
Oracle-Regular / Oracle Database 11g Release 2 High Availability / Jesse et al / 208-0 / Chapter 1 
Blind folio: 1

Part
I

Oracle’s Grid 
Infrastructure

ChaPter
1

1

ch01.indd   1 2/28/11   11:50:06 AM



Oracle-Regular / Oracle Database 11g Release 2 High Availability / Jesse et al / 208-0 / Chapter 1 
Blind folio: 3

ChaPter
1

Architecting the Oracle 
Database Grid

3

ch01.indd   3 2/28/11   11:50:07 AM



Oracle-Regular / Oracle Database 11g Release 2 High Availability / Jesse et al / 208-0 / Chapter 1 Oracle-Regular / Oracle Database 11g Release 2 High Availability / Jesse et al / 208-0 / Chapter 1

4 Oracle Database 11g Release 2 High Availability

Oracle-Regular / Oracle Database 11g Release 2 High Availability / Jesse et al / 208-0 / Chapter 1 Oracle-Regular / Oracle Database 11g Release 2 High Availability / Jesse et al / 208-0 / Chapter 1

Chapter 1: Architecting the Oracle Database Grid 5

s you have already discovered, or perhaps are about to discover, 
maintaining the Maximum Availability database is a tricky prospect. 
Hundreds of possible sources of downtime are hiding in the nooks and 
crannies of your enterprise. Outage situations cascade into catastrophes, 
as an attempt to resolve a problem creates another outage and quickly 

spirals out of control. But with careful planning or swift corrective action, almost all 
downtime scenarios can be prevented.

This book discusses numerous technologies that can prevent or drastically reduce 
a variety of database outages. What are these downtime scenarios? Which possible 
outages can you protect yourself against? The fact is that the Maximum Availability 
DBA lives by Murphy’s Law: “Anything that can go wrong, will go wrong.” Pure and 
simple. So to survive as a DBA, you must live by this maxim. Not only do you have 
to prepare for every eventuality—you have to expect it. Simply hoping that bad 
things or extreme scenarios will not happen is courting disaster. Putting things off 
with the mindset that things are working well so far is courting disaster. It is okay for 
you to hope for the best, but it is imperative that you plan for the worst, and this is 
never more true than in your role as a Maximum Availability DBA.

As discussed in the introduction to this tome, database availability is not defined by 
the database administrator; it is defined by the perception of the business—the users 
who expect the data they need to be accessible at the touch of a button. To illustrate 
the various types of situations that threaten the availability of your database, this 
chapter will walk through the planning stages of setting up a database grid meant  
to insulate the business and these end users from various types of problems that can 
ultimately cause data to be inaccessible, for whatever reasons. We will discuss different 
types of outages and the particular technologies you can use to protect against these 
problems, and we’ll point you to the specific chapter in this book where the 
implementation of a particular technology is covered in detail.

LunarTrax: To the Moon and Beyond!
For the situations in this chapter, and for the workshops and examples throughout the 
book, we will use the database from the company LunarTrax, Inc., a fictitious startup 
company whose ambitious goal is to provide tourism to the moon. This company’s 
primary databases hold several terabytes of data—everything from flight data, to solar 
flare forecast information, to marketing data for potential target customers, in addition 
to data used for internal accounting and human resources (HR).

The lead DBA and architect, Maximus Aurelias Anthony (known as Max to his 
friends), is a veteran of 1000 psychic wars and is taking no chances with the uptime 
and availability of his system. To ensure that the environment is as easily managed 
as possible, Max has implemented a consolidation strategy that reduces the original 
number of planned databases to a finite number. Once this strategy is implemented, 
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the primary production databases will include one database for customer-facing data 
(external customers) and one for internal data/internal customers. This consolidation 
strategy greatly reduces costs, both from an initial investment standpoint and from a 
maintenance standpoint. However, from a database standpoint, it essentially puts all 
of the company’s eggs into just two baskets. Therefore, along with this consolidation 
strategy, it is essential that Max put in place an infrastructure that will guard these 
“eggs” according to their true value.

As a veteran of many years in the DBA world, including some time spent in 
the technical support arena, Max is well aware of the potential for disaster from 
all corners. To combat this, he is determined to implement a database grid with 
complete redundancy and the ability either to avoid or quickly recover from any of 
the common (and less common) pitfalls that can afflict a database and ultimately 
impact the business.

Planning the Grid
In planning for his database grid, Max must account for several areas to ensure that 
the business continues to run smoothly and is not impacted by database operations 
or failures. Max believes it is imperative that the environment be set up so that 
planned maintenance activities occur on an ongoing basis, while minimizing the 
impact to the business. Planned maintenance is crucial, because technology never 
stands still. In particular, in this competitive industry, the ability to stay one step 
ahead of the competition often depends on the best use of the latest technology. 
Therefore, having the flexibility to upgrade systems, both from a hardware and 
software perspective, is a key component to Max’s database grid.

Max is also keenly aware of the fact that component failures occur. This is just a 
fact of life. Hardware in particular has a finite lifespan—moving parts can continue 
moving for only so long before they give out. Whether a lower-cost commodity 
hardware solution or a so-called high-end hardware solution is used, the reality is 
that at some point, a component is going to fail.

In addition to hardware failures are the inevitable software failures that must be 
anticipated. Whether a software failure occurs because of a design limitation or some 
unintentional flaw (aka a software bug), the chances of encountering a software failure 
of some type are a practical guarantee. Failure to plan for this inevitability is nothing 
short of a plan to fail.

Perhaps more concerning to Max than the inevitable component or software failure 
is the unpredictability of his users. As any good DBA will attest, Max would feel most 
secure if no users were allowed into the database at all. Unfortunately, that would 
defeat its purpose. So, like a father turning over the car keys to his teenage daughter for 
the first time, Max has to accept the fact that at some point, he will need to turn over at 
least some of the keys to the database to his end user population. When that happens, 
any number of things could potentially go wrong. He knows that the database grid at 
LunarTrax must have resiliency to withstand and recover from user errors.
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Another priority for Max is having the ability to expand in the future. As a startup 
in a new industry, LunarTrax has high hopes for a bright future, but a shoestring 
budget in the present. Therefore, Max must build in the ability to expand his database 
grid in the future to meet the anticipated increase in demand that will arrive with the 
success of this endeavor—but this future expansion cannot be allowed to impact the 
current systems.

Finally, Max realizes that his primary responsibility is to prepare for the worst-case 
scenario—total disaster. Whether something as simple as a cut utility line causing loss 
of power to the data center, or something as catastrophic as a flood that leaves your 
data center under three feet of water, disasters can break a business. Protecting against 
disasters of this type is vital, and Max knows that he must ensure that his database grid 
can withstand the extended loss of the primary data center. His plans must account 
for both failover and failback strategies in such a situation.

This chapter discusses various aspects of the grid from a theoretical perspective 
and lays the groundwork for the rest of the book, which delves into the specifics of 
Oracle technology and how it addresses many important concerns.

The Grid and Planned Maintenance
Max is keen on ensuring that his company, and specifically his corporate database 
infrastructure, can stay up-to-date with the latest hardware and software maintenance 
releases. From a database perspective, this means he must develop a strategy for 
maintaining the software. 

His first step is regular, proactive application of patchsets and patchset updates 
(PSUs), but in the longer term, he must plan for database upgrades in a timely fashion. 
But he has other aspects to think about as well. Operating system maintenance must be 
considered—including both the patching and upgrading of the operating system, plus 
any third-party software and applications. Max knows from experience (particularly 
from his days in technical support), that these activities are too often avoided and 
postponed rather than embraced. In many IT departments, patching and other types  
of maintenance are not always viewed as part of the expected routine for a DBA, but 
something to be avoided at all costs until it is forced on the DBA by a crisis. In these 
situations, the lack of system upkeep is either the direct cause of the crisis or, at a 
minimum, it can become an insurmountable hurdle in diagnosing and resolving the 
issue. What subsequently occurs is a “fire drill,” in which the DBA is forced to 
perform necessary maintenance in the middle of a crisis, without proper planning 
and preparation. This lack of planning and preparation can easily make things worse, 
even though the measures are required to resolve the primary issue. Avoiding these 
“fire drills” is a crucial component of Max’s MAA strategy.

In addition to the software maintenance, the DBA must be able to update system 
hardware—whether that means adding components such as CPU or memory  
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or implementing firmware or BIOS changes. In extreme cases, entire servers may 
need to be switched out, whether due to failure or simple obsolescence. 

Based on past experience, Max is determined to embrace the maintenance of his 
environment aggressively. His plans are to incorporate the upkeep of all components 
of his database grid into the daily routine of his DBA staff. Even though many of these 
activities may not occur until well into the future, he knows that proper planning  
in the early stages can ensure that these future activities can be undertaken with 
minimal impact on the business, and the end result of this is an environment that can 
be sustained and healthy for the long term.

Oracle Technologies: Reducing the  
Impact of Maintenance
In terms of long-term planning, you have a few choices from an Oracle technology 
perspective that will help you keep up with the technology with minimal impact to 
your operations. This book focuses on two of the major technologies in this respect—
Oracle Real Application Clusters (Oracle RAC) and Oracle Data Guard.

Oracle RAC and Planned Maintenance
We begin with a discussion of Oracle RAC. Oracle RAC is an Oracle feature based 
on clustering technology which provides simultaneous access to the database from 
every active node. This simultaneous access from live nodes is known as a “shared 
everything” architecture. Having “shared everything” access to your database from 
multiple nodes (servers), which is what Oracle RAC provides, is in many ways a 
boon to your database maintenance. You can apply many individual patches to the 
Oracle Database itself, including PSUs, in a rolling fashion by applying each patch 
to one node at a time. This lets you take advantage of the most critical short-term 
fixes without users losing access to the database.

In addition to database patches, Oracle RAC also lets you patch and even 
upgrade your operating system in a rolling fashion without incurring downtime. 
Whether you are applying a service pack (from RH4 U6 to RH4 U7, for example)  
or performing an actual operating system upgrade (such as an upgrade from Oracle 
Enterprise Linux, OEL 4 to OEL 5), it is possible to do this on a single node at a time 
in your Oracle RAC Cluster, without ever having to incur a full outage. Because of 
this (among other reasons), Max has chosen Oracle RAC to be a central component 
of the database grid at LunarTrax.

From a hardware perspective, implementing Oracle RAC also allows hardware 
maintenance to occur in a rolling fashion. Changes to BIOS or firmware can usually 
occur one node at a time, as well as replacement of individual components, either 
because of failure or due to an upgrade. Oracle RAC and patching specifics are 
covered in Chapters 6 and 7.
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Oracle Data Guard and Planned Maintenance
Although Oracle RAC is clearly a central tenet of the database grid, it is not the 
be-all, end-all solution to every potential need. Applying patchsets to the Oracle 
Database or upgrading the database from one major release to another cannot be 
done in a rolling fashion with Oracle RAC alone. However, by combining Oracle 
RAC with Oracle Data Guard, you can achieve these upgrades in a rolling fashion 
with minimal downtime. 

Converting a physical standby database to a logical standby allows you to perform 
the upgrade on the logical standby while logs are still being applied from the primary 
(where the business is still happily chugging away using the older release). After the 
upgrade of the logical standby, users can be migrated to the newly upgraded system 
with minimal impact, and the original primary can then be upgraded—again, while 
log files are moving between the two sites and everything is still synchronized. After 
users have migrated, the original primary system can be upgraded, and users (the 
business) can be switched back following the same process—all with minimal, if  
any, impact. 

Therefore, Oracle Data Guard is another key component in Max’s database grid 
strategy for LunarTrax. Oracle RAC and Oracle Data Guard combined allow Max 
the flexibility to perform ongoing maintenance of his environment, with minimal 
impact to the business. Specifics of implementing Oracle Data Guard are discussed 
in more detail in Chapters 9 and 12.

Additional Oracle Technologies
In addition to Oracle RAC and Oracle Data Guard, Max has evaluated technologies 
such as Oracle Streams and Oracle GoldenGate to solidify his database grid. Because 
Max has chosen to defer implementation of these technologies for later, we will not 
discuss them in this book but will include them in future editions as appropriate.

Recovering Quickly from Failures
Max’s strategy of aggressively embracing and being proactive with maintenance will 
undoubtedly pay dividends by avoiding problems in the future. However, no one at 
LunarTrax is naive enough to assume that all problems will be avoided. No matter how 
diligent the LunarTrax DBA team is with patching, the possibility of encountering a bug 
in the software stack always exists, particularly because LunarTrax is intentionally 
pushing the boundaries of technology. And of course, as mentioned earlier, hardware 
component failures are a fact of life that cannot be avoided no matter how much 
you patch the software stack. Max hopes to eliminate downtime due to hardware 
component failures by ensuring redundancy throughout the system. This includes 
redundant network cards (network interface card [NIC] bonding), redundant disk 
access cards (multipathing), redundant storage (RAID), and even redundant servers 
(Oracle RAC).
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In addition to this redundancy, a solid backup (and restore) strategy is imperative 
for any DBA. We’d like to say that this goes without saying, but Murphy’s Law tells us 
to take nothing for granted. No matter how much redundancy exists in the system, data 
corruption or data loss can occur—so backups, as always, are a crucial component to 
any database grid.

Oracle Technologies at Play
To achieve the desired redundancy necessary to recover quickly from software failures 
or component failures, Max wants to ensure that he is using the best technology for his 
specific purposes. He is well aware that when it comes to backups, he has a plethora 
of options from which to choose. As an Oracle veteran, Max harkens back to the days 
of a database backup being as simple as an OS copy of a few gigabytes’ worth of files 
while the database was shut down. But in the real world, with terabytes’ worth of data, 
OS file copies no longer cut the mustard. Let’s explore the Oracle technologies Max 
needs to achieve his goals.

Again with Oracle RAC
Clearly, Oracle RAC, with its shared everything architecture, is a key component to 
a redundant architecture. Any failure affecting an individual server’s ability to function 
properly will not impact the entire database, because other nodes in the cluster will 
be able to continue the work seamlessly, even if an entire node is lost. Although other 
technologies such as Oracle Data Guard or Streams can achieve the same goal, they 
do so by keeping copies of the data in separate and distinct databases. This, however, 
implies a time delay in reacting to and recovering from relatively simple failures. Only 
Oracle RAC can provide this redundant access to the same database, so that even in 
an extreme case such as the complete failure of a node in your cluster, other nodes 
are up and running and actively accessing the same database even in the midst of the 
server failure. The remaining instances will automatically perform instance recovery 
for the instance that crashed, and any sessions that were connected to the downed 
server will be able to reconnect immediately to another instance that is already 
actively accessing the database.

Oracle Clusterware
The Oracle Clusterware component of Oracle’s grid infrastructure is a necessary 
underpinning of an Oracle RAC Database. In addition to facilitating shared access 
to the actual database, Oracle Clusterware offers the benefit of monitoring for 
failures of critical processes such as instances, listeners, virtual IP addresses and the 
like, as well as monitoring node membership and responsiveness. When the Oracle 
Clusterware stack detects a failure of a critical component of the cluster, corrective 
action is taken automatically to restart the failed resource, up to and including the 
node itself. This architecture allows Max to meet his goal of recovering quickly from 
localized and relatively minor failures without impacting the business.
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Oracle Recovery Manager (RMAN)
With respect to backups, too much is never enough. Max has determined that 
regular data pump exports will occur, but since a data pump export is only a point-
in-time backup, his Oracle RMAN backup strategy is key to success. Because he 
will also be using Automatic Storage Management (ASM), the RMAN strategy is 
doubly important. RMAN allows you to take full or incremental backups, and lets 
you restore and recover as little as a single database block. Max knows that this 
type of flexibility in terms of backup and recovery is integral to maximizing the 
availability of the LunarTrax databases.

Flashback Database
Finally, Max decided early on to enable Flashback Database in all the environments. 
In days gone by, Max often found that he needed to perform an entire database 
restore to recover up to the time just prior to the occurrence of some critical error 
(such as an inadvertent deletion of data, some other logical corruption, or corruption 
of an online redo log). However, with the advent of Flashback Database, he knows 
now that he can alleviate the need to do this by essentially storing all of the blocks 
necessary both to redo and undo transactions for a specified period of time. This 
means that Max can do a “rewind” of the database without first doing a full restore, 
potentially saving immeasurable time in a crisis. Flashback Database and RMAN are 
discussed in more detail in Chapters 10 and 11.

Protecting Against and  
Recovering from User Errors
Speaking of inadvertently deleting data, the thing that most often keeps Max awake  
at night is the possibility of user errors causing data loss. Perhaps the most difficult 
outage situations are those tricky logical errors introduced by the users themselves—a 
user updates the wrong table or updates the wrong values, a developer thinks she is 
logged into the test system but is actually logged into the production system, or a user 
omits the where clause on a delete or update statement and 100,000 rows vanish or 
are logically corrupted. Max has been around long enough to see these problems 
happen over and over again—when months of work go down the drain.

This is a concern for Max particularly in the LunarTrax environment, where 
everyone works at a frenetic pace, and the company is not yet large enough to have 
clear lines of demarcation between production, development, and test environments. 
Max wants to be able to restrict access altogether to the production environments, 
but with the company’s small development staff, and the rate at which changes are 
pushed through, this is just not practical.
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Oracle Technology Checkpoint: Flashback Query 
and Flashback Table
Fortunately, the flashback features allowing recovery from serious errors are built 
into the database. The Flashback Query feature allows undo data stored in the Undo 
Tablespace to be read so that the DBA or anyone with appropriate access can “go 
back in time” and query the data as it existed before the incident. The Flashback 
Table feature also allows quick recovery if a table is inadvertently dropped, by 
maintaining a recycle bin, whereby dropped objects are essentially renamed and 
stored until space is needed. Max needs to ensure that enough storage exists to 
retain a sufficient amount of available undo, and a sufficient amount of free space 
must be available in user tablespaces to allow for upkeep of the recycle bin.

Beyond that, it is a matter of educating the developers and other users about the 
capabilities of Oracle Flashback technologies. The key is catching errors quickly—so 
full disclosure is important. Flashback technologies rely on data storage, and storage 
resources are not infinite. As long as errors are uncovered within a reasonable time 
period, Max and his DBA staff should be able to quickly recapture this type of data, 
and in some cases, the developers or users may be able to correct their own mistakes.

Again with the Flashback Database
Sometimes, however, serious database errors are tough to overcome. Typically, 
user errors do not occur in a vacuum, and an erroneous update can occur 
alongside hundreds of correct updates. Pretty soon, the bad data is buried by 
thousands of additional updates. How can you find just one of those transactions 
among thousands? Can you “rewind” the entire database back to a previous point 
in time? The answer is yes. Flashback Database is an important feature in Max’s 
Maximum Availability Architecture (MAA) plans for the LunarTrax environment, 
and it can in fact “rewind” the database to allow for “do-overs.” So in extreme 
cases, when Flashback Query is not enough, Flashback Database can help the 
MAA DBA retain his or her sanity in a world gone mad. Oracle Flashback features 
are covered in detail in Chapter 11.

Planning for Expansion  
and Future Growth
A key component in Max’s Oracle database grid is the ability to grow the grid as 
LunarTrax grows. Max intends to budget as much as possible toward ensuring that  
a solid foundation is in place for development, testing, and quality assurance (QA) 
environments, as well as the production grid—but he knows his budget can’t 
accommodate all of the planned capacity immediately. He hopes that, once the first 
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launches get off the ground, more money will be available for hardware, just in time 
for the expansion that LunarTrax will need in its database grid. Max knows that he still 
needs to plan now, however, for that future growth. And as the requirements for the 
grid expand and the grid grows, that growth cannot be allowed to have a detrimental 
impact on the current operations—it must be as seamless and transparent as possible.

Oracle Technology: Automatic  
Storage Management
Technologies such as ASM and Oracle RAC play pivotal roles. By implementing ASM 
from the outset, Max will have the flexibility to grow his storage easily in the future, 
without the need to bring down operations. Because ASM allows both the addition 
and removal of disks as needed, Max can even remove/replace storage that becomes 
outdated in the future, again without impacting the day-to-day operations of the 
database, since this can all be accomplished online.

ASM also allows striping across all available disks; this means Max does not 
have to invest costly resources in determining manual file system layouts. In the 
past, Max had to spend time determining where the I/O hot spots were as part of 
his regular tuning; then he had to move files to different file systems on different 
disks to achieve the I/O performance necessary for his operations. With ASM, this 
is not necessary, because not only are all files automatically striped across all 
available disks, but “hot blocks” are also automatically moved to the “sweet spot” 
on the disk, to improve seek times. ASM is discussed in more detail in Chapter 5.

Again with the Oracle Clusterware
Beyond storage, capacity at LunarTrax may need to grow as well, with the addition 
of servers to provide more CPU, memory resources, or networking resources to  
the business. Business needs often cycle over time: users may find the database 
completely accessible, but when activity in some areas increases, resources may 
become restricted. Max anticipates that the database for internal customers will 
experience problems at the beginning of each month, when accounts receivable 
(AR) must close out the preceding month’s accounts and run massive reports on the 
status of all opening and closing accounts. This month-end requirement sends the 
database processing needs of the AR department through the roof—but only for  
a week or so, and then it settles back into a more routine usage pattern. At the 
same time, HR typically finds its peaks near the middle and end of the month, as 
it processes employee hours, salaries, and payments. 

By implementing Oracle Clusterware, which is part of Oracle’s 11g Release 2 grid 
infrastructure stack, LunarTrax will be able to create server pools, which allow for  
the transition of servers between different grids depending on demand. In addition, 
instances from different databases can be allocated to run on more or fewer servers 
within the grid, as needed. In the future, if the total number of servers needs to be 
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expanded due to an overall increase in demand, a new server can be added and  
the overall capacity of the grid can be expanded easily. By the same token, if older 
servers need to be retired or reallocated to new environments, this can be just as 
easily accomplished without impacting end users. This can all occur without taking 
the database offline, by adding nodes to or removing nodes from a cluster while the 
business continues to function as usual. Oracle’s grid infrastructure and server pools 
are discussed in detail in Chapters 3 and 4.

Disaster Recovery
The next item on the agenda for Max and the LunarTrax staff is to plan for the 
ultimate: some type of disaster that renders the data center inoperable. During his 
time as a DBA and as a support tech, Max was exposed to all manners of issues that 
rendered an entire system (and in some cases, an entire data center) inoperable. 
These issues ranged from a simple power outage that extended beyond the capacity 
of the UPS, to full-blown flooding of the data center. Of course, hurricanes, 
earthquakes, and other natural disasters do occur, and the potential for terrorist 
attacks or sabotage is omnipresent. But a catastrophe in the data center itself is not 
always the cause of these disasters. Max recalls a scenario in which an inadvertent 
overwrite by the systems administrator of all the shared disks in a system rendered it 
completely useless. Although this did not impact the data center itself, the fact that 
Max’s company had a disaster recovery site available for switchover, meant they 
were able to quickly recover from this type of error and keep the business going, 
saving several hours of downtime and countless thousands of dollars.

Oracle Technology: Oracle Data Guard
Based on their experience, Max and the LunarTrax crack staff have determined that 
an Oracle Data Guard environment should exist in two geographically separate 
locations. Given LunarTrax’s plans to promote space tourism, Max intends to be the 
first person to implement a lunar Oracle Data Guard environment, but that is a long-
term plan, dependent on some networking improvements. Near-term, the intent is to 
achieve geographic separation of at least 500 miles. 

The LunarTrax DBA and networking teams have scouted appropriate terrestrial  
sites for a secondary data center to house their Oracle Data Guard environment. Given 
that their headquarters and primary data center are located in areas susceptible to 
hurricanes, they ultimately settled on the foothills of Colorado as an ideal secondary 
site, realizing that hurricanes, earthquakes, and other such natural phenomenon are 
relatively rare in Colorado. Nevertheless, the cautious nature of the DBA has induced 
the team to scout out tertiary sites as well, not necessarily to create cascaded standby 
sites, but to take advantage of the ability to sync up multiple standbys to a single 
primary. One site will have a delay implemented in the application of the logs to 
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provide some lag time in synchronization. This will allow Max and the team time to 
intercept any unwanted changes in the redo stream before they are applied to the 
tertiary site, preventing the propagation of any logical corruptions to all sites, should  
it occur.

Not wanting to tie up all this hardware in waiting for the unlikely (but inevitable) 
need to use it, Max wants to maximize utility as well as availability. Therefore, the 
intent of the LunarTrax secondary and tertiary DR sites will be to run a combination 
of Oracle Active Data Guard and Logical Standby to allow access to these systems 
for reporting purposes. This additional capacity will allow Max to justify the expense 
of maintaining the disaster recovery systems beyond simple standby resources. 
Oracle Data Guard, Oracle Active Data Guard, and Oracle Logical Data Guard 
are discussed in more detail in Chapters 9 and 12.

What Next?
“What next?” is a question often asked by DBAs in the midst of a crisis. In this context, 
though, this is a good thing. Here it means: What’s next in terms of the proactive work 
that must be undertaken to keep data available to the business? In this case, you are in 
control of the next step, rather than having events control you. After the architectural 
foundation is created for the database grid, testing and implementation can begin.

Test, Test, and Test Some More
Crucial to your success in planning for the worst is your ability to react quickly to 
different types of problems. In many cases, Oracle has automated the responses—
but sometimes, even when automation is possible, the DBA prefers to leave those 
decisions in the hands of humans as opposed to machines. 

Testing should not only encompass functional testing, but it should cover 
processes and procedures for reacting to certain situations. This ensures that you and 
your staff have the practice and expertise necessary not only to know what the correct 
decisions are, but also to be able to execute those decisions flawlessly and efficiently. 
In addition, it is crucial that test environments mimic production as closely as possible. 
A three-node Oracle RAC cluster in your production environment with a single-
instance test environment is not going to allow you to test all aspects of the production 
environment. By the same token, having a production environment with Oracle Data 
Guard, and a testing or development environment without Oracle Data Guard, will 
also leave you wanting in terms of the ability to test real-life scenarios that could 
impact your production environment.

A DBA with the best of plans and a perfect understanding of the theory of a 
technology can still lack practical experience, that only testing and trial by fire can 
provide. Even if decisions are automated to a certain extent, testing is still crucial at 
all stages. Automation relies on software written by humans, and because humans 
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have flaws, software has flaws. Couple this with a lack of practical experience and 
even the best theoretical systems can fail to live up to their expectations.

Test the Redundancy of Your Environment by Inducing Failures
As you know, when running Oracle’s grid infrastructure and Oracle RAC, one of the 
primary goals is to achieve redundancy of various different hardware and software 
components. In many cases, recovery from certain failures is automated. But to be 
sure that redundancy works when needed and as expected, testing is a must. Testing 
uncovers configuration issues and defects that may cause the stack to fail to work  
as expected. If you have redundant network cards (aka bonding, or IP network 
multipathing [IPMP]), you can expect that if one card fails, the bonded pair will 
continue to act as one. By the same token, if you have enabled multipathing to your 
storage, how do you know that if one path fails, the other path will continue to 
provide unhindered access to your storage? You cannot just take this on faith. The 
answer is to test the environment. If you expect the system to recover from a failure 
automatically, testing by inducing failures prior to going into production will ensure 
that the system will perform as expected, or else allow you the opportunity to 
uncover configuration issues or software defects that prevent the stack from working 
as expected.

Test Your Backups by Restoring
In addition to testing the automated features of a clustered environment, you need 
to test the manual processes as well. In Max’s time as a DBA and technical support 
specialist, he often encountered other DBAs who were adept at backing up their 
databases but had never practiced a restore or a recover operation. When something 
went wrong, and a restore was needed, they’d call Max. Even though he was happy 
to assist, the fact is that this cost time. 

But what if this lack of experience costs you more than just time? If a restore and 
recovery have never been tested, how do you know it will work as expected? The 
middle of a crisis is not the time to find out that your backups were incorrectly 
configured, and now you need to do a full restore with only half of your files in the 
backup set. The middle of a crisis is not the time to learn that you don’t have access 
to the tapes where your backups are stored. The middle of a crisis is not the time to 
find out that your database exports will actually take seven hours to import back in.

Max knows that the only way to ensure that a backup is successful is to restore 
that backup regularly to a test location. And the only way to know how long it will 
take to recover is to test it and measure it. It is not enough just to test prior to going 
into production, either. Things change in the production environment: the amount 
of data increases, the environment changes, and the situation changes. Even the 
people change. Regular testing not only validates the backup itself, but also the 
process. 
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Testing ensures that the DBAs on Max’s team are skilled and practiced at restore 
and recovery operations, and when a crisis does occur, he can be confident that  
the necessary data will be available and the reaction to the crisis will be second 
nature. Furthermore, multiple solutions to a particular problem are often available. 
Some situations may call for using Flashback Database, while other situations call for 
a partial restore or perhaps a full restore. In other scenarios, Data Pump may be the 
most desirable solution. Knowing how long certain operations will take will allow you 
to make the correct decision as to which operation should be performed to keep the 
business up and running or to get it back online as quickly as possible.

Test Your Disaster Recovery by Switching to the DR Site
Beyond testing of backups, you need to test your disaster recovery scenario. The 
middle of a crisis is not the time to realize that you are unsure of the steps necessary 
to perform a switchover or failover. The middle of a crisis is not the time to find out 
that firewall issues exist between your application servers and the DR site on which 
the database is running. The middle of a crisis is not the time to realize that your 
network dropped a log file three weeks ago, and now your Oracle Data Guard 
environment is out of sync!

Max’s database grid architecture is accompanied by test plans that include 
regular monitoring, regular testing of database backups by restoring to test systems 
from the production backup sets, and also regular switchovers of the production 
environment. Max intends to perform a planned switchover and switchback of the 
production environment between the primary site and the DR site at least twice  
per year, even after the production phase begins, to ensure that the necessary 
functionality is available when it is needed.

Sandbox Environments
So what exactly is meant by the “production system” anyway? “Production down” 
no longer means only the production system is affected. If a staff of testers or 
developers are idle while waiting on a “development” environment, then whenever 
that environment is down, it is costing the business money. Therefore, caution 
needs to be used even in these “lower environments” when introducing changes 
that might impact the productivity of any of your staff. A sandbox environment can 
be created to test basic patches and other scenarios that might impact any user 
base. A sandbox system does not necessarily need to be an identical copy of the 
production environment, but a system that can be used at will by the DBA staff is 
something that many businesses cannot afford to do without. It allows quick and 
immediate access to a production-like environment, where some basic sanity 
testing—such as checking for patch conflicts—can occur without impacting any 
users in the environment.
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Go Forth and Conquer
The downtime scenarios illustrated in this chapter are the tip of the iceberg. You  
can see that many common, everyday situations can be fixed using the functionality 
provided by the full Oracle stack. In most cases, with Oracle Database 11g Release 2, 
this functionality is at your fingertips and you can leverage it immediately, with just a 
few steps outlined in the chapters that follow. Remember that planning, preparation, 
and testing are important to ensure that you are prepared to take advantage of the 
Oracle database grid to the full extent of its capabilities. 

Now that we’ve explored a few of the situations that might cause angst for the 
MAA DBA, let’s roll up our sleeves and dig into the technologies available to prevent 
(or significantly reduce) these disruptions. The ensuing chapters will provide the 
technical details you need to build your own database grid from the ground up. Go 
forth and conquer!
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