
�. �. (odv Bum
qardner

MEAP	Edition	
Manning	Early	Access	Program	

OpenStack	in	Action	
Version	14	

Copyright	2015	Manning	Publications	

For	more	information	on	this	and	other	Manning	titles	go	to	
www.manning.com	

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

http://www.manning.com
https://forums.manning.com/forums/openstack-in-action

brief contents
PART 1: GETTING STARTED

 1 Introducing OpenStack

 2 Taking an OpenStack test-drive

 3 Learning basic OpenStack operations

 4 Understanding private cloud building blocks

PART 2: WALKTHROUGH A MANUAL DEPLOYMENT

 5 Walking through a Controller Deployment

 6 Walking through a Networking deployment

 7 Walking through a Block Storage deployment

 8 Walking through a Compute deployment

PART 3: BUILDING A PRODUCTION ENVIRONMENT

 9 Architecting your OpenStack

10 Deploying Ceph

11 Automated HA OpenStack Deployment with Fuel

12 Cloud Orchestration using OpenStack

APPENDIXES

 A Installing Linux

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

https://forums.manning.com/forums/openstack-in-action

6
This chapter covers

In chapter 5 you walked through the deployment of an OpenStack controller node, which
provides the server-side management of OpenStack services. During the controller
deployment, you made controller-side configurations for several OpenStack core
services, including Networking, Compute, and Storage. We discussed the configurations
for each core service in relation to the controller, but the services themselves weren’t
covered in detail.

Chapters 6 through 8 will walk you through the deployment of core OpenStack
services on resource nodes. are nodes that provide a specific resource inResource nodes
relation to an OpenStack service. For instance, a server running OpenStack Compute
(Nova) services (and all prerequisite requirements) would be considered a compute

. As you learned in chapter 2, it’s possible for a specific node to provideresource node
multiple services, including Compute (Nova), Network (Neutron), and Block Storage
(Cinder). But just like an exclusive node was used for the controller in chapter 5,
exclusive resource nodes will be used for demonstration in chapters 6 (Networking), 7
(Block Storage), and 8 (Compute).

Take another look at the multi-node architecture introduced in chapter 5, shown in
figure 5.8.

Walking through a Networking deployment

Network node prerequisites
Deploying OpenStack Networking core
Setting up OpenStack Networking ML2 plug-in
Configuring OpenStack Networking DHCP, Metadata, L3, and OVS
agents

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

170

https://forums.manning.com/forums/openstack-in-action

Figure 6.1 Multi-node architecture

In this chapter, you’ll manually deploy the Networking components in the lower right
of the figure on a standalone node.

Figure 6.16 shows your current status on your way to a working manual deployment.
In this chapter, you’ll first prepare the server to function as a network device. Next,
you’ll install and configure Neutron OSI Layer 2 (switching) components. Finally, you’ll
install and configure Neutron services that function on OSI Layer 3 (DHCP, Metadata,
and so on). Network resources configured in this chapter will be used directly by VMs
provided by OpenStack.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

171

https://forums.manning.com/forums/openstack-in-action

Figure 6.2 Deployment roadmap

For many people, this chapter will be the most difficult. Even if you have a deep
background in traditional networking, you’ll have to stop and think about how
OpenStack Networking works. Overlay networks, or networks on top of other networks,
are in many ways the network equivalent of the abstraction of virtual machines from
bare-metal servers. This may be your first exposure to mesh/overlay/distributed
networking, but these technologies are not exclusive to OpenStack. You’ll learn more
about overlay networks and their use in OpenStack in this chapter, but taking the time to
understand the fundamental changes will be useful across many technologies.

In the chapter 2 deployment, DevStack installed and configured OpenStack dependencies
for you. In this chapter, you’ll manually install these dependencies. Luckily, you can use
a package management system to install the software: there’s no compiling required, but
you must still manually configure many of the components.

6.1 Deploying network prerequisites

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

172

https://forums.manning.com/forums/openstack-in-action

WARNING Proceed with care
Working in a multi-node environment greatly increases deployment
complexity. A small, seemingly unrelated, mistake in the configuration of
one component or dependency can cause issues that are very hard to
track down. Read each section carefully, making sure you understand
what you’re installing or configuring.

Many of the examples in this chapter include a verification step, which I highly
recommend you follow. If a configuration can’t be verified, retrace your steps to the last
verified point and start over. This practice will save you a great deal of frustration.

With the exception of the network configuration, environment preparation will be similar
to preparing the controller node you deployed in chapter 5. Make sure you pay close
attention to the network interfaces and addresses in the configurations. It’s easy to make
a typo, and often hard to track down problems when you do.

You want to configure the network with three interfaces:

Node interface—Traffic not directly related to OpenStack. This interface will be used for
administrative tasks like SSH console access, software updates, and even node-level
monitoring.
Internal interface—Traffic related to OpenStack component-to-component
communication. This includes API and AMPQ type traffic.
VM interface—Traffic related to OpenStack VM-to-VM and VM-to-external
communication.

First, you’ll want to determine what interfaces already exist on the system.

The following command will list the interfaces on your server.

Listing 6.1 List interfaces

6.1.1 Preparing the environment

6.1.2 Configuring the network interfaces

REVIEWING THE NETWORK

$ ifconfig -a

em1 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c3
inet addr:10.33.2.51 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed5:21c3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:9580 errors:0 dropped:0 overruns:0 frame:0
TX packets:1357 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:8716454 (8.7 MB) TX bytes:183958 (183.9 KB)
Interrupt:35

em2 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c4

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

173

https://forums.manning.com/forums/openstack-in-action

You might have configured your node interface, , during the initial installation.em1

You’ll use the interface to communicate with this node. Take a look at the two otherem1

interfaces, and . On the example systems used in writing this book, the em2 p2p1 em2

interface will be used for internal OpenStack traffic and the add-on 10G adapter, whereas
 will be used for VM communication.p2p1

Next you’ll review the network configuration for the example nodes, and you’ll
configure controller interfaces.

Under Ubuntu, the interface configuration is maintained in the /etc/network/interfaces
file. We’ll build a working configuration based on the italicized addresses in table 6.1.

inet6 addr: fe80::ba2a:72ff:fed5:21c4/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:7732 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:494848 (494.8 KB) TX bytes:680 (680.0 B)
Interrupt:38

...
p2p1 Link encap:Ethernet HWaddr a0:36:9f:44:e2:70

BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

CONFIGURING THE NETWORK

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

174

https://forums.manning.com/forums/openstack-in-action

In order to modify the network configuration, or any privileged configuration, you
must use sudo privileges (). Any text editorsudo vi /etc/network/interfaces

can be used in this process.
Modify your interfaces file as shown next.

Listing 6.2 Modify interface config /etc/network/interfaces

Table 6.1 Network address tablem

Node Function Interface IP address

Controller Pubic interface/node address em1 10.33.2.50/24

Controller OpenStack internal em2 192.168.0.50/24

Network Node address em1 10.33.2.51/24

Network OpenStack internal em2 192.168.0.51/24

Network VM network p2p1 None: assigned to OpenStack Networking

Storage Node address em1 10.33.2.52/24

Storage OpenStack internal em2 192.168.0.52/24

Compute Node address em1 10.33.2.53/24

Compute OpenStack internal em2 192.168.0.53/24

The loopback network interface
auto lo
iface lo inet loopback

The OpenStack Node Interface

auto em1
iface em1 inet static

address 10.33.2.51
netmask 255.255.255.0
network 10.33.2.0
broadcast 10.33.2.255
gateway 10.33.2.1
dns-nameservers 8.8.8.8
dns-search testco.com

The OpenStack Internal Interface

auto em2
iface em2 inet static

address 192.168.0.51

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

175

https://forums.manning.com/forums/openstack-in-action

em1 is the public interface used for node administration.
em2 is used primarily for AMPQ and API traffic between resource nodes and the
controller.
p2p1 virtual machine traffic between resource nodes and external networks

In your network configuration interface, will be used for node administration,em1

such as SSH sessions to the actual server . OpenStack shouldn’t use this interface
directly. The interface will be used primarily for AMPQ and API traffic betweenem2

resource nodes and the controller . The interface will be managed by Neutron.p2p1

This interface will primarily carry virtual machine traffic between resource nodes and
external networks .

You should now refresh the network interfaces for which the configuration was
changed. If you didn’t change the settings of your primary interface, you shouldn’t
experience an interruption. If you changed the address of the primary interface, it’s
recommend you reboot the server at this point.

You can refresh the network configuration for a particular interface as shown here for
interfaces and .em2 p2p1

Listing 6.3 Refreshing Networking settings

The network configuration, from an operating system standpoint, should now be
active. The interface will automatically be brought online based on your configuration.
This process can be repeated for each interface that requires a configuration refresh. In
order to confirm that the configuration was applied, you can once again check your
interfaces.

Listing 6.4 Check network for updates

netmask 255.255.255.0

The VM network interface

auto p2p1
iface p2p1 inet manual

sudo ifdown em2 && sudo ifup em2
sudo ifdown p2p1 && sudo ifup p2p1

$ ifconfig -a

em1 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c3
inet addr:10.33.2.51 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed5:21c3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:10159 errors:0 dropped:0 overruns:0 frame:0
TX packets:1672 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:8803690 (8.8 MB) TX bytes:247972 (247.9 KB)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

176

https://forums.manning.com/forums/openstack-in-action

At this point you should be able to remotely access the network server, and the server
should have internet access. The remainder of the install can be performed remotely
using SSH or directly from the console.

The APT package index is a database of all available packages defined in the
/etc/apt/sources.list file. You need to make sure your local database is synchronized with
the latest packages available in the repository for your specific Linux distribution. Prior
to installation, you should also upgrade any repository items, including the Linux kernel,
that might be out of date.

Listing 6.5 Update and upgrade packages

You now need to reboot the server to refresh any packages or configurations that
might have changed.

Listing 6.6 Reboot server

As of Ubuntu Server 14.04 (Trusty Tahr), the following OpenStack components are
officially supported and included with the base distribution:

Nova—Project name for OpenStack Compute; it works as an IaaS cloud fabric controller
Glance—Provides services for virtual machine image, discovery, retrieval, and
registration
Swift—Provides highly scalable, distributed, object store services

Interrupt:35

em2 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c4
inet addr:192.168.0.51 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed5:21c4/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:7913 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:506432 (506.4 KB) TX bytes:680 (680.0 B)
Interrupt:38

...
p2p1 Link encap:Ethernet HWaddr a0:36:9f:44:e2:70

inet6 addr: fe80::a236:9fff:fe44:e270/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)

6.1.3 Updating packages

sudo apt-get -y update
sudo apt-get -y upgrade

sudo reboot

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

177

https://forums.manning.com/forums/openstack-in-action

Horizon—Project name for OpenStack Dashboard; it provides a web-based admin/user
GUI
Keystone—Provides identity, token, catalog, and policy services for the OpenStack suite
Neutron—Provides network management services for OpenStack components
Cinder—Provides block storage as a service to OpenStack Compute

In this section, you’ll install a few software dependencies and make a few configuration
changes in preparation for the install.

You’ll want to install the package bridge-utils, which provides a set of applications for
working with network bridges on the system (OS) level. Network bridging on the OS
level is critical to the operation of OpenStack Networking. For the time being, it’s
sufficient to think about network bridges under Linux as simply placing multiple
interfaces on the same network segment (the same isolated VLAN). The default
operation of Linux network bridging is to act like a switch, so you can certainly think of
it this way.

In addition, you may want to install the vlan package, which provides the network
subsystem the ability to work with Virtual Local Area Networks (VLANs) as defined by
IEEE 802.1Q. VLANS allow you to segregate network traffic using VLAN IDs on
virtual interfaces. This allows a single physical interface managed by your OS to isolate
multiple networks using virtual interfaces. VLAN configuration won’t be used in the
examples, but you should be aware of the technology.

NOTE Using VLANs with Neutron
Instructions for installing the package are included in listingvlan
5.75 because the vast majority of deployments will make use of
IEEE 802.1Q VLANs to deliver multiple networks to Neutron nodes.
But, for the sake of clarity, the examples in this book will not use
VLAN interfaces. Once you understand OpenStack Networking, the
adoption of VLANs on the OS level is trivial.

In summary, VLANs traffic and interfaces, whereas Linux bridges isolate aggregate
traffic and interfaces.

Listing 6.7 Install vlan and bridge-utils

6.1.4 Software and configuration dependencies

INSTALLING LINUX BRIDGE AND VLAN UTILITIES

$ sudo apt-get -y install vlan bridge-utils
...
Setting up bridge-utils (1.5-6ubuntu2) ...
Setting up vlan (1.9-3ubuntu10) ...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

178

https://forums.manning.com/forums/openstack-in-action

You now have the ability to create VLANs and Linux bridges.

OpenStack manages resources for providing virtual machines. One of those resources is
the network used by the virtual machine to communicate with other virtual and physical
machines. For OpenStack Networking to provide network services, at least one resource
node that performs the functions of a network devices (routing, switching, and so on)
must exist. You want this node to act as a router and switch for network traffic.

By default, the Linux kernel isn’t set to allow the routing of traffic between
interfaces. The command is used to modify kernel parameters, such as thosesysctl

related to basic network functions. You need to make several modifications to your
kernel settings using this tool.

The first modification is related to the forwarding or routing (kernel IP forwarding) of
traffic between network interfaces by the Linux kernel. You want traffic arriving on one
interface to be forwarded or routed to another interface if the kernel determines that the
destination network can be found on another interface maintained by the kernel. Take a
look at figure 6.16, which shows a server with two interfaces.

Figure 6.3 Linux IP routing

By default, the incoming packet shown in the figure will be dropped by interface
 because the address of this interface isn’t the destination of the packet. But youINT_0

want the server to inspect the packet’s destination address, look in the server routing
table, and, if a route is found, forward the packet to the appropriate interface. The

 setting instructing the kernel to forward traffic cansysctl net.ipv4.ip_forward

be seen in listing 5.75.
In addition to enabling kernel IP forwarding, you also have to make a few other

less-common kernel configuration changes. In the world of networking, there’s
something called , where outgoing and incoming traffic paths/routesasymmetric routing
are not the same. There are legitimate reasons to do such things (such as terrestrial upload
and satellite download; see), but more often thanwww.google.com/patents/US6038594
not this ability was exploited by distributed denial of service (DDOS) attacks. RFC 3704,
“Ingress Filtering for Multihomed Networks,” also known as , wasreverse-path filtering

SERVER-TO-ROUTER CONFIGURATION

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

179

http://www.google.com/patents/US6038594
http://www.google.com/patents/US6038594
https://forums.manning.com/forums/openstack-in-action

introduced to limit the impact of these DDOS attacks. By default, if the Linux kernel
can’t determine the source route of a packet, it will be dropped. OpenStack Networking is
a complex platform that encompasses many layers of network resources, where the
network resources themselves don’t have a complete picture of the network. You must
configure the kernel to disable reverse-path filtering, which leaves path management up
to OpenStack.

The setting that’s used to disablesysctl net.ipv4.conf.all.rp_filter

reverse-path filtering for all existing interfaces is shown in listing 5.75. The sysctl

setting is used to disable reverse-pathnet.ipv4.conf.default.rp_filter

filtering for all future interfaces.
Apply the settings in the following listing to your OpenStack Network node.

Listing 6.8 Modify /etc/sysctl.conf

To enable the kernel changes without restarting the server, invoke the sysctl

 command.sysctl -p

Listing 6.9 Execute the commandsysctl

The interfaces should now forward IPv4 traffic, and reverse-path filtering should be
disabled.

In the next section, you’ll add advanced network features to your user with the Open
vSwitch package.

OpenStack Networking takes advantage of the open source distributed virtual-switching
package, Open vSwitch (OVS). OVS provides the same data-switching functions as a
physical switch (L2 traffic on port A destined to port B is switched to port B), but it runs
in software on servers.

net.ipv4.ip_forward=1
net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

$ sudo sysctl -p
net.ipv4.conf.default.rp_filter = 0
net.ipv4.conf.all.rp_filter = 0
net.ipv4.ip_forward = 1

6.1.5 Installing Open vSwitch

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

180

https://forums.manning.com/forums/openstack-in-action

SIDEBAR What does a switch do?
To understand what a switch does, you must first look at an Ethernet hub
(you’re likely using Ethernet in some form on all of your wired and
wireless devices). “What is a hub?” you ask.
Circa early 1990s, there were several competing OSI Layer 1 (physical)
Ethernet topologies. One such topology, IEEE 10Base2, worked (and
looked) much like the cable TV in your house, where you could take a
single cable and add network connections by splicing in T connectors
(think). Another common topology was 10BaseT (RJ45splitters
connector twisted pair), which is the grandfather of what most of us think
of as “Ethernet” today. The good thing about 10BaseT was that you could
extend the network without interrupting network service; the bad thing
was that this physical topology required a device to terminate the cable
segments together. This device was a called a , and it also operatedhub
at the OSI Layer 1 (physical) level. If data was transmitted by a device on
port A, it would be physically transmitted to all other ports on the hub.
Aside from the obvious security concerns related to transmitting all data
to all ports, the operation of a hub wouldn’t scale. Imagine thousands of
devices connected to hundreds of interconnected switches. All traffic was
flooded to all ports. To solve this issue, network switches were
developed. Manufactures of Network Interface Cards (NICs) assigned a
unique Ethernet Hardware Address (EHA) to every card. Switches kept
track of the EHA addresses, commonly known as Media Access Control
(MAC) addresses, on each port of the switch. If a packet with the
destination MAC=xyz was transmitted to port A, and the switch had a
record of xyz on port B, the packet was transmitted (switched) to port B.
Switches operate on OSI Layer 2 (Link Layer) and switch traffic based on
MAC destinations.

The examples in this book, from a network-switching standpoint, make exclusive use
of the OVS switching platform.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

181

https://forums.manning.com/forums/openstack-in-action

SIDEBAR OVS is not a strict OpenStack network dependency
Without a doubt, OVS is used often with OpenStack Networking. But it’s
not implicitly required by the framework. The following diagram, first
introduced in chapter 4, shows where OVS fits into the OpenStack
Network architecture.

Figure 6.4 OVS is an L2 mechanism

You could use basic Linux bridging (the previously discussed virtual
switch) or even a physical switch instead of OVS, as long as it’s
supported by a vendor-specific Neutron plug-in or module.

At this point you have a server that can act like a basic network router (via IP kernel
forwarding) and a basic switch (via Linux network bridging). You’ll now add advanced
switching capabilities to your server by installing OVS. OVS could be the topic of an
entire book, but it’s sufficient to say that the switching features provided by OVS rival
offerings provided by standalone network vendors.

You can turn your server into an advanced switch with the following OVS install
instructions.

Listing 6.10 Install OVS

The Open vSwitch install process will install a new OVS kernel module. In addition,
the OVS kernel module will reference and load additional kernel models (GRE, VXLAN,
and so on) as necessary to build network overlays.

$ sudo apt-get -y install openvswitch-switch
...
Setting up openvswitch-common ...
Setting up openvswitch-switch ...
openvswitch-switch start/running

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

182

https://forums.manning.com/forums/openstack-in-action

SIDEBAR What is a network overlay?
For a minute, forget what you know about traditional networking. Forget
the concept of servers on the same switch (VLAN/network) being on the
same “network.” Imagine that you have a way to place any VM on any
network, regardless of its physical location or underlying network
topology. This is the value proposition for overlay networks.
At this point it’s sufficient to think about an overlay network as a fully
meshed virtual private network (VPN) between all participating endpoints
(all servers being on the same L2 network segment regardless of
location). To create a network such as this, you’ll need technologies to
tunnel traffic between endpoints. GRE, VXLAN, and other protocols
provide the tunneling transports used by overlay networks. As usual,
OpenStack simply manages these components. A network overlay is
simply a method of extending L2 networks between hosts “overlaid” on
top of other networks.

WARNING Know thy kernel
Ubuntu 14.04 LTS is the first Ubuntu release to ship with kernel support
for OVS overlay networking technologies (GRE, VXLAN, and the like). In
previous versions, additional steps had to be taken to build appropriate
kernel modules. If you’re using another version of Ubuntu or another
distribution altogether, make absolutely sure OVS kernel modules are
loaded as shown in listing 5.75.

You want to be absolutely sure the Open vSwitch kernel modules were loaded. You
can use the command in the following listing to confirm the presence of OVSlsmod

kernel modules.

Listing 6.11 Verify OVS kernel modules

The output of the command should now show several resident modules relatedlsmod
to OVS:

openvswitch—This is the OVS module itself, which provides the interface between the
kernel and OVS services.
gre—Designated as “used by” the module, it enables GRE functionality onopenvswitch

$ sudo lsmod | grep openvswitch
Module Size Used by
openvswitch 66901 0
gre 13796 1 openvswitch
vxlan 37619 1 openvswitch
libcrc32c 12644 1 openvswitch

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

183

https://forums.manning.com/forums/openstack-in-action

the kernel level.
vxlan—Just like the GRE module, is used to provide VXLAN functions on thevxlan

kernel level.
libcrc32c—Provides kernel-level support for cyclic redundancy check (CRC)
algorithms, including hardware offloading using Intel’s CRC32C CPU instructions.
Hardware offloading is important for the high-performance calculation of network flow
hashes and other CRC functions common to network headers and data frames.

Having GRE and VXLAN support on the kernel level means that the transports used
to create overlay networks are understood by the system kernel, and by relation the Linux
network subsystem.

SIDEBAR No modules? DKMS to the rescue!
Dynamic Kernel Module Support (DKMS) was developed to make it
easier to provide kernel-level drivers outside of the mainline kernel.
DKMS has historically been used by OVS to provide kernel drivers for
things such as overlay network devices (such as GRE and VXLAN), that
were not included directly in the Linux kernel. The kernel that ships with
Ubuntu 14.04 includes support for overlay devices built into the kernel,
but depending on your distribution and release, you might not have a
kernel with built-in support for the required network overlay technologies.
The following command will deploy the appropriate dependencies and
build the OVS module using the DKMS framework:datapath

Only run this command if the modules couldn’t be validated as shown in
listing 5.75.

If you think the kernel module should have loaded, but you still don’t see it, restart
the system and see if it loads on restart. Additionally, you can try to load the kernel
module with the command . Check the kernel log,modprobe openvswitch

/var/log/kern/log, for any errors related to loading OVS kernel modules. OVS won’t
function for your purposes without the appropriate resident kernel modules.

You now need to add an internal bridge and an external OVS bridge.br-int br-ex

The bridge interface will be used for communication withinbr-int

Neutron-managed networks. Virtual machines communicating within internal OpenStack
Neutron-created networks will use this bridge for communication. This interface
shouldn’t be confused with the internal interface on the operating system level.

sudo apt-get -y install openvswitch-datapath-dkms

6.1.6 Configuring Open vSwitch

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

184

https://forums.manning.com/forums/openstack-in-action

Listing 6.12 Configure internal OVS bridge

Now that has been created, create the external bridge interface, . Thebr-int br-ex

external bridge interface will be used to bridge OVS-managed internal Neutron networks
with physical external networks.

Listing 6.13 Configure external OVS bridge

You’ll also want to confirm that the bridges were successfully added to OVS and that
they’re visible to the underlying networking subsystem. You can do that with the
following commands.

Listing 6.14 Verify OVS configuration

Listing 6.15 Verify OVS OS integration

sudo ovs-vsctl add-br br-int

sudo ovs-vsctl add-br br-ex

$ sudo ovs-vsctl show
8cff16ee-40a7-40fa-b4aa-fd6f1f864560
 Bridge br-int

Port br-int
Interface br-int

type: internal
 Bridge br-ex

Port br-ex
Interface br-ex

type: internal
 ovs_version: "2.0.2"

$ ifconfig -a

br-ex Link encap:Ethernet HWaddr d6:0c:1d:a8:56:4f
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

br-int Link encap:Ethernet HWaddr e2:d9:b2:e2:00:4f
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

...
em1 Link encap:Ethernet HWaddr b8:2a:72:d5:21:c3

inet addr:10.33.2.51 Bcast:10.33.2.255 Mask:255.255.255.0
inet6 addr: fe80::ba2a:72ff:fed5:21c3/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

185

https://forums.manning.com/forums/openstack-in-action

br-ex bridge
br-int bridge
ovs-system interface

Notice the addition of the and bridges in your interface list.br-ex br-int

The new bridges will be used by OVS and the Neutron OVS module for internal and
external traffic. In addition, the interface was added. This is the OVSovs-system

datapath interface, but you won’t have to worry about working with this interface; it’s
simply an artifact of Linux kernel integration. Nevertheless, the presence of this interface
is an indication that the OVS kernel modules are active.

At this point you have an operational OVS deployment and two bridges. The
 (internal) bridge will be used by Neutron to attach virtual interfaces to thebr-int

network bridge. These tap interfaces will be used as endpoints for the Generic Routing
Encapsulation (GRE) tunnels. GRE tunnels are used to create point-to-point network
connections (think VPN) between endpoints over the Internet Protocol (IP), and Neutron
will configure GRE tunnels between compute and network nodes using OVS. These
tunnels will provide a mesh of virtual networks between all possible resource locations
and network drains in the topology. This mesh provides the functional equivalence of a
single isolated OSI L2 network for the virtual machines on the same virtual network. The
internal bridge won’t need to be associated with a physical interface or be placed in an
OS-level “UP” state to work.

The (external) bridge will be used to connect the OVS bridges andbr-ex

Neutron-derived virtual interfaces to the physical network. You must associate the
external bridge with your interface as follows.VM

Listing 6.16 Add interface (VM) to bridge p2p1 br-ex

Now check that the interface was added to the bridge.p2p1 br-ex

RX packets:13483 errors:0 dropped:0 overruns:0 frame:0
TX packets:2763 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:12625608 (12.6 MB) TX bytes:424893 (424.8 KB)
Interrupt:35

...

ovs-system Link encap:Ethernet HWaddr 96:90:8d:92:19:ab
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

sudo ovs-vsctl add-port br-ex p2p1
sudo ovs-vsctl br-set-external-id br-ex bridge-id br-ex

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

186

https://forums.manning.com/forums/openstack-in-action

Listing 6.17 Verify OVS configuration

p2p1 interface
br-ex bridge

Notice the interface listed as a port on the bridge . This meansp2p1 br-ex

that the interface is virtually connected to the OVS bridge interface.p2p1 br-ex

Currently the and bridges aren’t connected. Neutron will configurebr-ex br-int

ports on both the internal and external bridges, including taps between the two. Neutron
will do all of the OVS configuration from this point forward.

In this section, you’ll prepare the Neutron ML2 plug-in, L3 agent, DHCP agent, and
Metadata agent for operation. The ML2 plug-in is installed on every physical node where
Neutron interacts with OVS.

You’ll install the ML2 plug-in and agent on all compute and network nodes. The
ML2 plug-in will be used to build Layer 2 (data link layer, Ethernet layer, and so on)
configurations and tunnels between network endpoints managed by OpenStack. You can
think of these tunnels as virtual network cables connecting separate switches or VMs
together.

The L3, Metadata, and DHCP agents are only installed on the network nodes. The L3
agent will provide Layer 3 routing of IP traffic on the established L2 network. Similarly,
the Metadata and DHCP agents provide L3 services on the L2 network.

The agents and plug-in provide the following services:

ML2 plug-in—The ML2 plug-in is the link between Neutron and OSI L2 services. The
plug-in manages local ports and taps, and it generates remote connections over GRE
tunnels. This agent will be installed on network and compute nodes. The plug-in will be
configured to work with OVS.
L3 agent—This agent provides Layer 3 routing services and is deployed on network
nodes.
DHCP agent—This agent provides DHCP services for Neutron-managed networks using
DNSmasq. Normally this agent will be installed on a network node.

6.2 Installing Neutron

$ sudo ovs-vsctl show
8cff16ee-40a7-40fa-b4aa-fd6f1f864560
 Bridge br-int

Port br-int
Interface br-int

type: internal

 Bridge br-ex
Port br-ex

Interface br-ex
type: internal

Port "p2p1"

Interface "p2p1"
 ovs_version: "2.0.1"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

187

https://forums.manning.com/forums/openstack-in-action

Metadata agent—This agent provides cloud-init services for booting VMs and is
typically installed on the network node.

You’re now ready to install Neutron software as follows.

Listing 6.18 Install Neutron components

Neutron plug-ins and agents should now be installed. You can continue on with the
Neutron configuration.

The next step is configuration. First, you must modify the /etc/neutron/neutron.conf file
to define the service authentication, management communication, core network plug-in,
and service strategies. In addition, you’ll provide configuration and credentials to allow
the Neutron client instance to communicate with the Neutron controller, which you
deployed in chapter 5. Modify your neutron.conf file based on the values shown below. If
any of these values doesn’t exist, add it.

Listing 6.19 Modify /etc/neutron/neutron.conf

6.2.1 Installing Neutron components

$ sudo apt-get -y install neutron-plugin-ml2 \
neutron-plugin-openvswitch-agent neutron-l3-agent \
neutron-dhcp-agent
...
Adding system user `neutron' (UID 109) ...
Adding new user `neutron' (UID 109) with group `neutron' ...
...
Setting up neutron-dhcp-agent ...
neutron-dhcp-agent start/running, process 14910
Setting up neutron-l3-agent ...
neutron-l3-agent start/running, process 14955
Setting up neutron-plugin-ml2 ...
Setting up neutron-plugin-openvswitch-agent ...
neutron-plugin-openvswitch-agent start/running, process 14994

6.2.2 Configuring Neutron

[DEFAULT]
verbose = True
auth_strategy = keystone

rpc_backend = neutron.openstack.common.rpc.impl_kombu
rabbit_host = 192.168.0.50
rabbit_password = openstack1

core_plugin = neutron.plugins.ml2.plugin.Ml2Plugin
allow_overlapping_ips = True
service_plugins = router,firewall,lbaas,vpnaas,metering

nova_url = http://127.0.0.1:8774/v2
nova_admin_username = admin
nova_admin_password = openstack1
nova_admin_tenant_id = b3c5ebecb36d4bb2916fecd8aed3aa1a
nova_admin_auth_url = http://10.33.2.50:35357/v2.0

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

188

http://127.0.0.1:8774/v2
http://10.33.2.50:35357/v2.0
https://forums.manning.com/forums/openstack-in-action

Now that the core Neutron components are configured, you must configure the
Neutron agents, which will allow Neutron to control network services.

The Neutron OVS agent allows Neutron to control the OVS switch.
This configuration can be made in the /etc/neutron/plugins/ml2/ml2_conf.ini file. The

following listing provides the database information, along with ML2-specific switch
configuration.

Listing 6.20 Modify /etc/neutron/plugins/ml2/ml2_conf.ini

Your Neutron ML2 plug-in configuration is now complete. Clear the log file, and
then restart the service:

Your Neutron ML2 plug-in agent log should now look something like the following:

You now have OSI L2 Neutron integration using OVS. In the next section, you’ll

[keystone_authtoken]
auth_url = http://10.33.2.50:35357/v2.0
admin_tenant_name = service
admin_password = openstack1
auth_protocol = http
admin_user = neutron

[database]
connection = mysql://neutron_dbu:openstack1@192.168.0.50/neutron

6.2.3 Configuring the Neutron ML2 plug-in

[ml2]
type_drivers = gre
tenant_network_types = gre
mechanism_drivers = openvswitch

[ml2_type_gre]
tunnel_id_ranges = 1:1000

[ovs]
local_ip = 192.168.0.51
tunnel_type = gre
enable_tunneling = True

[securitygroup]
firewall_driver =
neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver
enable_security_group = True

sudo rm /var/log/neutron/openvswitch-agent.log
sudo service neutron-plugin-openvswitch-agent restart

Logging enabled!
Connected to AMQP server on 192.168.0.50:5672
Agent initialized
successfully, now running...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

189

http://10.33.2.50:35357/v2.0
mysql://neutron_dbu:openstack1@192.168.0.50/neutron
https://forums.manning.com/forums/openstack-in-action

configure the OSI L3 Neutron services.

Next, you need to configure the Neutron L3 agent. This agent provides L3 services, such
as routing, for VMs. The L3 agent will be configured to use Linux namespaces.

SIDEBAR What is Linux namespace isolation?
There’s a feature built into the Linux kernel called .namespace isolation
This feature allows you to separate processes and resources into
multiple namespaces so that they don’t interfere with each other. This is
done internally by assigning namespace identifiers to each process and
resource. From a network perspective, namespaces can be used to
isolate network interfaces, firewall rules, routing tables, and so on. This is
the underlying way in which multiple tenant networks, residing on the
same Linux server, can have the same address ranges.

Go ahead and configure your L3 agent.

Listing 6.21 Modify /etc/neutron/l3_agent.ini

The L3 agent is now configured and will use Linux namespaces.
Clear the log file, and then restart the service:

Your Neutron L3 agent log should look something like the following:

You’ll next want to configure the DHCP agent, which provides DHCP services for VM
images. Modify your dhcp_agent.ini as shown in the following listing.

Listing 6.22 Modify /etc/neutron/dhcp_agent.ini

6.2.4 Configuring the Neutron L3 agent

[DEFAULT]
interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
use_namespaces = True
verbose = True

sudo rm /var/log/neutron/l3-agent.log
sudo service neutron-l3-agent restart

Logging enabled!
Connected to AMQP server on 192.168.0.50:5672
L3 agent started

6.2.5 Configuring the Neutron DHCP agent

[DEFAULT]
...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

190

https://forums.manning.com/forums/openstack-in-action

The DHCP agent is now configured and will use Linux namespaces. Clear the log
file, and then restart the service:

Your Neutron DHCP agent log should look something like this:

You’ll next want to configure the Metadata agent, which provides environmental
information to VM images. Cloud-init, which was originally created by Amazon for E2
services, is used to inject system-level settings on VM startup. To use Metadata services,
you must use an image with a cloud-init–compatible agent installed and enabled.

Cloud-init is supported in most modern Linux distributions. Either download an
image that has cloud-init preinstalled or install the package from your distribution.

Modify your metadata_agent.ini file to include the following information.

Listing 6.23 Modify /etc/neutron/metadata_agent.ini

The Neutron Metadata agent is now configured and will use Linux namespaces. Clear
the log file, and then restart the service:

Your Neutron Metadata agent log should look something like this:

interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq
use_namespaces = True
...

sudo rm /var/log/neutron/dhcp-agent.log
sudo service neutron-dhcp-agent restart

Logging enabled!
Connected to AMQP server on 192.168.0.50:5672
DHCP agent started Synchronizing state
Synchronizing state complete

6.2.6 Configuring the Neutron Metadata agent

[DEFAULT]
auth_url = http://10.33.2.50:35357/v2.0
auth_region = RegionOne
admin_tenant_name = service
admin_password = openstack1
auth_protocol = http
admin_user = neutron
nova_metadata_ip = 192.168.0.50
metadata_proxy_shared_secret = openstack1

sudo rm /var/log/neutron/metadata-agent.log
sudo service neutron-metadata-agent restart

Logging enabled!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

191

http://10.33.2.50:35357/v2.0
https://forums.manning.com/forums/openstack-in-action

It’s a good idea at this point to restart all Neutron services, as shown in the following
listing. Alternatively, you could simply restart the server.

Listing 6.24 Restart Neutron agents

You’ll want to check the Neutron logs to make sure each service started successfully
and is listening for requests. The logs can be found in the /var/log/neutron or
/var/log/upstart/neutron-* directory.

Review the logs, checking for connections to the AMQP (RabbitMQ) server, and
ensure there are no errors. The log files should exist even if they’re empty. Ensure that
there are no errors about unsupported OVS tunnels in the file
/var/log/neutron/openvswitch-agent.log. If you experience such errors, restart the
operating system and see if reloading the kernel modules and OVS takes care of the
problem.

If you continue to experience problems starting Neutron services, you can increase
the verbosity of the services through the /etc/neutron/neutron.conf file or the
corresponding agent file.

In chapter 3 you were introduced to OpenStack Networking. This section reviews items
presented in that chapter as they relate to the components you’ve deployed in this
chapter.

Before you start creating networks using OpenStack Networking, you need to recall
the basic differences between traditional “flat” networks, typically used for virtual and
physical machines, and how OpenStack Networking works.

The term in alludes to the absence of a virtual routing tier; the VMflat flat network
has direct access to a network, just as if you plugged a physical device into a physical
network switch. Figure 3.17 shows an example of a flat network connected to a physical
router.

(11074) wsgi starting up on http:///:v/
Connected to AMQP server on 192.168.0.50:5672

6.2.7 Restarting and verifying Neutron agents

$ cd /etc/init.d/; for i in $(ls neutron-*); \
do sudo service $i restart; done
neutron-dhcp-agent stop/waiting
neutron-dhcp-agent start/running, process 16259
neutron-l3-agent stop/waiting
neutron-l3-agent start/running, process 16273
neutron-metadata-agent stop/waiting
neutron-metadata-agent start/running, process 16283
neutron-ovs-cleanup stop/waiting
neutron-ovs-cleanup start/running

6.2.8 Creating Neutron networks

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

192

https://forums.manning.com/forums/openstack-in-action

Figure 6.5 Traditional flat network

In this type of deployment, all network services (DHCP, load balancing, routing, and
so on) beyond simple switching (OSI Model, Layer 2) must be provided outside of the
virtual environment. For most systems administrators, this type of configuration will be
very familiar, but this is not how we’re going to demonstrate the power of OpenStack.
You can make OpenStack Networking behave like a traditional flat network, but this
approach will limit the benefits of the OpenStack framework.

In this section, you’ll build a tenant network from scratch. Figure 3.17 illustrates an
OpenStack tenant network, with virtual isolation from the physical external network.

Figure 6.6 OpenStack tenant network

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

193

https://forums.manning.com/forums/openstack-in-action

SIDEBAR Set your environment variables
The configurations in the following subsections require OpenStack
authentication. In the previous examples, command-line arguments were
provided for credentials. For the sake of simplicity, though, the following
examples will use environment variables instead of command-line
arguments.
To set your environment variables, execute the following commands in
your shell:

Neutron commands can be entered through the Neutron console (which is like a
command line for a network router or switch) or directly through the CLI. The console is
very handy if you know what you’re doing, and it’s a natural choice for those familiar
with the Neutron command set. For the sake of clarity, however, this book demonstrates
each action as a separate command, using CLI commands.

The distinction between the Neutron console and the Neutron CLI will be made clear
in the following subsections. There are many things you can do with the Neutron CLI and
console that you can’t do in the Dashboard. Although the demonstrations will be
executed using the CLI, you’ll still need to know how to access the Neutron console. As
you can see from the following, it’s quite simple. Using the command withoutneutron

arguments will take you to the console. All of the subcommands will be listed using the
command shown in the following listing.

Listing 6.25 Access Neutron console

You now have the ability to access the interactive Neutron console. Any CLI
configurations can be made either in the console or directly on the command line.

In the next subsection, you’ll create a new network.

$ export OS_USERNAME=admin
$ export OS_PASSWORD=openstack1
$ export OS_TENANT_NAME=admin
$ export OS_AUTH_URL=http://10.33.2.50:5000/v2.0

NETWORK (NEUTRON) CONSOLE

devstack@devstack:~/devstack$ neutron
(neutron) help

Shell commands (type help <topic>):
===================================
...
(neutron)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

194

http://10.33.2.50:5000/v2.0
https://forums.manning.com/forums/openstack-in-action

The first step you’ll take in providing a tenant-based network is to configure the internal
network. The internal network is used directly by instances in your tenant. The internal
network works on the ISO Layer 2, so for the network types, this is the virtual equivalent
of providing a network switch to be used exclusively for a particular tenant.

In order to create an internal network for a tenant, you must first determine your
tenant ID:

By using the commands in listing 3.27, you can create a new network for your tenant.
First, you tell OpenStack Networking (Neutron) to create a new network . Then you
specify the on the command line . Finally, you specify the nameadmin tenant-id

of the tenant network .

Listing 6.26 Create internal network

Tells Neutron to create a new network
Specifies the admin tenant-id
Specifies the network name

Figure 3.17 illustrates the you created for your tenant. TheINTERNAL_NETWORK

figure shows the network you just created connected to a VM (if one was in the tenant).

INTERNAL NETWORKS

$ keystone tenant-list
+----------------------------------+---------+---------+
| id | name | enabled |
+----------------------------------+---------+---------+
| 55bd141d9a29489d938bb492a1b2884c | admin | True |
| b3c5ebecb36d4bb2916fecd8aed3aa1a | service | True |
+----------------------------------+---------+---------+

$ neutron net-create \

--tenant-id 55bd141d9a29489d938bb492a1b2884c \

INTERNAL_NETWORK
Created a new network:
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	5b04a1f2-1676-4f1e-a265-adddc5c589b8
name	INTERNAL_NETWORK
provider:network_type	gre
provider:physical_network	
provider:segmentation_id	1
shared	False
status	ACTIVE
subnets	
tenant_id	55bd141d9a29489d938bb492a1b2884c
+---------------------------+--------------------------------------+

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

195

https://forums.manning.com/forums/openstack-in-action

Figure 6.7 Created internal network

You’ve now created an internal network. In the next subsection, you’ll create an
internal subnet for this network.

In the previous subsection, you created an internal network. The internal network you
created inside your tenant is completely isolated from other tenants. This will be a
strange concept to those who work with physical servers, or even those who generally
expose their virtual machines directly to physical networks. Most people are used to
connecting their servers to the network, and network services are provided on a data
center or enterprise level. We don’t typically think about networking and computation
being controlled under the same framework.

As previously mentioned, OpenStack can be configured to work in a flat network
configuration. But there are many advantages to letting OpenStack manage the network
stack. In this subsection, you’ll create a subnet for your tenant. This can be thought of as
an ISO Layer 3 (L3) provisioning of the tenant. You might be thinking to yourself,
“What are you talking about? You can’t just provision L3 services on the network!” or “I
already have L3 services centralized in my data center. I don’t want OpenStack to do this
for me!” By the end of this section, or perhaps by the end of the book, you’ll have your
own answers to these questions. For the time being, just trust that OpenStack offers
benefits that are either enriched by these features or that are not possible without them.

What does it mean to create a new subnet for a specific network? Basically, you
describe the network you want to work with, and then you describe the address ranges
you plan to use on that network. In this case, you’ll assign the new subnet to the

, in the tenant. You must also provide an address range for theADMIN_NETWORK ADMIN

subnet. You can use your own address range as long as it doesn’t exist in the tenant or a
shared tenant. One of the interesting things about OpenStack is that through the use of
Linux namespaces, you could use the same address range for every internal subnet in
every tenant.

Enter the command in the following listing.

INTERNAL SUBNETS

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

196

https://forums.manning.com/forums/openstack-in-action

Listing 6.27 Creating an internal subnet for the network

Creates new subnet
Specifies admin tenant-id
Specifies network name and subnet range

First you tell OpenStack Networking (Neutron) to create a new subnet . Then you
specify the on the command line . Finally you specify the nameadmin tenant-id

of the network where the subnet should be created and the subnet range to be used on the
internal network in CIDR notation . Don’t forget, if you need to find the admin

, use the Keystone command.tenant-id tenant-id

You now have a new subnet assigned to your . Figure 3.17INTERNAL_NETWORK

illustrates the assignment of the subnet to the . Unfortunately, thisINTERNAL_NETWORK

subnet is still isolated, but you’re one step closer to connecting your private network to a
public network.

Figure 6.8 Created internal subnet

$ neutron subnet-create \

--tenant-id 55bd141d9a29489d938bb492a1b2884c \

INTERNAL_NETWORK 172.16.0.0/24
Created a new subnet:
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "172.16.0.2", "end": "172.16.0.254"}
cidr	172.16.0.0/24
dns_nameservers	
enable_dhcp	True
gateway_ip	172.16.0.1
host_routes	
id	eb0c84d3-ea66-437f-9d1a-9defe8cccd06
ip_version	4
name	
network_id	5b04a1f2-1676-4f1e-a265-adddc5c589b8
tenant_id	55bd141d9a29489d938bb492a1b2884c
+------------------+--+

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

197

https://forums.manning.com/forums/openstack-in-action

In the next subsection, you’ll add a router to the subnet you just created. Make a note
of your —it will be needed in the following sections.subnet-id

NOTE CIDR notation
As previously mentioned, CIDR is a compact way to represent
subnets. For internal subnets, it’s common to use a private class C
address range. One of the most commonly used private ranges for
internal or private networks is 192.168.0.0/24, which provides the
range 192.168.0.1–192.168.0.254.

Routers, put simply, route traffic between interfaces. In this case, you have an isolated
network on your tenant and you want to be able to communicate with other tenant
networks or networks outside of OpenStack. The following listing shows you how to
create a new tenant router.

Listing 6.28 Create router

Creates new router
Specifies admin tenant-id
Specifies router name

First, you tell OpenStack Networking (Neutron) to create a new router . Then, you
specify the on the command line . Finally, you specify the nameadmin tenant-id

of the router .
Figure 3.17 illustrates the router you created in your tenant.

ROUTERS

$ neutron router-create \

--tenant-id 55bd141d9a29489d938bb492a1b2884c \

ADMIN_ROUTER
Created a new router:
+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
admin_state_up	True
external_gateway_info	
id	5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9
name	ADMIN_ROUTER
status	ACTIVE
tenant_id	55bd141d9a29489d938bb492a1b2884c
+-----------------------+--------------------------------------+

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

198

https://forums.manning.com/forums/openstack-in-action

Figure 6.9 Created internal router

Now you have a new router, but your tenant router and subnet aren’t connected. The
next listing shows how to connect your subnet to your router.

Listing 6.29 Adding router to internal subnet

Adds internal subnet
Specifies router-id
Specifies subnet-id

First, you tell OpenStack Networking (Neutron) to add an internal subnet to your
router . Then, you specify the of the router . Finally, you specify the router-id

 of the subnet .subnet-id

If you need to look up Neutron-associated object IDs, you can access the Neutron
console by running the Neutron CLI application without arguments: . Once inneutron

the Neutron console, you can use the command to navigate through the commands.help

Figure 3.17 illustrates your router, , connected to your internalADMIN_ROUTER

network, .INTERNAL_NETWORK

$ neutron router-interface-add \

5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9 \

eb0c84d3-ea66-437f-9d1a-9defe8cccd06

Added interface 54f0f944-06ce-4c04-861c-c059bc38fe59
 to router 5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

199

https://forums.manning.com/forums/openstack-in-action

Figure 6.10 Router connected router to internal network

The process of adding a router to a subnet will actually create a on the localport
virtual switch. You can think of a port on a virtual switch the same way you’d think of a
port on a physical switch. In this case, the device is the , the network is ADMIN_ROUTER

, and the subnet is . The router will use theINTERNAL_NETWORK 172.16.0.0/24

address specified during subnet creation (it defaults to first available address). When you
create an instance (VM), you should be able to communicate with the router address on
the 172.16.0.1 address, but you won’t yet be able to route packets to external networks.

NOTE DHCP agent
In past versions of OpenStack Networking, you had to manually
add DHCP agents to your network. The DHCP agent is used to
provide your instances with an IP address. In current versions, the
agent is automatically added the first time you create an instance.
In advanced configurations, however, it’s still helpful to know that
agents (of all kinds) can be manipulated through Neutron.

A router isn’t much good when it’s only connected to one network, so your next step
is to create a public network that can be connected to the router you just created.

In the subsection “Internal networks,” you created a network that was specifically for
your tenant. Here you’ll create a public network that can be used by multiple tenants.
This public network can be attached to a private router and will function as a network
gateway for the internal network created in the previous section.

Only the user can create external networks. If a tenant isn’t specified, the newadmin

external network will be created in the tenant. Create a new external network asadmin

shown in the next listing.

EXTERNAL NETWORK

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

200

https://forums.manning.com/forums/openstack-in-action

Listing 6.30 Create external network

Creates a new network
Specifies network name
Designates as external network

First, you tell Neutron to create a new network and you specify the network name
. Then, you designate this network as an external network .
You now have a network designated as an external network. As shown in figure 3.17,

this network will reside in the tenant.admin

Figure 6.11 Created external network

Before you can use this network as a gateway for your tenant router (as shown in the
subsection “Routers”) you must first add a subnet to the external network you just
created. That’s what you’ll do next.

neutron net-create \

PUBLIC_NETWORK

--router:external=True Created a new network:
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	64d44339-15a4-4231-95cc-ee04bffbc459
name	PUBLIC_NETWORK
provider:network_type	gre
provider:physical_network	
provider:segmentation_id	2
router:external	True
shared	False
status	ACTIVE
subnets	
tenant_id	55bd141d9a29489d938bb492a1b2884c
+---------------------------+--------------------------------------+

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

201

https://forums.manning.com/forums/openstack-in-action

You must now create an external subnet, as shown in the following listing.

Listing 6.31 Create external subnet

Creates new subnet
Sets gateway address
Sets address range
Defines external network
Defines subnet
Don’t provide DHCP services

You first tell Neutron to create a new subnet . You set the gateway address to the
first available address and then define the range of addresses available for allocation
in the subnet . You then define the external network where the subnet will be assigned

. In CIDR format, you define the subnet . Finally, you specify that OpenStack
should not provide DHCP services for this subnet .

EXTERNAL SUBNET

neutron subnet-create \

--gateway 192.168.2.1 \

--allocation-pool start=192.168.2.100,end=192.168.2.250 \

PUBLIC_NETWORK \

192.168.2.0/24 \

--enable_dhcp=False

Created a new subnet:
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "192.168.2.100", "end": "192.168.2.250"}
cidr	192.168.2.0/24
dns_nameservers	
enable_dhcp	False
gateway_ip	192.168.2.1
host_routes	
id	ee91dd59-2673-4bce-8954-b6cedbf8e920
ip_version	4
name	
network_id	64d44339-15a4-4231-95cc-ee04bffbc459
tenant_id	55bd141d9a29489d938bb492a1b2884c
+------------------+--+

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

202

https://forums.manning.com/forums/openstack-in-action

Figure 6.12 Created external subnet

In figure 3.17, you can see that you now have the subnet 192.168.2.0/24 assigned to
the external network . The subnet and external network you justPUBLIC_NETWORK

created can now be used by an OpenStack Networking router as a gateway network. In
the next step, you’ll assign your newly created external network as the gateway address
of your internal network.

SIDEBAR List routers to obtain router-id
To list all the routers in the system, you can use the neutron

 command:router-list

You can assign an external subnet as a gateway as follows.

Listing 6.32 Add new external network as router gateway

Uses router-gateway-set command
Specifies router-id
Specifies external-network-id

devstack@devstack:~/devstack$ neutron router-list
+--------+----------------+------------------------+
| id | name | external_gateway_info |
+--------+----------------+------------------------+
| 5d..e9 | ADMIN_ROUTER | null |
+--------+----------------+------------------------+

neutron router-gateway-set \

5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9 \

64d44339-15a4-4231-95cc-ee04bffbc459

Set gateway for router
15d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

203

https://forums.manning.com/forums/openstack-in-action

Figure 3.17 illustrates the assignment of the network as thePUBLIC_NETWORK

gateway for the in the tenant. You can confirm this setting byADMIN_ROUTER ADMIN

running the command , where the neutron router-show <router-id>

 is the ID of the . The command will return the <router-id> ADMIN_ROUTER

, which lists the currently assigned gateway network.external_gateway_info

Optionally, you can log in to the OpenStack Dashboard and look at your tenant network.

Figure 6.13 Assigned public network as router gateway

At this point you should have a working Neutron environment and even a functioning
network or two. But something will inevitably break and you’ll need to troubleshoot the
problem. Naturally, you’ll turn up the log level in the suspected Neutron component. If
you’re lucky, there will be an obvious error. If you’re not so lucky, there could be a
problem with the underlying systems that Neutron depends on. Throughout this chapter,
those dependencies and component relations have been explained. In many cases, you’ve
created networks that make use of Linux namespaces, which you might not be used to
working with. Now you’ll work with Linux namespaces to relate the components you
created on the network and systems layers.

Start by looking at the Linux network namespaces on the Neutron node:

This result suggests you should look at the namespace
. Referencing theqrouter-5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9

namespace, you’ll display all network interface adapters:

6.2.9 Relating Linux, OVS, and Neutron

$ sudo ip netns list
qrouter-5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9

sudo ip netns exec qrouter-5d7f2acd-cfc4-41bd-b5be-ba6d8e04f1e9\

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

204

https://forums.manning.com/forums/openstack-in-action

Interface qg-896674d7-52
Interface qr-54f0f944-06

Whether you knew it or not, this feature has been lurking in your Linux distribution
for some time. Notice that the interface has the same addressqg-896674d7-52

range as the Neutron , and the interface PUBLIC_INTERFACE qr-54f0f944-06

has the same range as the Neutron . In fact, these are the routerINTERNAL_INTERFACE

interfaces for their respective networks.

SIDEBAR Working with Linux network namespaces
To work with network namespaces, you must preface each command
with :ip netns <function> <namespace_id>

For more information about , consult the online man pagesip netns

(w h i c h l i s t i t a s “ i p - n e t n s ”) :
.http://man7.org/linux/man-pages/man8/ip-netns.8.html

OK. You have some interfaces in a namespace, and these interfaces are related to the
router interfaces you created earlier in the chapter. At some point, you’ll want to
communicate either between VM instances on OpenStack Neutron networks or with
networks external to OpenStack Neutron. This is where OVS comes in.

Take a look at your OVS instance:

 ifconfig -a

qg-896674d7-52 Link encap:Ethernet HWaddr fa:16:3e:3b:fd:28
inet addr:192.168.2.100 Bcast:192.168.2.255 Mask:255.255.255.0
inet6 addr: fe80::f816:3eff:fe3b:fd28/64 Scope:Link
UP BROADCAST RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:9 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:738 (738.0 B)

qr-54f0f944-06 Link encap:Ethernet HWaddr fa:16:3e:e7:f3:35
inet addr:172.16.0.1 Bcast:172.16.0.255 Mask:255.255.255.0
inet6 addr: fe80::f816:3eff:fee7:f335/64 Scope:Link
UP BROADCAST RUNNING MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:9 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:738 (738.0 B)

sudo ip netns <function> <namespace_id> <command>

$ sudo ovs-vsctl show
 Bridge br-int
...

Port "qr-54f0f944-06"
tag: 1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

205

http://man7.org/linux/man-pages/man8/ip-netns.8.html
https://forums.manning.com/forums/openstack-in-action

Some things have been added to OVS since you last saw it in listing 6.33. Notice that
the interface shows up as on theqr-54f0f944-06 Port "qr-54f0f944-06"

internal bridge, . Likewise, the interface shows up as br-int qg-896674d7-52

 on the external bridge, .Port "qg-896674d7-52" be-ex

What does this mean? The external interface of the router in your configuration is on
the same bridge, , as the physical interface, . This means that the OpenStackbr-ex p2p1

Neutron network will use the physical interface toPUBLIC_NETWORK br-ex

communicate with networks external to OpenStack.
Now that all of the pieces are tied together, you can move on to the next section,

where you can graphically admire your newly created networks.

In chapter 5 you deployed the OpenStack Dashboard. The Dashboard should now be
available at http://<controller address>/horizon.

It’s a good idea to log in at this point to make sure that components are reported in the
Dashboard. Log in as with the password . Once logged in toadmin openstack1

Horizon, select the Admin tab on the left toolbar. Next, click System Info and look under
the Network Agents tab, which should look similar to figure 6.16. If you followed the
instructions in the previous sections, your network should be visible in the Dashboard.

Interface "qr-54f0f944-06"
type: internal

...
 Bridge br-ex

Port br-ex
Interface br-ex

type: internal
Port "p2p1"

Interface "p2p1"
Port "qg-896674d7-52"

Interface "qg-896674d7-52"
type: internal

...

6.2.10 Checking Horizon

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

206

https://forums.manning.com/forums/openstack-in-action

Figure 6.14 Dashboard System Info

Now make sure you’re in the tenant and select the Project tab on the leftadmin

toolbar. Next, click Network and then Network Topology. Your Network Topology
screen should look like figure 6.15.

Figure 6.15 Network topology of PUBLIC/INTERNAL/ADMIN network

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

207

https://forums.manning.com/forums/openstack-in-action

The figure shows your public network, tenant router, and tenant network in relation to
your tenant. If you’ve made it to this screen, you’ve successfully manually deployed your
network node.

A separate physical network interface will be used for VM traffic.
Neutron nodes function as routers and switches.
Open vSwitch can be used to enable advanced switching features on a typical server.
Network routing is included as part of the Linux kernel.
Overlay networks use GRE, VXLAN, and other such tunnels to connect endpoints like
VMs and other Neutron router instances.
OpenStack Networking can be configured to build overlay networks for communication
between VMs on separate hypervisors.
Neutron provides both OSI L2 and L3 services.
Neutron agents can be configured to provide DHCP, Metadata, and other services on
Neutron networks.
Neutron can be configured to use Linux networking namespaces in conjunction with
OVS to provide a fully virtualized network environment.
Internally, all tenants can use the same network IP ranges without conflict, because
they’re separated by using Linux namespaces.
Neutron routers are used to route traffic between internal and external Neutron networks.

6.3 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/openstack-in-action

208

https://forums.manning.com/forums/openstack-in-action

	OpenStack in Action MEAP V14
	Copyright
	Welcome
	Brief Contents
	Chapter 1: Introducing OpenStack
	1.1 What is OpenStack?
	1.2 Understanding cloud computing and OpenStack
	1.2.1 Abstraction and the OpenStack API

	1.3 Relating OpenStack to the computational resources it
 controls
	1.3.1 OpenStack and hypervisors
	1.3.2 OpenStack and network services
	1.3.3 OpenStack and storage
	1.3.4 OpenStack and cloud terminology

	1.4 Introducing OpenStack components
	1.5 History of OpenStack
	1.6 Summary

	Chapter 2: Taking an OpenStack test-drive
	2.1 What is DevStack?
	2.2 Deploying DevStack
	2.2.1 Creating the server
	2.2.2 Preparing the server environment
	2.2.3 Preparing DevStack
	2.2.4 Executing DevStack

	2.3 Using the OpenStack Dashboard
	2.3.1 Overview screen
	2.3.2 Access & Security screen
	2.3.3 Images & Snapshots screen
	2.3.4 Volumes screen
	2.3.5 Instances screen

	2.4 Accessing your first private cloud server
	2.4.1 Assigning a floating IP to an instance
	2.4.2 Permitting network traffic to your floating IP

	2.5 Summary

	Chapter 3: Learning basic OpenStack operations
	3.1 Using the OpenStack CLI
	3.2 Using the OpenStack APIs
	3.3 Tenant model operations
	3.3.1 The tenant model
	3.3.2 Creating tenants, users, and roles
	3.3.3 Tenant networks

	3.4 Quotas
	3.4.1 Tenant quotas
	3.4.2 Tenant-user quotas
	3.4.3 Additional quotas

	3.5 Summary

	Chapter 4: Understanding private cloud building blocks
	4.1 How are OpenStack components related?
	4.1.1 Understanding component communication
	4.1.2 Distributed computing model

	4.2 How is OpenStack related to vendor technologies?
	4.2.1 Using vendor storage systems with OpenStack
	4.2.2 Using vendor network systems with OpenStack

	4.3 Why walk through a manual deployment?
	4.4 Summary

	Chapter 5: Walking through a Controller deployment
	5.1 Deploying controller prerequisites
	5.1.1 Preparing the environment
	5.1.2 Configuring the network interface
	5.1.3 Updating packages
	5.1.4 Installing software dependencies

	5.2 Deploying shared services
	5.2.1 Deploying the Identity Service (Keystone)
	5.2.2 Deploying the Image Service (Glance)

	5.3 Deploying the Block Storage (Cinder) service
	5.3.1 Creating the Cinder data store
	5.3.2 Configuring a Cinder Keystone user
	5.3.3 Creating the Cinder service and endpoint
	5.3.4 Installing Cinder

	5.4 Deploying the Networking (Neutron) service
	5.4.1 Creating the Neutron data store
	5.4.2 Configuring a Neutron Keystone user
	5.4.3 Installing Neutron

	5.5 Deploying the Compute (Nova) service
	5.5.1 Creating the Nova data store
	5.5.2 Configuring a Nova Keystone user
	5.5.3 Assigning a role to the nova user
	5.5.4 Creating the Nova service and endpoint
	5.5.5 Installing the Nova controller

	5.6 Deploying the Dashboard (Horizon) service
	5.6.1 Installing Horizon
	5.6.2 Accessing Horizon
	5.6.3 Debugging Horizon

	5.7 Summary

	Chapter 6: Walking through a Networking deployment
	6.1 Deploying network prerequisites
	6.1.1 Preparing the environment
	6.1.2 Configuring the network interfaces
	6.1.3 Updating packages
	6.1.4 Software and configuration dependencies
	6.1.5 Installing Open vSwitch
	6.1.6 Configuring Open vSwitch

	6.2 Installing Neutron
	6.2.1 Installing Neutron components
	6.2.2 Configuring Neutron
	6.2.3 Configuring the Neutron ML2 plug-in
	6.2.4 Configuring the Neutron L3 agent
	6.2.5 Configuring the Neutron DHCP agent
	6.2.6 Configuring the Neutron Metadata agent
	6.2.7 Restarting and verifying Neutron agents
	6.2.8 Creating Neutron networks
	6.2.9 Relating Linux, OVS, and Neutron
	6.2.10 Checking Horizon

	6.3 Summary

	Chapter 7: Walking through a Block Storage deployment
	7.1 Deploying Block Storage prerequisites
	7.1.1 Preparing the environment
	7.1.2 Configuring the network interface
	7.1.3 Updating packages
	7.1.4 Installing and configuring the Logical Volume
 Manager

	7.2 Deploying Cinder
	7.2.1 Installing Cinder
	7.2.2 Configuring Cinder
	7.2.3 Restarting and verifying the Cinder agents

	7.3 Testing Cinder
	7.3.1 Create a Cinder volume: command line
	7.3.2 Create a Cinder volume: Dashboard

	7.4 Summary

	Chapter 8: Walking through a Compute deployment
	8.1 Deploying Compute prerequisites
	8.1.1 Preparing the environment
	8.1.2 Configuring the network interface
	8.1.3 Updating packages
	8.1.4 Software and configuration dependencies
	8.1.5 Installing Open vSwitch
	8.1.6 Configuring Open vSwitch

	8.2 Installing a hypervisor
	8.2.1 Verifying your host as a hypervisor platform
	8.2.2 Using KVM

	8.3 Installing Neutron on Compute nodes
	8.3.1 Installing the Neutron software
	8.3.2 Configuring Neutron
	8.3.3 Configuring the Neutron ML2 plug-in

	8.4 Installing Nova on compute nodes
	8.4.1 Installing the Nova software
	8.4.2 Configuring core Nova components
	8.4.3 Checking Horizon

	8.5 Testing Nova
	8.5.1 Creating an instance (VM): command line

	8.6 Summary

	Chapter 9: Architecting your OpenStack
	9.1 Replacement of existing virtual server platforms
	9.1.1 Making deployment choices
	9.1.2 What kind of network are you?
	9.1.3 What type of storage are you?
	9.1.4 What kind of server are you?

	9.2 Why build a private cloud?
	9.2.1 Public cloud economy-of-scale myth
	9.2.2 Global scale or tight control
	9.2.3 Keeping data gravity private
	9.2.4 Hybrid moments

	9.3 Building a private cloud
	9.3.1 OpenStack deployment tools
	9.3.2 Networking in your private cloud
	9.3.3 Storage in your private cloud

	9.4 Summary

	Chapter 10: Deploying Ceph
	10.1 Preparing Ceph nodes
	10.1.1 Node authentication and authorization
	10.1.2 Deploying Ceph software

	10.2 Creating a Ceph cluster
	10.2.1 Creating the initial configuration
	10.2.2 Deploying Ceph software
	10.2.3 Deploying the initial configuration

	10.3 Adding OSD resources
	10.3.1 Readying OSD devices
	10.3.2 Creating OSDs

	10.4 Basic Ceph operations
	10.4.1 Ceph pools
	10.4.2 Benchmarking a Ceph cluster

	10.5 Summary

	Chapter 11: Automated HA OpenStack deployment with Fuel
	11.1 Preparing your environment
	11.1.1 Network hardware
	11.1.2 Server hardware

	11.2 Deploying Fuel
	11.2.1 Installing Fuel

	11.3 Web-based basic Fuel OpenStack deployment
	11.3.1 Server discovery
	11.3.2 Creating a Fuel deployment environment
	11.3.3 Configuring the network for the environment
	11.3.4 Allocating hosts to your environment
	11.3.5 Final settings and verification
	11.3.6 Deploying changes

	11.4 Summary

	Chapter 12: Cloud orchestration using OpenStack
	12.1 OpenStack Heat
	12.1.1 Heat templates
	12.1.2 A Heat demonstration

	12.2 Ubuntu Juju
	12.2.1 Preparing OpenStack for Juju
	12.2.2 Installing Juju
	12.2.3 Deploying the charms CLI
	12.2.4 Deploying the Juju GUI

	12.3 Summary

	Appendix A: Installing Linux
	A.1 Getting started
	A.2 Initial configuration
	A.3 Network configuration
	A.3.1 Manually configuring the adapter
	A.3.2 Configuring host and domain names

	A.4 User configuration
	A.5 Disks and partitions
	A.5.1 Configuring the block device (hard drive)
	A.5.2 Configuring root and swap partitions and mount
 points
	A.5.3 Finalizing the disk configuration

	A.6 Base system configuration

