
1
DevOps Culture and Practices

DevOps, a term that we hear more and more in enterprises with phrases such as We do
DevOps or We use DevOps tools, is the contraction of the words Development and
Operations.

DevOps is a culture different from traditional corporate cultures and requires a change in
mindset, processes, and tools. It is often associated with continuous integration (CI) and
continuous delivery (CD) practices, which are software engineering practices, but also
with Infrastructure as Code (IaC), which consists of codifying the structure and
configuration of infrastructure.

In this chapter, we will see what DevOps culture is, what DevOps principles are, and the
benefits it brings to a company. Then, we will explain CI/CD practices and, finally, we will
detail IaC with its patterns and practices.

In this chapter, the following topics will be covered:

Getting started with DevOps
Implementing CI/CD and continuous deployment
Understanding IaC

DevOps Culture and Practices Chapter 1

[9]

Getting started with DevOps
The term DevOps was introduced in 2007-2009 by Patrick Debois, Gene Kim, and John
Willis, and it represents the combination of Development (Dev) and Operations (Ops). It
has given rise to a movement that advocates bringing developers and operations together
within teams. This is to be able to deliver added business value to users more quickly and
hence be more competitive in the market.

DevOps culture is a set of practices that reduce the barriers between developers, who want
to innovate and deliver faster, on the one side and, on the other side, operations, who want
to guarantee the stability of production systems and the quality of the system changes they
make.

DevOps culture is also the extension of agile processes (scrum, XP, and so on), which make
it possible to reduce delivery times and already involve developers and business teams, but
are often hindered because of the non-inclusion of Ops in the same teams.

The communication and this link between Dev and Ops does, therefore, allow a better
follow-up of end-to-end production deployments and more frequent deployments of a
better quality, saving money for the company.

To facilitate this collaboration and improve communication between Dev and Ops, there
are several key elements in the processes to be put in place, as in the following examples:

More frequent application deployments with integration and continuous
delivery (called CI/CD)
The implementation and automation of unitary and integration tests, with a
process focused on Behavior-Driven Design (BDD) or Test-Driven Design
(TDD)
The implementation of a means of collecting feedback from users
Monitoring applications and infrastructure

DevOps Culture and Practices Chapter 1

[10]

The DevOps movement is based on three axes:

The culture of collaboration: This is the very essence of DevOps—the fact that
teams are no longer separated by silos specialization (one team of developers,
one team of Ops, one team of testers, and so on), but, on the contrary, these
people are brought together by making multidisciplinary teams that have the
same objective: to deliver added value to the product as quickly as possible.
Processes: To expect rapid deployment, these teams must follow development
processes from agile methodologies with iterative phases that allow for better
functionality quality and rapid feedback. These processes should not only be
integrated into the development workflow with continuous integration but also
into the deployment workflow with continuous delivery and deployment. The
DevOps process is divided into several phases:

The planning and prioritization of functionalities
Development
Continuous integration and delivery
Continuous deployment
Continuous monitoring

These phases are carried out cyclically and iteratively throughout the life of the
project.

Tools: The choice of tools and products used by teams is very important in
DevOps. Indeed, when teams were separated into Dev and Ops, each team used
their specific tools—deployment tools for developers and infrastructure tools for
Ops—which further widened communication gaps.

With teams that bring development and operations together, and with this culture of unity,
the tools used must be usable and exploitable by all members.

Developers need to integrate with monitoring tools used by Ops teams to detect
performance problems as early as possible and with security tools provided by Ops to
protect access to various resources.

Ops, on the other hand, must automate the creation and updating of the infrastructure and
integrate the code into a code manager; this is called Infrastructure as Code, but this can
only be done in collaboration with developers who know the infrastructure needed for
applications. Ops must also be integrated into application release processes and tools.

DevOps Culture and Practices Chapter 1

[11]

The following diagram illustrates the three axes of DevOps culture—the collaboration
between Dev and Ops, the processes, and the use of tools:

So, we can go back to DevOps culture with Donovan Brown's definition (http:/ /
donovanbrown.com/ post/ what- is- devops):

"DevOps is the union of people, process, and products to enable continuous delivery of
value to our end users."

The benefits of establishing a DevOps culture within an enterprise are as follows:

Better collaboration and communication in teams, which has a human and social
impact within the company.
Shorter lead times to production, resulting in better performance and end user
satisfaction.

http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops

DevOps Culture and Practices Chapter 1

[12]

Reduced infrastructure costs with IaC.
Significant time saved with iterative cycles that reduce application errors and
automation tools that reduce manual tasks, so teams focus more on developing
new functionalities with added business value.

For more information about DevOps culture and its impact on and
transformation of enterprises, read the book by Gene Kim and Kevin
Behr, The Phoenix Project: A Novel about IT, DevOps, and Helping Your
Business Win, and The DevOps Handbook: How to Create World-Class Agility,
Reliability, and Security in Technology Organizations by Gene Kim, Jez
Humble, Patrick Debois, and John Willis.

Implementing CI/CD and continuous
deployment
We saw earlier that one of the key DevOps practices is the process of integration and
continuous delivery, also called CI/CD. In fact, behind the acronyms of CI/CD, there are
three practices:

Continuous integration (CI)
Continuous delivery (CD)
Continuous deployment

What does each of these practices correspond to? What are their prerequisites and best
practices? Are they applicable to all?

Let's look in detail at each of these practices, starting with continuous integration.

Continuous integration (CI)
In the following definition given by Martin Fowler, there are three key things mentioned,
members of a team, integrate, and as quickly as possible:

"Continuous Integration is a software development practice where members of a team integrate
their work frequently... Each integration is verified by an automated build (including test) to
detect integration errors as quickly as possible."

DevOps Culture and Practices Chapter 1

[13]

That is, CI is an automatic process that allows you to check the completeness of an
application's code every time a team member makes a change. This verification must be
done as quickly as possible.

We see DevOps culture in CI very clearly, with the spirit of collaboration and
communication, because the execution of CI impacts all members in terms of work
methodology and therefore collaboration; moreover, CI requires the implementation of
processes (branch, commit, pull request, code review, and so on) with automation that is
done with tools adapted to the whole team (Git, Jenkins, Azure DevOps, and so on). And
finally, CI must run quickly to collect feedback on code integration as soon as possible and
hence be able to deliver new features more quickly to users.

Implementing CI
To set up CI, it is, therefore, necessary to have a Source Code Manager (SCM) that will
allow the centralization of the code of all members. This code manager can be of any type:
Git, SVN, or Team Foundation Source Control (TFVC). It's also important to have an
automatic build manager (CI server) that supports continuous integration such as Jenkins,
GitLab CI, TeamCity, Azure Pipelines, GitHub Actions, Travis CI, Circle CI, and so on.

In this book, we will use Git as an SCM, and we will look a little more
deeply into its concrete uses.

Each team member will work on the application code daily, iteratively and incrementally
(such as in agile and scrum methods). Each task or feature must be partitioned from other
developments with the use of branches.

Regularly, even several times a day, members archive or commit their code and preferably
with small commits (trunks) that can easily be fixed in the event of an error. This will,
therefore, be integrated into the rest of the code of the application with all of the other
commits of the other members.

This integration of all the commits is the starting point of the CI process.

This process, executed by the CI server, must be automated and triggered at each commit.
The server will retrieve the code and then do the following:

Build the application package—compilation, file transformation, and so on.
Perform unit tests (with code coverage).

DevOps Culture and Practices Chapter 1

[14]

It is also possible to enrich the process with static code and vulnerability
analysis, which we will look at in Chapter 10, Static Code Analysis with
SonarQube, which is dedicated to testing.

This CI process must be optimized as soon as possible so that it can run fast and
developers can have quick feedback on the integration of their code. For example, code that
is archived and does not compile or whose test execution fails can impact and block the
entire team.

Sometimes, bad practices can result in the failure of tests in the CI, deactivating the test
execution, taking as arguments: it is not serious, it is necessary to deliver quickly, or the code that
compiles it is essential.

On the contrary, this practice can have serious consequences when the errors detected by
the tests are revealed in production. The time saved during CI will be lost on fixing errors
with hotfixes and redeploying them quickly with stress. This is the opposite of DevOps
culture with poor application quality for end users and no real feedback, and, instead of
developing new features, we spend time correcting errors.

With an optimized and complete CI process, the developer can quickly fix their problem
and improve their code or discuss it with the rest of the team and commit their code for a
new integration:

DevOps Culture and Practices Chapter 1

[15]

This diagram shows the cyclical steps of continuous integration that include the code being
pushed into the SCM by the team members and the execution of the build and test by the
CI server. And the purpose of this fast process is to provide rapid feedback to members.

We have just seen what continuous integration is, so now let's look at continuous delivery
practices.

Continuous delivery (CD)
Once continuous integration has been successfully completed, the next step is to deploy the
application automatically in one or more non-production environments, which is called
staging. This process is called continuous delivery (CD).

CD often starts with an application package prepared by CI, which will be installed
according to a list of automated tasks. These tasks can be of any type: unzip, stop and
restart service, copy files, replace configuration, and so on. The execution of functional and
acceptance tests can also be performed during the CD process.

Unlike CI, CD aims to test the entire application with all of its dependencies. This is very
visible in microservices applications composed of several services and APIs; CI will only
test the microservice under development while, once deployed in a staging environment, it
will be possible to test and validate the entire application as well as the APIs and
microservices that it is composed of.

In practice, today, it is very common to link CI with CD in an integration environment; that
is, CI deploys at the same time in an environment. It is indeed necessary so that developers
can have at each commit not only the execution of unit tests but also a verification of the
application as a whole (UI and functional), with the integration of the developments of the
other team members.

It is very important that the package generated during CI and that will be deployed during
CD is the same one that will be installed on all environments, and this should be the case
until production. However, there may be configuration file transformations that differ
depending on the environment, but the application code (binaries, DLL, and JAR) must
remain unchanged.

This immutable, unchangeable character of the code is the only guarantee that the
application verified in an environment will be of the same quality as the version deployed
in the previous environment and the same one that will be deployed in the next
environment. If changes (improvements or bug fixes) are to be made to the code following
verification in one of the environments, once done, the modification will have to go through
the CI and CD cycle again.

DevOps Culture and Practices Chapter 1

[16]

The tools set up for CI/CD are often completed with others solutions, which are as follows:

A package manager: This constitutes the storage space of the packages generated
by CI and recovered by CD. These managers must support feeds, versioning, and
different types of packages. There are several on the market, such as Nexus,
ProGet, Artifactory, and Azure Artifacts.
A configuration manager: This allows you to manage configuration changes
during CD; most CD tools include a configuration mechanism with a system of
variables.

In CD, the deployment of the application in each staging environment is triggered as
follows:

It can be triggered automatically, following a successful execution on a previous
environment. For example, we can imagine a case where the deployment in the
pre-production environment is automatically triggered when the integration tests
have been successfully performed in a dedicated environment.
It can be triggered manually, for sensitive environments such as the production
environment, following a manual approval by a person responsible for
validating the proper functioning of the application in an environment.

What is important in a CD process is that the deployment to the production environment,
that is, to the end user, is triggered manually by approved users:

DevOps Culture and Practices Chapter 1

[17]

This diagram clearly shows that the CD process is a continuation of the CI process. It
represents the chain of CD steps, which are automatic for staging environments but manual
for production deployments. It also shows that the package is generated by CI and is stored
in a package manager and that it is the same package that is deployed in different
environments.

Now that we've looked at CD, let's look at continuous deployment practices.

Continuous deployment
Continuous deployment is an extension of CD, but this time, with a process that automates
the entire CI/CD pipeline from the moment the developer commits their code to
deployment in production through all of the verification steps.

This practice is rarely implemented in enterprises because it requires a wide coverage of
tests (unit, functional, integration, performance, and so on) for the application, and the
successful execution of these tests is sufficient to validate the proper functioning of the
application with all of these dependencies, but also automated deployment to a production
environment without any approval action.

The continuous deployment process must also take into account all of the steps to restore
the application in the event of a production problem.

Continuous deployment can be implemented with the use and implementation of feature
toggle techniques (or feature flags), which involves encapsulating the application's
functionalities in features and activating its features on demand, directly in production,
without having to redeploy the code of the application.

Another technique is to use a blue-green production infrastructure, which consists of
two production environments, one blue and one green. We first deploy to the
blue environment, then to the green; this will ensure that there is no downtime required:

DevOps Culture and Practices Chapter 1

[18]

We will look at the feature toggle and blue-green deployment usage in
more detail in Chapter 13, Reducing Deployment Downtime.

The preceding diagram is almost the same as that of CD, but with the difference that it
depicts automated end-to-end deployment.

CI/CD processes are therefore an essential part of DevOps culture, with CI allowing teams
to integrate and test the coherence of its code and to obtain quick feedback very regularly.
CD automatically deploys on one or more staging environments and hence offers the
possibility to test the entire application until it is deployed in production.

Finally, continuous deployment automates the deployment of the application from commit
to the production environment.

We will see how to implement all of these processes in practice with
Jenkins, Azure DevOps, and GitLab CI in Chapter 6, Continuous
Integration and Continuous Delivery.

In this section, we have discussed practices essential to DevOps culture, which are
continuous integration, continuous delivery, and continuous deployment.

In the next section, we will go into detail about another DevOps practice, which is IaC.

https://cdp.packtpub.com/learning_devops/wp-admin/post.php?post=24&action=edit#post_36

DevOps Culture and Practices Chapter 1

[19]

Understanding IaC practices
IaC is a practice that consists of writing the code of the resources that make up an
infrastructure.

This practice began to take effect with the rise of DevOps culture and with the
modernization of cloud infrastructure. Indeed, Ops teams that deploy infrastructures
manually take time to deliver infrastructure changes due to inconsistent handling and the
risk of errors. Also, with the modernization of the cloud and its scalability, the way an
infrastructure is built requires a review of provisioning and change practices by adapting a
more automated method.

IaC is the process of writing the code of the provisioning and configuration steps of
infrastructure components to automate its deployment in a repeatable and consistent
manner.

Before we look at the use of IaC, we will see what the benefits of this practice are.

The benefits of IaC
The benefits of IaC are as follows:

The standardization of infrastructure configuration reduces the risk of error.
The code that describes the infrastructure is versioned and controlled in a source
code manager.
The code is integrated into CI/CD pipelines.
Deployments that make infrastructure changes are faster and more efficient.
There's better management, control, and a reduction in infrastructure costs.

IaC also brings benefits to a DevOps team by allowing Ops to be more efficient on
infrastructure improvement tasks rather than spending time on manual configuration and
by giving Dev the possibility to upgrade their infrastructures and make changes without
having to ask for more Ops resources.

IaC also allows the creation of self-service, ephemeral environments that will give
developers and testers more flexibility to test new features in isolation and independently
of other environments.

DevOps Culture and Practices Chapter 1

[20]

IaC languages and tools
The languages and tools used to code the infrastructure can be of different types; that is,
scripting and declarative types.

Scripting types
These are scripts such as Bash, PowerShell, or any other languages that use the different
clients (SDKs) provided by the cloud provider; for example, you can script the provisioning
of an Azure infrastructure with the Azure CLI or Azure PowerShell.

For example, here is the command that creates a resource group in Azure:

Using the Azure CLI (the documentation is at https:/ /bit. ly/2V1OfxJ), we
have the following:

az group create -location westeurope -name MyAppResourcegroup

Using Azure PowerShell (the documentation is at https:/ /bit. ly/2VcASeh), we
have the following:

New-AzResourceGroup -Name MyAppResourcegroup -Location westeurope

The problem with these languages and tools is that they require a lot of lines of code
because we need to manage the different states of the manipulated resources and it is
necessary to write all of the steps of the creation or update of the desired infrastructure.

However, these languages and tools can be very useful for tasks that automate repetitive
actions to be performed on a list of resources (selection and query) or that require complex
processing with a certain logic to be performed on infrastructure resources such as a script
that automates the deletion of VMs that carry a certain tag.

Declarative types
These are languages in which it is sufficient to write the state of the desired system or
infrastructure in the form of configuration and properties. This is the case, for example, for
Terraform and Vagrant from HashiCorp, Ansible, the Azure ARM template, PowerShell
DSC, Puppet, and Chef. The user only has to write the final state of the desired
infrastructure and the tool takes care of applying it.

https://bit.ly/2V1OfxJ
https://bit.ly/2V1OfxJ
https://bit.ly/2V1OfxJ
https://bit.ly/2V1OfxJ
https://bit.ly/2V1OfxJ
https://bit.ly/2V1OfxJ
https://bit.ly/2V1OfxJ
https://bit.ly/2V1OfxJ
https://bit.ly/2V1OfxJ
https://bit.ly/2VcASeh
https://bit.ly/2VcASeh
https://bit.ly/2VcASeh
https://bit.ly/2VcASeh
https://bit.ly/2VcASeh
https://bit.ly/2VcASeh
https://bit.ly/2VcASeh
https://bit.ly/2VcASeh
https://bit.ly/2VcASeh

DevOps Culture and Practices Chapter 1

[21]

For example, the following is the Terraform code that allows you to define the desired
configuration of an Azure resource group:

resource "azurerm_resource_group" "myrg" {
 name = "MyAppResourceGroup"
 location = "West Europe"

 tags = {
 environment = "Bookdemo"
 }
}

In this example, if you want to add or modify a tag, just modify the tags property in the
preceding code and Terraform will do the update itself.

Here is another example that allows you to install and restart nginx on a server using
Ansible:

- hosts: all
 tasks:
 - name: install and check nginx latest version
 apt: name=nginx state=latest
 - name: start nginx
 service:
 name: nginx
 state: started

And to ensure that the service is not installed, just change the preceding code,
with service as an absent value and the state property with the stopped value:

- hosts: all
 tasks:
 - name: stop nginx
 service:
 name: nginx
 state: stopped
 - name: check nginx is not installed
 apt: name=nginx state=absent

In this example, it was enough to change the state property to indicate the desired state of
the service.

DevOps Culture and Practices Chapter 1

[22]

For details regarding the use of Terraform and Ansible, see Chapter 2,
Provisioning Cloud Infrastructure with Terraform, and Chapter 3, Using
Ansible for Configuring IaaS Infrastructure.

The IaC topology
In a cloud infrastructure, IaC is divided into several typologies:

The deployment and provisioning of the infrastructure
The server configuration and templating
The containerization
The configuration and deployment in Kubernetes

Let's deep dive into each topology.

The deployment and provisioning of the infrastructure
Provisioning is the act of instantiating the resources that make up the infrastructure. They
can be of the Platform as a Service (PaaS) and serverless resource types, such as a web app,
Azure function, or Event Hub but also the entire network part that is managed, such
as VNet, subnets, routing tables, or Azure Firewall. For virtual machine resources, the
provisioning step only creates or updates the VM cloud resource but not its content.

There are different provisioning tools such as Terraform, the ARM template, AWS Cloud
training, the Azure CLI, Azure PowerShell, and also Google Cloud Deployment Manager.
Of course, there are many more, but it is difficult to mention them all. In this book, we will
look at, in detail, the use of Terraform to provide an infrastructure.

Server configuration
This step concerns the configuration of virtual machines, such as the configuration of
hardening, directories, disk mounting, network configuration (firewall, proxy, and so on),
and middleware installation.

There are different configuration tools, such as Ansible, PowerShell DSC, Chef, Puppet, and
SaltStack. Of course, there are many more, but, in this book, we will look at, in detail, the
use of Ansible to configure a virtual machine.

DevOps Culture and Practices Chapter 1

[23]

To optimize server provisioning and configuration times, it is also possible to create and
use server models, also called images, that contain all of the configuration (hardening,
middleware, and so on) of the servers. It will be during the provisioning of the server that
we will indicate the template to use, and hence, we will have, in a few minutes, a
configured server ready to be used.

There are also many IaC tools for creating server templates, such as aminator (used by
Netflix) or HashiCorp Packer.

Here is an example of Packer file code that creates an Ubuntu image with package updates:

{
"builders": [{
 "type": "azure-arm",
 "os_type": "Linux",
 "image_publisher": "Canonical",
 "image_offer": "UbuntuServer",
 "image_sku": "16.04-LTS",
 "managed_image_resource_group_name": "demoBook",
 "managed_image_name": "SampleUbuntuImage",
 "location": "West Europe",
 "vm_size": "Standard_DS2_v2"
 }],
 "provisioners": [{
 "execute_command": "chmod +x {{ .Path }}; {{ .Vars }} sudo -E sh '{{
.Path }}'",
 "inline": [
 "apt-get update",
 "apt-get upgrade -y",
 "/usr/sbin/waagent -force -deprovision+user && export HISTSIZE=0 &&
sync"
],
 "inline_shebang": "/bin/sh -x",
 "type": "shell"
 }]
}

This script creates a template image for the Standard_DS2_V2 virtual machine based on
the Ubuntu OS (the builders section). Additionally, Packer will update all packages
during the creation of the image with the apt-get update command and, after this
execution, Packer deprovisions the image to delete all user information (the provisioners
section).

DevOps Culture and Practices Chapter 1

[24]

The Packer part will be discussed in detail in Chapter 4, Optimizing
Infrastructure Deployment with Packer.

Immutable infrastructure with containers
Containerization consists of deploying applications in containers instead of deploying them
in VMs.

Today, it is very clear that the container technology to be used is Docker and that the
configuration of a Docker image is also done in code in a Dockerfile. This file contains the
declaration of the base image, which represents the bone to be used, the installation of
additional middleware to be installed on the image, only the files and binaries necessary for
the application, and the network configuration of the ports. Unlike VMs, containers are said
to be immutable; the configuration of a container cannot be modified during its execution.

Here is a simple example of a Dockerfile:

FROM ubuntu
RUN apt-get update
RUN apt-get install -y nginx
ENTRYPOINT ["/usr/sbin/nginx","-g","daemon off;"]
EXPOSE 80

In this Docker image, we use a basic Ubuntu image, install nginx, and expose port 80.

The Docker part will be discussed in detail in Chapter 7, Containerizing
Your Application with Docker.

Configuration and deployment in Kubernetes
Kubernetes is a container orchestrator—it is the technology that most embodies IaC, in my
opinion, because the way it deploys containers, the network architecture (load balancer,
ports, and so on), and the volume management, as well as the protection of sensitive
information, are described completely in the YAML specification files.

DevOps Culture and Practices Chapter 1

[25]

Here is a simple example of a YAML specification file:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-demo
 labels:
 app: nginx
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

We can see in the preceding specification file, the name of the image to deploy (ngnix), the
port to open (80), and the number of replicas (2).

The Kubernetes part will be discussed in detail in Chapter 8, Managing
Containers Effectively with Kubernetes.

IaC best practices
IaC, like software development, requires the implementation of practices and processes that
allow the evolution and maintenance of the infrastructure code.

Among these practices are those of software development, as in these examples:

Have good principles of nomenclature.
Do not overload the code with unnecessary comments.
Use small functions.
Implement error handling.

DevOps Culture and Practices Chapter 1

[26]

To learn more about good software development practices, read the
excellent book, which is, for my part, a reference on the subject, Clean Code
by Robert Martin.

But there are more specific practices that I think deserve more attention:

Everything must be automated in the code: When doing IaC, it is indeed
necessary to code and automate all of the provisioning steps and not to leave
manual steps out of code that distort the automation of the infrastructure and that
can generate errors. And if necessary, do not hesitate to use several tools such as
Terraform and Bash with the Azure CLI scripts.
The code must be in a source control manager: The infrastructure code must
also be in an SCM to be versioned, tracked, merged, and restored, and hence
have better visibility of the code between Dev and Ops.
The infrastructure code must be with the application code: In some cases, this
may be difficult, but if possible, it is much better to place the infrastructure code
in the same repository as the application code. This is to have a better work
organization between developers and operations, who will share the same
workspace.
Separation of roles and directories: It is good to separate the code from the
infrastructure according to the role of the code, so you can create one directory
for provisioning and for configuring VMs and another directory that will contain
the code for testing the integration of the complete infrastructure.
Integration into a CI/CD process: One of the goals of IaC is to be able to
automate the deployment of the infrastructure, so from the beginning of its
implementation, it is necessary to set up a CI/CD process that will integrate the
code, test it, and deploy it in different environments. Some tools, such as
Terratest, allow you to write tests on infrastructure code. One of the best
practices is to integrate the CI/CD process of the infrastructure into the same
pipeline as the application.
The code must be idempotent: The execution of the infrastructure deployment
code must be idempotent; that is, automatically executable at will. This means
that scripts must take into account the state of the infrastructure when running it
and not generate an error if the resource to be created already exists or if a
resource to be deleted has already been deleted. We will see that declarative
languages, such as Terraform, take on this aspect of idempotence natively. The
code of the infrastructure, once fully automated, must allow the construction and
complete destruction of the application infrastructure.

DevOps Culture and Practices Chapter 1

[27]

To be used as documentation: The code of the infrastructure must be clear and
must be able to serve as documentation. Indeed, infrastructure documentation
takes a long time to be written and in many cases, it is not updated as the
infrastructure evolves.
The code must be modular: In an infrastructure, the components very often have
the same code—the only difference is the value of their properties. Also, these
components are used several times in the company's applications. It is therefore
important to optimize the writing times of code, by factoring it with modules (or
roles, for Ansible) that will be called as functions. Another advantage of using
modules is the ability to standardize resource nomenclature and compliance on
some properties.
Having a development environment: The problem with IaC is that it is difficult
to test its infrastructure code under development in environments used for
integration and to test the application because changing the infrastructure can
have an impact. It is therefore important to have a development environment
even for IaC that can be impacted or even destroyed at any time.

For local infrastructure tests, some tools simulate a local environment, such as Vagrant
(from HashiCorp), so you should use them to test code scripts as much as possible.

Of course, the full list of good practices is longer than this list; all methods and processes of
software engineering practices are also applicable.

IaC is, therefore, like CI/CD processes, a key practice of DevOps culture that allows, by
writing code, the deployment and configuration of an infrastructure. However, IaC can
only be effective with the use of appropriate tools and the implementation of good
practices.

Summary
In this first chapter, we saw that DevOps culture is a story of collaboration, processes, and
tools. Then, we detailed the different steps of the CI/CD process and explained the
difference between and that continuous deployment.

Finally, the last part explained how to use IaC, with its best practices.

In the next chapter, we will start with the implementation of IaC and how to provision an
infrastructure with Terraform.

DevOps Culture and Practices Chapter 1

[28]

Questions
Of which words is DevOps a contraction?1.
Is DevOps a term that represents: the name of a tool, a culture or a society, or the2.
title of a book?
What are the three axes of DevOps culture?3.
What is the objective of continuous integration?4.
What is the difference between continuous delivery and continuous5.
deployment?
What is IaC?6.

Further reading
If you want to know more about DevOps culture, here are some resources:

The DevOps Resource Center (Microsoft resources): https://docs.microsoft.
com/en-us/azure/devops/learn/

2018 State of DevOps Report (by
Puppet): https://puppet.com/resources/whitepaper/state-of-devops-report

https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://docs.microsoft.com/en-us/azure/devops/learn/
https://puppet.com/resources/whitepaper/state-of-devops-report

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: DevOps and Infrastructure as Code
	Chapter 1: DevOps Culture and Practices
	Getting started with DevOps
	Implementing CI/CD and continuous deployment
	Continuous integration (CI)
	Implementing CI

	Continuous delivery (CD)
	Continuous deployment

	Understanding IaC practices
	The benefits of IaC
	IaC languages and tools
	Scripting types
	Declarative types

	The IaC topology
	The deployment and provisioning of the infrastructure
	Server configuration
	Immutable infrastructure with containers
	Configuration and deployment in Kubernetes

	IaC best practices

	Summary
	Questions
	Further reading

	Chapter 2: Provisioning Cloud Infrastructure with Terraform
	Technical requirements
	Installing Terraform
	Manual installation
	Installation by script
	Installing Terraform by script on Linux
	Installing Terraform by script on Windows
	Installing Terraform by script on macOS

	Integrating Terraform with Azure Cloud Shell

	Configuring Terraform for Azure
	Creating the Azure SP
	Configuring the Terraform provider
	Terraform configuration for local development and testing

	Writing a Terraform script to deploy Azure infrastructure
	Following some Terraform good practices
	Better visibility with the separation of files
	Protection of sensitive data
	Dynamizing the code with variables and interpolation functions

	Deploying the infrastructure with Terraform
	Initialization
	Previewing changes
	Applying the changes

	Terraform command lines and life cycle
	Using destroy to better rebuild
	Formatting and validating the code
	Formatting the code
	Validating the code

	Terraform's life cycle in a CI/CD process

	Protecting tfstate in a remote backend
	Summary
	Questions
	Further reading

	Chapter 3: Using Ansible for Configuring IaaS Infrastructure
	Technical requirements
	Installing Ansible
	Installing Ansible with a script
	Integrating Ansible into Azure Cloud Shell
	Ansible artifacts
	Configuring Ansible

	Creating an inventory for targeting Ansible hosts
	The inventory file
	Configuring hosts in the inventory
	Testing the inventory

	Writing the first playbook
	Writing a basic playbook
	Understanding Ansible modules
	Improving your playbooks with roles

	Executing Ansible
	Using the preview or dry run option
	Increasing the log level output

	Protecting data with Ansible Vault
	Using variables in Ansible for better configuration
	Protecting sensitive data with Ansible Vault

	Using a dynamic inventory for Azure infrastructure
	Summary
	Questions
	Further reading

	Chapter 4: Optimizing Infrastructure Deployment with Packer
	Technical requirements
	An overview of Packer
	Installing Packer
	Installing manually
	Installing by script
	Installing Packer by script on Linux
	Installing Packer by script on Windows
	Installing Packer by script on macOS
	Integrating Packer with Azure Cloud Shell
	Checking the Packer installation

	Creating Packer templates for Azure VMs with scripts
	The structure of the Packer template
	The builders section
	The provisioners section
	The variables section

	Building an Azure image with the Packer template

	Using Ansible in a Packer template
	Writing the Ansible playbook
	Integrating an Ansible playbook in a Packer template

	Executing Packer
	Configuring Packer to authenticate to Azure
	Checking the validity of the Packer template
	Running Packer to generate our VM image

	Using a Packer image with Terraform
	Summary
	Questions
	Further reading

	Section 2: DevOps CI/CD Pipeline
	Chapter 5: Managing Your Source Code with Git
	Technical requirements
	Overviewing Git and its command lines
	Git installation
	Configuration Git
	Git vocabulary
	Git command lines
	Retrieving a remote repository
	Initializing a local repository
	Configuring a local repository
	Adding a file for the next commit
	Creating a commit
	Updating the remote repository
	Synchronizing the local repository from the remote
	Managing branches

	Understanding the Git process and GitFlow pattern
	Starting with the Git process
	Creating and configuring a Git repository
	Committing the code
	Archiving on the remote repository
	Cloning the repository
	The code update
	Retrieving updates

	Isolating your code with branches
	Branching strategy with GitFlow
	The GitFlow pattern
	GitFlow tools

	Summary
	Questions
	Further reading

	Chapter 6: Continuous Integration and Continuous Delivery
	Technical requirements
	The CI/CD principles
	Continuous integration (CI)
	Continuous delivery (CD)

	Using a package manager
	Private NuGet and npm repository
	Nexus Repository OSS
	Azure Artifacts

	Using Jenkins
	Installing and configuring Jenkins
	Configuring a GitHub webhook
	Configuring a Jenkins CI job
	Executing the Jenkins job

	Using Azure Pipelines
	Versioning of the code with Git in Azure Repos
	Creating the CI pipeline
	Creating the CD pipeline: the release

	Using GitLab CI
	Authentication at GitLab
	Creating a new project and managing your code source
	Creating the CI pipeline
	Accessing the CI pipeline execution details

	Summary
	Questions
	Further reading

	Section 3: Containerized Applications with Docker and Kubernetes
	Chapter 7: Containerizing Your Application with Docker
	Technical requirements
	Installing Docker
	Registering on Docker Hub
	Docker installation
	An overview of Docker's elements

	Creating a Dockerfile
	Writing a Dockerfile
	Dockerfile instructions overview

	Building and running a container on a local machine
	Building a Docker image
	Instantiating a new container of an image
	Testing a container locally

	Pushing an image to Docker Hub
	Deploying a container to ACI with a CI/CD pipeline
	The Terraform code for ACI
	Creating a CI/CD pipeline for the container

	Summary
	Questions
	Further reading

	Chapter 8: Managing Containers Effectively with Kubernetes
	Technical requirements
	Installing Kubernetes
	Kubernetes architecture overview
	Installing Kubernetes on a local machine
	Installing the Kubernetes dashboard

	First example of Kubernetes application deployment
	Using HELM as a package manager
	Using AKS
	Creating an AKS service
	Configuring kubectl for AKS
	Advantages of AKS

	Creating a CI/CD pipeline for Kubernetes with Azure Pipelines
	The build and push of the image in the Docker Hub
	Automatic deployment of the application in Kubernetes

	Summary
	Questions
	Further reading

	Section 4: Testing Your Application
	Chapter 9: Testing APIs with Postman
	Technical requirements
	Creating a Postman collection with requests
	Installation of Postman
	Creating a collection
	Creating our first request

	Using environments and variables to dynamize requests
	Writing Postman tests
	Executing Postman request tests locally
	Understanding the Newman concept
	Preparing Postman collections for Newman
	Exporting the collection
	Exporting the environments

	Running the Newman command line
	Integration of Newman in the CI/CD pipeline process
	Build and release configuration
	Npm install
	Npm run newman
	Publish test results

	The pipeline execution

	Summary
	Questions
	Further reading

	Chapter 10: Static Code Analysis with SonarQube
	Technical requirements
	Exploring SonarQube
	Installing SonarQube
	Overview of the SonarQube architecture
	Installing SonarQube
	Manual installation of SonarQube
	Installation via Docker
	Installation in Azure

	Real-time analysis with SonarLint
	Executing SonarQube in continuous integration
	Configuring SonarQube
	Creating a CI pipeline for SonarQube in Azure Pipelines

	Summary
	Questions
	Further reading

	Chapter 11: Security and Performance Tests
	Technical requirements
	Applying web security and penetration testing with ZAP
	Using ZAP for security testing
	Ways to automate the execution of ZAP

	Running performance tests with Postman
	Summary
	Questions
	Further reading

	Section 5: Taking DevOps Further
	Chapter 12: Security in the DevOps Process with DevSecOps
	Technical requirements
	Testing Azure infrastructure compliance with Chef InSpec
	Overview of InSpec
	Installing InSpec
	Configuring Azure for InSpec
	Writing InSpec tests
	Creating an InSpec profile file
	Writing compliance InSpec tests

	Executing InSpec

	Using the Secure DevOps Kit for Azure
	Installing the Azure DevOps Security Kit
	Checking the Azure security using AzSK
	Integrating AzSK in Azure Pipelines

	Preserving data with HashiCorp's Vault
	Installing Vault locally
	Starting the Vault server
	Writing secrets in Vault
	Reading secrets in Vault
	Using the Vault UI web interface
	Getting Vault secrets in Terraform

	Summary
	Questions
	Further reading

	Chapter 13: Reducing Deployment Downtime
	Technical requirements
	Reducing deployment downtime with Terraform
	Understanding blue-green deployment concepts and patterns
	Using blue-green deployment to improve the production environment
	Understanding the canary release pattern
	Exploring the dark launch pattern

	Applying blue-green deployments on Azure
	Using App Service with slots
	Using Azure Traffic Manager

	Introducing feature flags
	Using an open source framework for feature flags
	Using the LaunchDarkly solution
	Summary
	Questions
	Further reading

	Chapter 14: DevOps for Open Source Projects
	Technical requirements
	Storing the source code in GitHub
	Creating a new repository on GitHub
	Contributing to the GitHub project

	Contributing using pull requests
	Managing the changelog and release notes
	Sharing binaries in GitHub releases
	Using Travis CI for continuous integration
	Getting started with GitHub Actions
	Analyzing code with SonarCloud
	Detecting security vulnerabilities with WhiteSource Bolt
	Summary
	Questions
	Further reading

	Chapter 15: DevOps Best Practices
	Automating everything
	Choosing the right tool
	Writing all your configuration in code
	Designing the system architecture
	Building a good CI/CD pipeline
	Integrating tests
	Applying security with DevSecOps
	Monitoring your system
	Evolving project management
	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

