher, except in the case of brief quotations

embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.

However, the information contained in this book is sold without warranty, either express or implied. Neither the

author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to

have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products

mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy

of this information.

Commissioning Editor: Pravin Dhandre

Acquisition Editor: Savia Lobo

Content Development Editor: Pratik Andrade

Senior Editor: Ayaan Hoda

Technical Editor: Sarvesh Jaywant

Copy Editor: Safis Editing

Project Coordinator: Neil Dmello

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Alishon Mendonca

First published: September 2020

Production reference: 1030920

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78961-938-6

www.packt.com

http://www.packt.com/

This year has been extraordinarily tough, not only due to the global pandemic, but also as a

result of deteriorating conditions worldwide as a result of climate change and increasing

economic inequality across the globe. That having been said, on a personal note, three near and

dear friends have died in the period of time it took to write this book. I would like to dedicate this

book to those three: Jeff Abel, Daryl Holdridge, and Brad Saunders. Dear friends, I hope you all

find yourselves in a better place. May you rest in peace.

– Doug Bierer

Introducing MongoDB 4.x

In this book, we cover how to work with a MongoDB 4.x database, starting with the

simplest concepts and moving on to more complex ones. The book is divided into parts or

sections, each of which looks at a different scenario.

In this chapter, you are given a general introduction to MongoDB 4.x with a focus on new

features and a brief high-level overview of the technology. We also discuss security

enhancements, along with backward-incompatible changes that might cause an application

written for MongoDB 3 to break after an upgrade to MongoDB 4.x.

In the next chapter, a simple scenario is introduced: a fictitious company called Sweets

Complete Inc. that sells confections online to a small base of international customers. In the

next two parts that follow, you are introduced to BookSomething.com, another fictitious

company with a large database of hotel listings worldwide. Finally, in the last part, you are

introduced to BigLittle Micro Finance Ltd., a fictitious company that connects lenders with

borrowers and deals with a massive volume of geographically dispersed data.

In this chapter, the following topics are covered:

A high-level technology overview of MongoDB 4.x

Significant new features introduced in MongoDB 4.x

Important security enhancements

Spotting and avoiding potential problems when migrating from MongoDB 3 to 4

Introducing MongoDB 4.x Chapter 1

[10]

High-level technology overview of MongoDB

4.x
When it was first introduced in 2009, MongoDB took the database world by storm, and

since that time it has rapidly gained in popularity. According to the 2019 StackOverflow

developer survey (https://insights.stackoverflow.com/survey/2019#technology-_- databases),

MongoDB is ranked fifth, with 26% of professional developers and 25.5% of all respondents

saying they use MongoDB. DB-Engines (https://db-engines.com/en/ ranking) also ranks

MongoDB as the fifth most widely used database, using an algorithm that takes into

account the frequency of search, DBA Stack Exchange and StackOverflow references, and

the frequency with which MongoDB appears in job postings. What is of even more interest

is that the trend graph generated by DB-Engines shows that the score (and therefore

ranking) of MongoDB has grown by 200% since 2013. You can refer

to https://db-engines.com/en/ranking_trend for more details. In 2013, MongoDB was not even in the

top 10!

There are many key features of MongoDB that account for its rise in popularity. Subsequent

chapters in this book cover the most important of these features in detail. In this section, we

present you with a brief, big-picture overview of three key aspects of MongoDB.

MongoDB is based upon documents
One of the most important distinctions between MongoDB and the traditional relational

database management systems (RDBMS) is that instead of tables, rows, and columns, the

basis for storage in MongoDB is a document. In a certain sense, you can think of the

traditional RDBMS system as two dimensional, whereas MongoDB is three dimensional.

Documents are typically modeled using JSON formatting and then inserted into the

database where they are converted to a binary format for storage (more on that in later

chapters!).

Related to the document basis for storage is the fact that MongoDB documents have no fixed

schema. The main benefit of this is vastly reduced overhead. Database restructuring is a piece

of cake, and doesn't cause the massive problems, website crashes, and security breaches

seen in applications reliant upon a traditional RDBMS database restructuring.

https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://insights.stackoverflow.com/survey/2019#technology-_-databases
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking_trend
https://db-engines.com/en/ranking_trend
https://db-engines.com/en/ranking_trend
https://db-engines.com/en/ranking_trend
https://db-engines.com/en/ranking_trend
https://db-engines.com/en/ranking_trend
https://db-engines.com/en/ranking_trend
https://db-engines.com/en/ranking_trend

Introducing MongoDB 4.x Chapter 1

[11]

The really great news for developers is that most modern programming applications are
based on classes representing information that needs to be stored. This has spawned the

creation of a large number of object-relational mapping (ORM) libraries for the various

programming languages. In MongoDB, on the other hand, the need for a complex ORM
infrastructure is completely eliminated as programmatic objects can be directly stored in

the database as-is:

So instead of columns, MongoDB documents have fields. Instead of tables, there are

collections of documents. Let's now have a look at replication in MongoDB.

High availability
Another feature that causes MongoDB to stand out from other database technologies is its

ability to ensure high availability through a process known as replication. A server running

MongoDB can have copies of its databases duplicated across two more servers. These

copies are known as replica sets. Replica sets are organized through an election process

whereby the members of the replica vote on which server becomes the primary. Other

servers are then assigned the role of secondary.

Introducing MongoDB 4.x Chapter 1

[12]

This arrangement not only ensures that the database is continuously available, but that it

can also be used by application code by way of read preferences. A read preference tells the

replica set which servers in the replica set are preferred. If the read preferences are set less

restrictively, then the first server in the set to respond might be able to satisfy the request,

thereby implementing a form of parallel process that has the potential to greatly enhance

performance. This setup is illustrated in the following diagram:

This topic is covered in extensive detail in Chapter 13, Deploying a Replica Set. Lastly, we

have a look at sharding.

Horizontal scaling
One more feature, among many, is MongoDB's ability to handle a massive amount of data.

This is accomplished by splitting up a sizeable collection across multiple servers, creating a

sharded cluster. In the process of splitting the collection, a shard key is chosen from among the

fields present with the collection's documents. The shard key is then used by the sharded

cluster balancer to determine the appropriate distribution of documents. Application

program code is then able, by its knowledge of the value of the shard key, to direct queries

to specific members of the sharded cluster, achieving potentially enormous performance

gains. This setup is illustrated in the following diagram:

Introducing MongoDB 4.x Chapter 1

[13]

Transactions, secondary replica reads, and the aggregation pipeline are

covered in detail in later chapters of this book. For an excellent brief

overview of the major changes from MongoDB 3 to 4, go to

https://www.mongodb.com/blog/post/mongodb-40-release-candidate- 0-has-landed.

This topic is covered in extensive detail in Chapter 15, Deploying a Sharded Cluster. In the

next section of this chapter, we have a look at the major differences between MongoDB 3

and MongoDB 4.x.

Discovering what's new and different in

MongoDB 4.x
What's new and different in the MongoDB 4.x release can be broken down into two main

categories: new features and internal enhancements. Let's look at the most significant new

features first.

Significant new features
The most significant new features introduced in MongoDB 4.x include the following:

Multidocument ACID transaction support

Nonblocking secondary replica reads

In-progress index build interruption

https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed
https://www.mongodb.com/blog/post/mongodb-40-release-candidate-0-has-landed

Introducing MongoDB 4.x Chapter 1

[14]

Replica sets are discussed in Chapter 13, Deploying a Replica Set. Sharded

clusters are covered in Chapter 15, Deploying a Sharded Cluster.

Multidocument ACID transaction support
In the database world, a transaction is a block of database operations that should be treated

as if the entire block of commands was just a single command. An example would be where

your application is performing end-of-the-month payroll processing. In order to maintain

the integrity of the database, and your accounting files, you would need this set of

operations to be safeguarded in the event of a failure. ACID is an acronym that stands for

atomicity, consistency, isolation, and durability. It represents a set of principles that the

database needs to follow in order to safeguard a block of database updates. For more

information on ACID, you can refer to https://en.wikipedia.org/wiki/ACID.

In MongoDB 3, a write operation on a single document, even a document containing other

embedded documents, was considered atomic. In MongoDB 4.x, multiple documents can be

included in a single atomic transaction. Although invoking this support negatively impacts

performance, the gain in database integrity might prove attractive. It's also worth noting

that the lack of such support prior to MongoDB 4.x was a major criticism leveled against

MongoDB, and slowed its adoption at the corporate level.

Invoking transaction support impacts read preferences and write concerns. For more

information, you can refer to https://docs.mongodb.com/manual/core/transactions/ #transaction-options-

read-concern-write-concern-read-preference. Although these topics are covered in detail later in the

book, we can briefly summarize them by stating that read preferences allow you to direct

operations to specific members of a replica set. For example, you might want to indicate a

preference for the primary member server in a replica set rather than allowing any member,

including secondaries, to be used in a read operation. Write concerns allow you to adjust the

level of acknowledgement when writing to the database, thereby ensuring that data integrity

is maintained. In MongoDB 4.x, you are able to set read preferences and write concerns at

the transaction level, that in turn influences individual document operations.

In MongoDB version 4.2 and above, the 16 MB limit on transaction size is removed. Also, as

of MongoDB 4.2, full support for multidocument transactions is added for sharded clusters.

In addition, full transaction support is extended to replica sets whose secondary members

are using the in-memory storage engine (https://docs.mongodb.com/manual/core/ inmemory/).

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/transactions/#transaction-options-read-concern-write-concern-read-preference
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/

Introducing MongoDB 4.x Chapter 1

[15]

Nonblocking secondary reads
MongoDB developers have often included read concerns (as mentioned previously) in their

operations in order to shift the burden of response from the primary server in a replica set

to its secondaries instead. This frees up the primary to process write operations.

Traditionally, MongoDB, prior to version 4, blocked such secondary reads while an update

from the primary was in progress. The block ensured that any data read from the secondary

would appear exactly the same as data read from the primary.

The downside to this approach, however, was that while the block was in place, the

secondary read operation had to wait, which in turn negatively impacted read

performance. Likewise, if a read operation was requested prior to a write, it would hold up

update operations between the primary and secondary, negatively impacting write

performance.

Because of internal changes introduced in MongoDB 4.x to support multidocument

transactions, storage engine timestamps and snapshots are now used, which has the side

effect of eliminating the need to block secondary reads. The net effect is an overall

improvement in consistency and lower latency in terms of reads and writes. Another way

to view this enhancement is that it allows an application to read from a secondary at the

same time writes are being applied without delay.

In-progress index build interruption
A big problem with versions of MongoDB prior to 4.4 is that the following commands error

out if an index build (https://docs.mongodb.com/master/core/index-creation/#index- builds-on-populated-

collections) operation is in progress:

db.dropDatabase() db.collection.drop()

db.collection.dropIndexes()

In MongoDB 4.4, when this happens, an attempt to force the in-progress index build

operation is made. If successful, the index build is halted, and the drop*() operation

continues without error. In the case of a drop*() performed on a replica set, the abort

attempt is made on the primary. Once the primary commits to the abort, it then

synchronizes to the secondaries.

https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections
https://docs.mongodb.com/master/core/index-creation/#index-builds-on-populated-collections

Introducing MongoDB 4.x Chapter 1

[16]

You can refer to https://docs.mongodb.com/master/core/security- client-side-

encryption/#driver-compatibility-table to access the drivers for MongoDB 4.2.

For client-side field-level encryption, you can refer to
https://docs.mongodb.com/master/core/security-client- side-encryption/#client-side-

field-level-encryption.

Other noteworthy new features
There are a number of other new features that do not represent a massive paradigm shift,

but are extremely useful nonetheless. These include improvements to the aggregation

pipeline, field-level encryption, password() prompt, and wildcard indexes. Let's first have a

look at aggregation pipeline improvements.

Aggregation pipeline type conversions
Another major new feature we discuss here involves the introduction of $convert, a new

aggregation pipeline operator. This new operator allows the developer to change the data

type of a document field while being processed in the pipeline. Target data types include

double, string, Boolean, date, integer, long, and decimal. In addition, you can convert a field in

the pipeline to the data type objectId, which is critically useful when you need direct

access to the autogenerated unique identification field _id. For more information on the

aggregation pipeline operator and $convert, go to https://docs.mongodb.com/

master/core/aggregation-pipeline/#aggregation-pipeline.

Client-side field-level encryption
The official programming language drivers for MongoDB 4.2 now support client-side field-

level encryption. The implications for security improvements are enormous. This

enhancement means that your applications can now provide end-to-end encryption for

transmitted data down to the field level. So you could have a transmission of data from

your application to MongoDB that includes, for example, an encrypted national

identification number mixed in with otherwise plain-text data.

Password prompt
In many cases, it is highly undesirable to include a hard-coded password in a Mongo script.

Starting with MongoDB 4.2, in place of a hard-coded password value, you can substitute a

built-in JavaScript function passwordPrompt(). You can refer to https://docs.mongodb.

com/master/reference/method/passwordPrompt/#passwordPrompt for more details on the function. This

causes the Mongo shell to pause and wait for manual user input before proceeding. The

password that is entered is then used as the password value.

https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#driver-compatibility-table
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/security-client-side-encryption/#client-side-field-level-encryption
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/core/aggregation-pipeline/#aggregation-pipeline
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt
https://docs.mongodb.com/master/reference/method/passwordPrompt/#passwordPrompt

Introducing MongoDB 4.x Chapter 1

[17]

Wildcard indexes
Starting with MongoDB 4.2, support has been added for wildcard indexes (https://docs.

mongodb.com/master/core/index-wildcard/#wildcard-indexes). This feature is useful for situations where

the index is either not yet available or is unknown. For situations where the field is known

and well established, it's best to create a normal index. There are cases, however, where

you have a subset of documents that contain a particular field otherwise lacking in other

documents in the collection. You might also be in a situation where a field is added later,

and where the DBA has not yet had a chance to create an index on the new field. In these

cases, adding a wildcard index allows MongoDB to perform a query more efficiently.

Extended JSON v2 support
Starting with MongoDB 4.2, support for the Extended JSON v2 (https://docs.mongodb.

com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2) specification has been

enabled for the following utilities:

bsondump

mongodump

mongoexport

mongoimport

Improved logging and diagnostics
Starting with MongoDB 4.2, there are now five verbosity log levels, each revealing

increasing amounts of information. In MongoDB 4.0.6, you can now set a threshold on the

maximum time it should take for data to replicate between members of a replica set. It's

now possible to get the information from the MongoDB log file if that time is exceeded.

A further enhancement to diagnostics capabilities includes additional fields that are added

to the output of the db.serverStatus() command that can be issued from a Mongo shell.

Hedged reads
MongoDB 4.4 adds the ability to perform a hedged read (https://docs.mongodb.com/

master/core/sharded-cluster-query-router/#hedged-reads) on a sharded cluster. By setting a hedged

read preference option, applications are able to direct read requests to servers in replica sets

other than the primary. The advantage of this approach is that the application simply takes the

first result response, improving performance. The potential cost, of course, is that if a

secondary responds, the data might be slightly out of date.

https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/core/index-wildcard/#wildcard-indexes
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/reference/mongodb-extended-json/#mongodb-extended-json-v2
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads
https://docs.mongodb.com/master/core/sharded-cluster-query-router/#hedged-reads

Introducing MongoDB 4.x Chapter 1

[18]

You can refer to https://tools.ietf.org/html/rfc7413 for more details on TCO. For

more information on the parameter, you can refer to https:/

/docs.mongodb.com/master/reference/parameters/#param. tcpFastOpenServer. Refer

to https://docs.mongodb.com/master/ reference/command/serverStatus/#serverstatus

for more information on serverStatus.

TCP fast open support
MongoDB version 4.4 introduces support for TCP Fast Open (TCO) connections. For this to

work, it must be supported by the operating system hosting MongoDB. The following

configuration file (and command line) parameters have been added to enable and control

support under the setParameter configuration option: tcpFastOpenServer, tcpFastOpenClient,

and tcpFastQueueSize. In addition, four new TCO-related information counters have been

added to the output of the serverStatus() database command.

Natural sort
MongoDB version 4.4 introduces a new operator, $natural, which is used in a

cursor.hint() operation. This operator causes the results of a sort operation to return a list in

natural (also called human-readable) order. As an example, take these values:

['file19.txt','file10.txt','file20.txt','file8.txt']

An ordinary sort would return the list in this order:

['file10.txt','file19.txt','file20.txt','file8.txt']

Whereas a natural sort would return the following:

['file8.txt','file10.txt','file19.txt','file20.txt']

Internal enhancements
The first enhancement we examine is related to nonblocking secondary reads (as mentioned

earlier). After that, we cover shard migration, authentication, and stream enhancements.

https://tools.ietf.org/html/rfc7413
https://tools.ietf.org/html/rfc7413
https://tools.ietf.org/html/rfc7413
https://tools.ietf.org/html/rfc7413
https://tools.ietf.org/html/rfc7413
https://tools.ietf.org/html/rfc7413
https://tools.ietf.org/html/rfc7413
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/parameters/#param.tcpFastOpenServer
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus
https://docs.mongodb.com/master/reference/command/serverStatus/#serverstatus

Introducing MongoDB 4.x Chapter 1

[19]

For an excellent in-depth explanation of how timestamps work in the

WiredTiger storage engine, have a look at the video at https://www.

mongodb.com/presentations/wiredtiger-timestamps-enforcing- correctness-in-

operation-ordering-across-the-distributed- storage-layer, which features Dr. Michael

Cahill, formerly of WiredTiger,

Inc., now Director of Engineering at MongoDB.

Timestamps in the storage engine
One of the major new features introduced in MongoDB version 3 was the integration of the

WiredTiger storage engine. Prior to December 2014, WiredTiger Inc. was a company that

specialized in database storage engine technology. Its impressive list of customers included

Amazon Inc. In December 2014, WiredTiger was acquired by MongoDB after partnering with

them on multiple projects.

In MongoDB version 3, multidocument transactions were not supported. Furthermore, in

the replication process (https://docs.mongodb.com/manual/replication/#replication), changes accepted by

the primary server in a replica set were pushed out to the secondary servers in the set, which

were largely controlled through oplogs (https://docs.mongodb. com/manual/core/replica-set-

oplog/#replica-set-oplog) and programming logic outside of the storage engine. Simply stated,

the oplog represents changes made to the database. When a secondary synchronizes with a

primary, it creates a copy of the oplog and then applies the changes to its own local copy of

the database. The logic in place that controlled this process in MongoDB 3 was quite

complicated and consumed resources that could otherwise have been used to satisfy user

requests.

In MongoDB 4, the internal update mechanism of WiredTiger, the storage engine, was

rewritten to include a timestamp in each update document. The main reason for this change

was to provide support for multidocument transactions. It was soon discovered, however,

that this seemingly simple change could potentially revolutionize the entire replication

process.

In MongoDB 4, much of the logic required to ensure data integrity during replication

synchronization has now been shifted to the storage engine itself, which in turn frees up

resources to service user requests. The net effect is threefold: improved data integrity, read

operations producing a more up-to-date set of documents, and improved performance.

https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://www.mongodb.com/presentations/wiredtiger-timestamps-enforcing-correctness-in-operation-ordering-across-the-distributed-storage-layer
https://docs.mongodb.com/manual/replication/#replication
https://docs.mongodb.com/manual/replication/#replication
https://docs.mongodb.com/manual/replication/#replication
https://docs.mongodb.com/manual/replication/#replication
https://docs.mongodb.com/manual/replication/#replication
https://docs.mongodb.com/manual/replication/#replication
https://docs.mongodb.com/manual/replication/#replication
https://docs.mongodb.com/manual/replication/#replication
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog
https://docs.mongodb.com/manual/core/replica-set-oplog/#replica-set-oplog

Introducing MongoDB 4.x Chapter 1

[20]

For more information on chunks, refer to https://docs.mongodb.com/

manual/core/sharding-data-partitioning/#data-partitioning-with- chunks, and for more

information on zones and ranges, refer to https://

docs.mongodb.com/manual/core/zone-sharding/.

Shard migration
Typically, DevOps engineers distribute the database into shards to support a massive

amount of data. There comes a time, however, when the data needs to be moved. For

example, let's say a host server needs to be upgraded or replaced. In MongoDB version 3.2

and earlier, this process could be quite daunting. In one documented case, a 500 GB shard

took 13 days to migrate. In MongoDB 3.4, parallelism support was provided that sped up

the migration process. Part of the reason for the improvement was that the chunk balancer

logic was moved to the config server (https://docs.mongodb.com/manual/core/sharded- cluster-config-

servers/#config-servers), which must be configured as part of a replica set.

Another improvement, available with MongoDB 4.0.3, allows the sharded cluster balancer

(https://docs.mongodb.com/manual/core/sharding-balancer-administration/ #sharded-cluster-balancer) to

preallocate chunks if zones and ranges have been defined, which facilitates rapid capacity

expansion. DevOps engineers are able to add and remove nodes from a sharded cluster in

real time. The sharded cluster balancer handles the work of rebalancing data between the

nodes, thereby alleviating the need for manual intervention.

This gives DevOps engineers the ability to scale database capacity up or down on

demand. This feature is especially needed in environments that experience seasonal shifts

in demand. An example would be a retail outlet that needs to scale up its database capacity

to support increased consumer spending during holidays.

Change streams
As the database is updated, changes are recorded in the oplog maintained by the primary

server in the replica set, which is then used to replicate changes to the secondaries. Trying

to read a list of changes via the oplog is a tedious and resource-intensive process, so many

developers choose to use change streams (https://docs.mongodb.com/manual/

changeStreams/?jmp=blog_ga=2.5574835.1698487790.1546401611-137143613.

1528093145#change-streams) to subscribe to all changes on a collection. For those of you who

are familiar with software design patterns, this is a form of the publish/subscribe pattern.

Aside from their obvious use in troubleshooting and diagnostics, changing streams can also

be used to give an indicator of whether or not data changes are durable.

https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/sharding-data-partitioning/#data-partitioning-with-chunks
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/zone-sharding/
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharded-cluster-config-servers/#config-servers
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/core/sharding-balancer-administration/#sharded-cluster-balancer
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams
https://docs.mongodb.com/manual/changeStreams/?jmp=blog&_ga=2.5574835.1698487790.1546401611-137143613.1528093145&change-streams

Introducing MongoDB 4.x Chapter 1

[21]

What is new and different in MongoDB 4.x is the introduction of a

startAtOperationTime parameter that allows you to specify the timestamp at which you

wish to tap into the change stream. This timestamp can also be in the past, but cannot

extend beyond what is recorded in the current oplog.

If you enter 4.0 as a value of another parameter, featureCompatibilityVersion, then the

streams return token data, used to restart the stream, in the form of a hex-encoded string,

which gives you greater flexibility when comparing blocks of token data. An interesting

side effect of this is that a replica set based on MongoDB 4.x could theoretically make use of

a change stream token opened on a replica set based on MongoDB 3.6. Another new feature

in MongoDB 4 is that change streams that are opened on multidocument transactions

include the transaction number.

Important new security enhancements
There were many security improvements introduced in MongoDB 4, but here, we highlight

the two most significant changes: support for SHA-256 and transport layer security (TLS)

handling.

SHA-256 support
SHA stands for secure hash algorithm. SHA-256 is a hash function (https://csrc.nist.

gov/Projects/Hash-Functions) derivative of the SHA-2 family. The significance of offering SHA-

256 support is based on the difference between the SHA-1, which MongoDB supports, and

SHA-2 families of hash algorithms. SHA-1, introduced in 1995, used algorithms similar to

an older family of hash functions: MD2, MD4, and MD5. SHA-1, however, produces a

hash value of 160 bits compared with 128 for the MDx series. SHA-256, introduced in 2012,

increases the hash value size to 256, which makes it exponentially more difficult to crack.

Attack vectors that could compromise communications based upon SHA-1 and SHA-2

include the preimage attack, the collision attack, and the length-extension attack.

The first attack relies upon brute-force attack methods to reverse the hash. In the past, this

required computational power beyond the reach of anyone other than a well-funded

organization (for example, a government agency or a large corporation). Today, a normal

desktop computer could have multiple cores, plenty of memory, and a graphics processing

unit (GPU) that are easily capable of such attacks. To launch the attack, the attacker would

need to be in a place where access to the database itself is possible, which means that other

layers of security (such as the firewall) would have first been breached.

https://csrc.nist.gov/Projects/Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions

Introducing MongoDB 4.x Chapter 1

[22]

It might be of interest to note that Bitcoin uses SHA-256 for the

verification of transactions.

A collision attack uses two different messages that produce the same hash. Once the match

has been found, it is mathematically possible to interfere with TLS communications. The

attacker could, for example, start forging signatures, which would wreak havoc on systems

dependent on digitally signed documents. The danger of this form of attack is that it can

theoretically be successfully launched in half the number of iterations compared with a

preimage attack.

At the time of writing, the SHA-256 hash function is immune to both preimage and

collision attacks; however, both the SHA-1 and SHA-2 family of hash functions, including

SHA-256, are vulnerable to length-extension attacks. This attack involves adding to the

message, thereby extending its length and then recalculating the hash. The modified

message is then seen as valid, allowing the attacker a way into the communication stream.

Unfortunately, even though SHA-256 is resistant to this form of attack, it is still vulnerable.

TLS handling
Transport layer security (TLS) was introduced in 1999 to address serious vulnerabilities

inherent in all versions of the Secure Sockets Layer (SSL). It is highly recommended that

you secure your MongoDB installations with TLS 1.1 or above (covered later in this book).

Once you have configured your mongod instances to use TLS, all communications are

affected. These include communications between clients, drivers, and the server, as well as

internal communications between members of a replica set and between nodes in a sharded

cluster.

TLS security depends on which block cipher algorithm and mode are selected. For example,

the 3DES (Data Encryption Standard 3) algorithm with the Cipher Block Chaining (CBC)

mode are considered vulnerable to attack even in TLS version 1.2! The Advanced

Encryption Standard (AES) algorithm and Galois Counter Mode (GCM) are considered a

secure combination, but are only supported in TLS versions 1.2 and 1.3 (ratified in 2018). It

should be noted, however, that the AES-256 and GCM combination is not supported when

running the MongoDB Enterprise edition on a Windows server.

Introducing MongoDB 4.x Chapter 1

[23]

See https://www.mongodb.com/blog/post/exciting-new-security- features-in-

mongodb-40 for a good discussion of security features that were introduced

with MongoDB 4.0.

The article at https://docs.mongodb.com/manual/release-notes/4.0- compatibility/

covers the full list of compatibility changes in MongoDB

4.0. For information on MongoDB 4.2 compatibility changes, go

to https://docs.mongodb.com/master/release-notes/4.2-

compatibility/#compatibility-changes-in-mongodb-4-2. For

information on MongoDB 4.4 compatibility changes, go to https://docs.

mongodb.com/master/release-notes/4.4/#changes-affecting- compatibility.

Using any form of SSL with MongoDB is now deprecated. TLS 1.0 support is also disabled

in MongoDB 4.x and above. Ultimately, the version of TLS you end up using in your

MongoDB installation completely depends on what cryptographic libraries are available for

the server's operating system. This means that as you upgrade your OS and refresh your

MongoDB 4+ installation, TLS support is also automatically upgraded. Currently,

MongoDB 4+ uses OpenSSL on Linux hosts, Secure Channel on Windows, and Secure

Transport on the Mac.

As of MongoDB 4.4, the Mongo shell now issues a warning if the x.509 certificate is due to

expire within the next 30 days. Likewise, you now see log file messages if there is a pending

certificate expiration between mongod instances in a sharded cluster or replica set.

Avoiding problems when upgrading from

MongoDB 3.x to 4.x
If you are not familiar with the concept of backward incompatibilities, then you have probably

not yet survived a major upgrade! To give you an idea of how important it is to be aware of

this when reviewing the change log for MongoDB, this concept is also referred to as code

breaks...as in things that can break your code.

https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://www.mongodb.com/blog/post/exciting-new-security-features-in-mongodb-40
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/manual/release-notes/4.2-compatibility/
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.2-compatibility/#compatibility-changes-in-mongodb-4-2
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility
https://docs.mongodb.com/master/release-notes/4.4/#changes-affecting-compatibility

Introducing MongoDB 4.x Chapter 1

[24]

A detailed discussion on backup and restore is given in Chapter 3,

Essential MongoDB Administration Techniques.

For a good nonbiased comparison of MMAPv1 and WiredTiger, go

to https://stackoverflow.com/questions/37985134/how-to-choose- from-mmapv1-

wiredtiger-or-in-memory-storageengine-for-mongodb.

MMAPv1 storage engine
MMAPv1 (https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine), the original

MongoDB storage engine, has been deprecated in MongoDB 4.0 and removed as of

MongoDB 4.2. It has been replaced by WiredTiger, which has been available since MongoDB

version 3.0. WiredTiger has been the default since MongoDB version 3.2, so there is a good

chance that this backward-incompatible change does not affect your applications nor

installation.

If your installation was using the MMAPv1 storage engine before the upgrade, then you

immediately notice more efficient memory and disk-space allocation. Simply put, MMAPv1

grabbed as much free memory as it could, and would allocate additional disk space with an

insatiable appetite. This made a MongoDB 3 installation using MMAPv1 a bad neighbor on a

server that is also doing other things!

Another difference that DevOps engineers appreciate is that embedded documents no

longer continue to grow in size after being created. This was an unwanted side effect

produced by the MMAPv1 storage engine, which could have potentially affected write

performance and lead to data fragmentation.

If, as a result of an upgrade from MongoDB 3 to 4, you are in the unfortunate position of

having to update a database that is stored using the MMAPv1 storage engine, then you

must manually back up the data on each server prior to the MongoDB 4.x upgrade. After

the upgrade has completed, you then need to perform a manual restore.

https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://stackoverflow.com/questions/37985134/how-to-choose-from-mmapv1-wiredtiger-or-in-memory-storageengine-for-mongodb
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine
https://docs.mongodb.com/manual/storage/#mmapv1-storage-engine

Introducing MongoDB 4.x Chapter 1

[25]

Replica set protocol version
Communications between members of a replica set are governed by an internal protocol

simply referred to as pv0 or pv1. pv0 was the original protocol. Prior to MongoDB 3.2, the

only version available was pv0. MongoDB 4.x dropped support for pv0 and only supports

pv1. Accordingly, before you perform an upgrade to MongoDB 4, you must reconfigure all

replica sets to pv1 (https://docs.mongodb.com/manual/reference/replica-set- protocol-

versions/#modify-replica-set-protocol-version).

Fortunately, this process is quite easy, and can be accomplished by this simple procedure.

These steps must then be repeated for each replica set: verify oplog entry replication and

upgrade to pv1. Let's go into more detail regarding these two steps.

Verifying that at least one oplog entry has replicated
These steps must be performed on each secondary in the replica set:

1. Use the mongo shell to connect to each secondary in the replica set:

mongo --host <address of secondary>

2. Once connected to the secondary, run the rs.status(); command and check the values

of the optimes::appliedOpTime::t key.

3. Repeat this for each secondary and confirm that the t value is greater than -1. This

tells us that at least one oplog entry has replicated from the primary to all

secondaries.

Upgrading the primary to protocol version 1
You can now upgrade the replica set protocol version to pv1:

1. Use the mongo (https://docs.mongodb.com/manual/mongo/#the-mongo-shell) shell to

connect to the primary in the replica set:

mongo --host <address of primary>

2. Once connected to the primary, run these commands to update the protocol

version for the replica set:

cfg = rs.conf();

cfg.protocolVersion=1;

rs.reconfig(cfg);

https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/reference/replica-set-protocol-versions/#modify-replica-set-protocol-version
https://docs.mongodb.com/manual/mongo/#the-mongo-shell
https://docs.mongodb.com/manual/mongo/#the-mongo-shell
https://docs.mongodb.com/manual/mongo/#the-mongo-shell
https://docs.mongodb.com/manual/mongo/#the-mongo-shell
https://docs.mongodb.com/manual/mongo/#the-mongo-shell
https://docs.mongodb.com/manual/mongo/#the-mongo-shell
https://docs.mongodb.com/manual/mongo/#the-mongo-shell
https://docs.mongodb.com/manual/mongo/#the-mongo-shell
https://docs.mongodb.com/manual/mongo/#the-mongo-shell
https://docs.mongodb.com/manual/mongo/#the-mongo-shell

Introducing MongoDB 4.x Chapter 1

[26]

It is important to note that the mongos binary crashes where the binary

version and/or feature compatibility version of mongos is lower than the

connected mongod instances.

Feature compatibility
A number of the new features available in MongoDB 4.x only work if you update the

setFeatureCompatibilityVersion parameter (https://docs.mongodb.com/master/

reference/command/setFeatureCompatibilityVersion/ #setfeaturecompatibilityversion) in the admin

database. The new features affected include the following:

SCRAM-SHA-256

New type conversion operators and enhancements

Multidocument transactions

$dateToString option changes New

change stream methods

Change stream resume token data type changes

To view the current featureCompatibility setting, go through the following steps:

1. Use the mongo shell to connect to your database as a user who has the rights to

modify the admin database:

mongo --username <name of user> --password

2. Use this command to view the current setting:

db.adminCommand({getParameter:1, featureCompatibilityVersion:1})

To perform the update, go through the following steps:

1. Use the mongo shell to connect to your database as a user who has the rights to

modify the admin database:

mongo --username <name of user> --password

2. You can then update this parameter as follows, substituting 4.0, 4.2, 4.4, and so

on in place of <VERSION>:

db.adminCommand({ setFeatureCompatibilityVersion: "<VERSION>" })

https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion
https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion
https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion
https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion
https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion
https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion
https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion
https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion
https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion
https://docs.mongodb.com/master/reference/command/setFeatureCompatibilityVersion/#setfeaturecompatibilityversion

Introducing MongoDB 4.x Chapter 1

[27]

An alternative would be to use x.509 certificates, covered in Chapter 11,

Administering MongoDB Security.

It is extremely important to note that when upgrading to SCRAM from

MONGODB-CR, the old credentials are discarded, which means that this

process is irreversible. A good overview of the upgrade from MONGODB-

CR to SCRAM can be found at https://docs.mongodb.com/manual/ release-

notes/3.0-scram/index.html#upgrade-to-scram. Please note that this upgrade process

only works on MongoDB 3. You need to perform this upgrade before you

upgrade the version of MongoDB.

For even more security when implementing SCRAM, you now have the

option of using SHA-256 instead of SHA-1 (see the previous information).

User authentication
When establishing security for database users, you have a choice of several different

approaches. One of the most popular approaches is challenge-response. Simply put: the

database challenges the user to prove their identity. The response (in most cases), is a

username and password combination. In MongoDB 3, this popular approach was

implemented by default using MONGODB-CR (MongoDB Challenge Response). As of

MongoDB 4, this mechanism is no longer available. This means that when you upgrade

from MongoDB 3 to MongoDB 4, you must implement at least its replacement, Salted

Challenge Response Authentication Method (SCRAM).

If your user credentials are in MONGODB-CR format, then you must use the following

command to upgrade to SCRAM format:

db.adminCommand({authSchemaUpgrade: 1});

It is critical that you perform this upgrade while still running MongoDB 3. The reason for this

is that the authSchemaUpgrade parameter has been removed in MongoDB 4! Another side effect

of upgrading to SCRAM is that your application driver might also be affected. Have a look at

the SCRAM Driver Support table in the documentation at https://docs.mongodb.

com/manual/core/security-scram/#driver-support to be sure. The minimum programming language

driver for Python that supports SCRAM authentication, for example, is version 2.8.

https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/release-notes/3.0-scram/index.html#upgrade-to-scram
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support
https://docs.mongodb.com/manual/core/security-scram/#driver-support

Introducing MongoDB 4.x Chapter 1

[28]

Removed and deprecated items
Any command or executable binary that is removed can potentially cause problems if you

are relying on these as part of your application or automated maintenance procedures. Any

application that relies upon an item that is been deprecated should be examined and

scheduled to be rewritten in a timely manner.

Removed items
The following table shows the removed items:

Item Type Notes

mongoperf Binary
Used to measure disk I/O performance without having to enter a mongo shell or otherwise

access MongoDB.

$isolated

Operator

This operator was used in previous versions of MongoDB during update operations to

prevent multidocument updates from being read until all changes took place. MongoDB 4.x

uses transaction support instead. Any commands that include this operator need to be

rewritten.

Significant removed items
The following table shows the removed items:

Item Notes Type

copyDb clone

Command

Copies an entire database. Although this command is still available, you cannot use it

to copy a database managed by a mongod version 4 instance to one managed by a

mongod version 3.4 or earlier instance. Use the external binaries mongodump and

mongorestore instead after upgrading to MongoDB 4.

db.copyDatabase()
Mongo

shell

command

This is a wrapper for the copyDb command. The same notes for copyDb

clone apply.

db.cloneDatabase()
Mongo

shell

command

This is a wrapper for the clone command. The same notes for copyDb

clone apply.

geoNear

Command

Reads geospatial information (that is, latitude and longitude) and returns

documents in order, based on their proximity to the source point. Instead

of this command, in MongoDB 4.x, you would use the $geoNear

aggregation stage operator or the $near or $nearSphere query

operators, depending on the nature of the query you wish to construct.

These commands were deprecated in MongoDB 4.0 and removed as of MongoDB 4.2.

Introducing MongoDB 4.x Chapter 1

[29]

Deprecated SSL configuration options
Another compatibility issue comes from the TLS/SSL configuration options. In MongoDB 3

and MongoDB 4.0, in the configuration files for both mongod (MongoDB database daemon)

and mongos (which is used to control a sharded cluster), you could add a series of options

under the net.ssl (https://docs.mongodb.com/v4.0/reference/configuration- options/#net-ssl-options)

key. As of MongoDB 4.2, these options are deprecated in favor of the net.tls options. The net.tls

options have enhanced functionality compared with the net.ssl options. These are covered in

detail in Chapter 11, Administering MongoDB Security.

Summary
In this chapter, you learned about the most important features that were added to

MongoDB version 4. These were broken down into three categories: new features, security

enhancements, and things to avoid during an upgrade from MongoDB 3 to 4.

One important new feature was adding timestamps to the WiredTiger storage engine,

which opened the doors for multidocument transaction support and nonblocking

secondary read enhancements. Other internal enhancements include improvements in the

shard-migration process, which significantly cuts down the time required for this operation

to complete.

In the realm of security, you learned about how SHA-256 support gives you greater

security when communicating with the MongoDB database, and also with communications

between servers within a replica set or sharded cluster. You also learned that TLS 1.0

support has been removed, and that the new default is TLS 1.1. MongoDB 4.x even

provides support for the latest version of TLS, version 1.3, but only if the underlying

operating system libraries provide support.

Finally, as the original MongoDB storage engine, MMAPv1, has been removed in favor of

WiredTiger, if your original MongoDB 3 installation had data that used MMAPv1, you

need to back up while still running MongoDB 3 and then restore after the MongoDB 4.x

upgrade has occurred. You were also presented with a list of the most significant items,

including binary executables, parameters, and commands, which have been removed, and

those which have been deprecated.

In the next chapter, you learn how to install MongoDB 4.x and its Python programming

language driver.

https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options
https://docs.mongodb.com/v4.0/reference/configuration-options/#net-ssl-options

