


The Practice of System and
Network Administration

Volume 1

Third Edition



The Practice of
System and

Network Administration

DevOps and Other Best Practices
for Enterprise IT

Volume 1

Third Edition

Thomas A. Limoncelli
Christina J. Hogan
Strata R. Chalup

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo



Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Catalog Number: 2016946362

Copyright © 2017 Thomas A. Limoncelli, Christina J. Lear née Hogan, Virtual.NET Inc., Lumeta
Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department, please
visit www.pearsoned.com/permissions/.

Page 4 excerpt: “Noël,” Season 2 Episode 10. The West Wing. Directed by Thomas Schlamme. Teleplay
by Aaron Sorkin. Story by Peter Parnell. Scene performed by John Spencer and BradleyWhitford. Orig-
inal broadcast December 20, 2000. Warner Brothers Burbank Studios, Burbank, CA. Aaron Sorkin, John
Wells Production, Warner Brothers Television, NBC © 2000. Broadcast television.

Chapter 26 photos © 2017 Christina J. Lear née Hogan.

ISBN-13: 978-0-321-91916-8
ISBN-10: 0-321-91916-5

4 17

http://www.pearsoned.com/permissions/
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://www.informit.com/aw


Contents at a Glance

Contents ix

Preface xxxix

Acknowledgments xlvii

About the Authors li

Part I Game-Changing Strategies 1
Chapter 1 Climbing Out of the Hole 3
Chapter 2 The Small Batches Principle 23
Chapter 3 Pets and Cattle 37
Chapter 4 Infrastructure as Code 55

Part II Workstation Fleet Management 77
Chapter 5 Workstation Architecture 79
Chapter 6 Workstation Hardware Strategies 101
Chapter 7 Workstation Software Life Cycle 117
Chapter 8 OS Installation Strategies 137
Chapter 9 Workstation Service Definition 157
Chapter 10 Workstation Fleet Logistics 173
Chapter 11 Workstation Standardization 191
Chapter 12 Onboarding 201

Part III Servers 219
Chapter 13 Server Hardware Strategies 221

v



vi Contents at a Glance

Chapter 14 Server Hardware Features 245
Chapter 15 Server Hardware Specifications 265

Part IV Services 281
Chapter 16 Service Requirements 283
Chapter 17 Service Planning and Engineering 305
Chapter 18 Service Resiliency and Performance Patterns 321
Chapter 19 Service Launch: Fundamentals 335
Chapter 20 Service Launch: DevOps 353
Chapter 21 Service Conversions 373
Chapter 22 Disaster Recovery and Data Integrity 387

Part V Infrastructure 397
Chapter 23 Network Architecture 399
Chapter 24 Network Operations 431
Chapter 25 Datacenters Overview 449
Chapter 26 Running a Datacenter 459

Part VI Helpdesks and Support 483
Chapter 27 Customer Support 485
Chapter 28 Handling an Incident Report 505
Chapter 29 Debugging 529
Chapter 30 Fixing Things Once 541
Chapter 31 Documentation 551

Part VII Change Processes 565
Chapter 32 Change Management 567
Chapter 33 Server Upgrades 587
Chapter 34 Maintenance Windows 611
Chapter 35 Centralization Overview 639
Chapter 36 Centralization Recommendations 645
Chapter 37 Centralizing a Service 659

Part VIII Service Recommendations 669
Chapter 38 Service Monitoring 671
Chapter 39 Namespaces 693
Chapter 40 Nameservices 711
Chapter 41 Email Service 729



Contents at a Glance vii

Chapter 42 Print Service 749
Chapter 43 Data Storage 759
Chapter 44 Backup and Restore 793
Chapter 45 Software Repositories 825
Chapter 46 Web Services 851

Part IX Management Practices 871
Chapter 47 Ethics 873
Chapter 48 Organizational Structures 891
Chapter 49 Perception and Visibility 913
Chapter 50 Time Management 935
Chapter 51 Communication and Negotiation 949
Chapter 52 Being a Happy SA 963
Chapter 53 Hiring System Administrators 979
Chapter 54 Firing System Administrators 1005

Part X Being More Awesome 1017
Chapter 55 Operational Excellence 1019
Chapter 56 Operational Assessments 1035

Epilogue 1063

Part XI Appendices 1065

Appendix A What to Do When . . . 1067

Appendix B The Many Roles of a System Administrator 1089

Bibliography 1115

Index 1121



Contents

Preface xxxix

Acknowledgments xlvii

About the Authors li

Part I Game-Changing Strategies 1

1 Climbing Out of the Hole 3

1.1 Organizing WIP 5
1.1.1 Ticket Systems 5
1.1.2 Kanban 8
1.1.3 Tickets and Kanban 12

1.2 Eliminating Time Sinkholes 12
1.2.1 OS Installation and Configuration 13
1.2.2 Software Deployment 15

1.3 DevOps 16
1.4 DevOps Without Devs 16
1.5 Bottlenecks 18
1.6 Getting Started 20
1.7 Summary 21
Exercises 22

2 The Small Batches Principle 23

2.1 The Carpenter Analogy 23
2.2 Fixing Hell Month 24

ix



Chapter 2

The Small Batches Principle

One of the themes youwill see in this book is the small batches principle: It is better
to do work in small batches than in big leaps. Small batches permit us to deliver
results faster, with higher quality and less stress.

This chapter begins with an example that has nothing to do with system
administration to demonstrate the general idea. Then it focuses on three IT-specific
examples to show how the method applies and the benefits that follow.

The small batches principle is part of the DevOps methodology. It comes
from the Lean Manufacturing movement, which is often called just-in-time (JIT)
manufacturing. It can be applied to just about any kind of process that you do fre-
quently. It also enables the minimum viable product (MVP) methodology, which
involves launching a small version of a service to get early feedback that informs
the decisions made later in the project.

2.1 The Carpenter Analogy
Imagine a carpenter who needs 50 two-by-fours, all the same length.

One could imagine cutting all 50 boards and then measuring them to verify
that they are all the correct size. It would be very disappointing to discover that the
blade shifted while making board 10, and boards 11 through 50 are now unusable.
The carpenter would have to cut 40 new boards. How embarrassing!

A better method would be to verify the length after each board is cut. If the
blade has shifted, the carpenter will detect the problem soon after it happened, and
there would be less waste.

These two approaches demonstrate big batches versus small batches. In the
big-batch world, the work is done in two large batches: The carpenter cuts all
the boards, then inspects all the boards. In the small-batch world, there are many
iterations of the entire process: cut and inspect, cut and inspect, cut and inspect….

One benefit of the small-batch approach is less waste. Because an error or
defect is caught immediately, the problem can be fixed before it affects other parts.

23



24 Chapter 2 The Small Batches Principle

A less obvious benefit is latency. At the construction site there is a second team
of carpenters who use the boards to build a house. The boards cannot be used
until they are inspected. With the first method, the second team cannot begin its
work until all the boards are cut and at least one is inspected. The chances are high
that the boards will be delivered in a big batch after they have all been inspected.
With the small-batch method, the new boards are delivered without this delay.

The sections that follow relate the small batches principle to system adminis-
tration and show many benefits beyond reduced waste and improved latency.

2.2 Fixing Hell Month
A company had a team of software developers who produced a new release every
six months. When a release shipped, the operations team stopped everything and
deployed the release into production. The process took three or four weeks and
was very stressful for all involved. Scheduling the maintenance window required
complex negotiation. Testing each release was complex and required all hands on
deck. The actual software installation never worked on the first try. Once it was
deployed, a number of high-priority bugs would be discovered, and each would
be fixed by various “hot patches” that would follow.

Even though the deployment process was labor intensive, there was no
attempt to automate it. The team had many rationalizations that justified this
omission. The production infrastructure changed significantly between releases,
making each release a moving target. It was believed that any automation would
be useless by the next release because each release’s installation instructions were
shockingly different. With each next release being so far away, there was always
a more important “burning issue” that had to be worked on first. Thus, those
who did want to automate the process were told to wait until tomorrow, and
tomorrow never came. Lastly, everyone secretly hoped that maybe, just maybe,
the next release cycle wouldn’t be so bad. Such optimism is a triumph of hope
over experience.

Each releasewas a stressful, painfulmonth for all involved. Soon itwas known
as Hell Month. To make matters worse, each release was usually late. This made it
impossible for the operations team to plan ahead. In particular, it was difficult to
schedule any vacation time,which justmade everyonemore stressed andunhappy.

Feeling compassion for the team’s woes, someone proposed that releases
should be done less often, perhaps every 9 or 12 months. If something is painful,
it is natural to want to do it less frequently.

To everyone’s surprise the operations team suggested going in the other direc-
tion: monthly releases. This was a big-batch situation. To improve, the company
didn’t need bigger batches, it needed smaller ones.



2.2 Fixing Hell Month 25

People were shocked! Were they proposing that every month be Hell Month?
No, by doing it more frequently, there would be pressure to automate the process.
If something happens infrequently, there’s less urgency to automate it, andwe pro-
crastinate. Also, there would be fewer changes to the infrastructure between each
release. If an infrastructure change did break the release automation, it would be
easier to fix the problem.

The change did not happen overnight. First the developers changed their
methodology from mega-releases, with many new features, to small iterations,
each with a few specific new features. This was a big change, and selling the idea
to the team and management was a long process.

Meanwhile, the operations team automated the testing and deployment pro-
cesses. The automation could take the latest code, test it, and deploy it into the
beta-test area in less than an hour. Pushing code to production was still man-
ual, but by reusing code for the beta rollouts it became increasingly less manual
over time.

The result was that the beta area was updated multiple times a day. Since it
was automated, there was little reason not to. This made the process continuous,
instead of periodic. Each code change triggered the full testing suite, and problems
were found in minutes rather than in months.

Pushes to the production area happened monthly because they required
coordination among engineering, marketing, sales, customer support, and other
groups. That said, all of these teams loved the transition from an unreliable hope-
fully every-six-months schedule to a reliable monthly schedule. Soon these teams
started initiatives to attempt weekly releases, with hopes of moving to daily
releases. In the new small-batch world, the following benefits were observed:

• Features arrived faster.Where in the past a new feature took up to six months
to reach production, now it could go from idea to production in days.

• Hell Month was eliminated. After hundreds of trouble-free pushes to beta,
pushing to production was easier than ever.

• The operations team could focus on higher-priority projects. The opera-
tions team was no longer directly involved in software releases other than
fixing the automation, which was rare. This freed up the team for more
important projects.

• There were fewer impediments to fixing bugs. The first step in fixing a bug is
to identify which code change is responsible. Big-batch releases had hundreds
or thousands of changes to sort through to identify the guilty party.With small
batches, it was usually quite obvious where to find the bug.

• Bugswere fixed in less time. Fixing a bug in code that was written six months
ago is much more difficult than if the code is still fresh in your mind. Small



26 Chapter 2 The Small Batches Principle

batches meant bugs were reported soon after the code was written, which
meant developers could fix it more expertly in a shorter amount of time.

• Developers experienced instant gratification. Waiting six months to see the
results of your efforts is demoralizing. Seeing your code help people shortly
after it was written is addictive.

• Everyone was less stressed. Most importantly, the operations team could
finally take long vacations, the kind that require advance planning and
scheduling, thus giving them a way to reset and live healthier lives.

While these technical benefits were worthwhile, the business benefits were even
more exciting:

• Improved ability to compete:Confidence in the ability to add features and fix
bugs led to the company becoming more aggressive about new features and
fine-tuning existing ones. Customers noticed and sales improved.

• Fewer missed opportunities: The sales team had been turning away business
due to the company’s inability to strike fast and take advantage of oppor-
tunities as they arrived. Now the company could enter markets it hadn’t
previously imagined.

• A culture of automation and optimization: Rapid releases removed common
excuses not to automate. New automation brought consistency, repeatability,
and better error checking, and required less manual labor. Plus, automation
could run anytime, not just when the operations team was available.

The ability to do rapid releases is often called a DevOps strategy. In Chapter 20,
“Service Launch: DevOps,” you’ll see similar strategies applied to third-party
software.

The Inner and Outer Release Loops

You can think of this process as two nested loops. The inner loop is the code
changes done one at a time. The outer loop is the releases that move these
changes to production.

2.3 Improving Emergency Failovers
Stack Overflow’s main web site infrastructure is in a datacenter in New York
City. If the datacenter fails or needs to be taken down for maintenance, duplicate
equipment and software are running in Colorado. The duplicate in Colorado is a



2.3 Improving Emergency Failovers 27

running and functional copy, except that it is in stand-by mode waiting to be acti-
vated. Database updates in NYC are replicated to Colorado. A planned switch to
Colorado will result in no lost data. In the event of an unplanned failover—for
example, as the result of a power outage—the systemwill lose an acceptably small
quantity of updates.

The failover process is complex. Databasemasters need to be transitioned. Ser-
vices need to be reconfigured. It takes a long time and requires skills from four
different teams. Every time the process happens, it fails in new and exciting ways,
requiring ad hoc solutions invented by whoever is doing the procedure.

In other words, the failover process is risky. When Tom was hired at Stack
Overflow, his first thought was, “I hope I’m not on call when we have that kind
of emergency.”

Drunk driving is risky, so we avoid doing it. Failovers are risky, so we should
avoid them, too. Right?

Wrong. There is a difference between behavior and process. Risky behaviors are
inherently risky; they cannot be made less risky. Drunk driving is a risky behavior.
It cannot be done safely, only avoided. A failover is a risky process. A risky process
can be made less risky by doing it more often.

The next time a failover was attempted at Stack Overflow, it took ten hours.
The infrastructure in New York had diverged from Colorado significantly. Code
that was supposed to seamlessly fail over had been tested only in isolation and
failed when used in a real environment. Unexpected dependencies were discov-
ered, in some cases creating Catch-22 situations that had to be resolved in the heat
of the moment.

This ten-hour ordeal was the result of big batches. Because failovers hap-
pened rarely, there was an accumulation of infrastructure skew, dependencies,
and stale code. There was also an accumulation of ignorance: New hires had never
experienced the process; others had fallen out of practice.

To fix this problem the team decided to do more failovers. The batch size was
based on the number of accumulated changes and other things that led to problems
during a failover. Rather than let the batch size grow and grow, the team decided to
keep it small. Rather than waiting for the next real disaster to exercise the failover
process, they would introduce simulated disasters.

The concept of activating the failover procedure on a system that wasworking
perfectly might seem odd, but it is better to discover bugs and other problems in
a controlled situation rather than during an emergency. Discovering a bug dur-
ing an emergency at 4 AM is troublesome because those who can fix it may be
unavailable—and if they are available, they’re certainly unhappy to be awakened.
In other words, it is better to discover a problem on Saturday at 10 AM when
everyone is awake, available, and presumably sober.



28 Chapter 2 The Small Batches Principle

If schoolchildren can do fire drills once a month, certainly system administra-
tors can practice failovers a few times a year. The team began doing failover drills
every two months until the process was perfected.

Each drill surfaced problemswith code, documentation, and procedures. Each
issue was filed as a bug and was fixed before the next drill. The next failover took
five hours, then two hours, then eventually the drills could be done in an hourwith
no user-visible downtime.

The drills found infrastructure changes that had not been replicated in Col-
orado and code that didn’t fail over properly. They identified new services that
hadn’t been engineered for smooth failover. They discovered a process that could
be done by one particular engineer. If he was on vacation or unavailable, the
company would be in trouble. He was a single point of failure.

Over the course of a year all these issues were fixed. Code was changed, better
pretests were developed, and drills gave each member of the SRE (site reliability
engineering) team a chance to learn the process. Eventually the overall process was
simplified and easier to automate. The benefits Stack Overflow observed included

• Fewer surprises: More frequent the drills made the process smoother.
• Reduced risk: The procedure was more reliable because there were fewer

hidden bugs waiting to bite.
• Higher confidence: The company had more confidence in the process, which

meant the team could now focus on more important issues.
• Speedier bug fixes: The smaller accumulation of infrastructure and code

changes meant each drill tested fewer changes. Bugs were easier to identify
and faster to fix.

• Less stressful debugging: Bugs were more frequently fixed during business
hours. Instead of having to findworkarounds or implement fixes at odd hours
when engineers were sleepy, they were worked on during the day when
engineers were there to discuss and implement higher-quality fixes.

• Better cross-training: Practice makes perfect. Operations team members all
had a turn at doing the process in an environmentwhere they had help readily
available. No person was a single point of failure.

• Improved process documentation and automation: The team improved doc-
umentation in real time as the drill was in progress. Automation was easier
to write because the repetition helped the team see what could be automated
and which pieces were most worth automating.

• Revealed opportunities: The drills were a big source of inspiration for big-
picture projects that would radically improve operations.

• Happier developers: There was less chance of being woken up at odd hours.



2.4 Launching Early and Often 29

• Happier operations team: The fear of failovers was reduced, leading to less
stress. More people trained in the failover procedure meant less stress on the
people who had previously been single points of failure.

• Better morale: Employees could schedule long vacations again.

Google’s Forced Downtime

Google’s internal lock service is called Chubby; an open source clone is called
Zookeeper. Chubby’s uptime was so perfect that engineers designing systems
that relied on Chubby starting writing code that assumed Chubby could not
go down. This led to cascading failures when Chubby did have an outage.

To solve this problem, Google management decreed that if Chubby had
zero downtime in a givenmonth, it would be taken down intentionally for five
minutes. This would assure that error handling code was exercised regularly.

Developers were given three months’ warning, yet the first “purposeful
outage” was postponed when a team came forward to beg for an extension.
Onewas granted, but since thenChubby has been down for fiveminutes every
month to exercise the failure-related code.

2.4 Launching Early and Often
An IT department needed a monitoring system. The number of servers had grown
to the point where situational awareness was no longer possible bymanual means.
The lack of visibility into the company’s own network meant that outages were
often first reported by customers, and often after the outage had been going on for
hours and sometimes days.

The system administration team had a big vision for what the newmonitoring
system would be like. All services and networks would be monitored, the moni-
toring system would run on a pair of big, beefy machines, and when problems
were detected a sophisticated oncall schedule would be used to determine whom
to notify.

Six months into the project they had no monitoring system. The team was
caught in endless debates over every design decision: monitoring strategy, how to
monitor certain services, how the pager rotation would be handled, and so on. The
hardware cost alone was high enough to require multiple levels of approval.

Logically themonitoring system couldn’t be built until the planningwas done,
but sadly it looked like the planning would never end. The more the plans were



30 Chapter 2 The Small Batches Principle

discussed, the more issues were raised that needed to be discussed. The longer the
planning lasted, the less likely the project would come to fruition.

Fundamentally they were having a big-batch problem. They wanted to build
the perfect monitoring system in one big batch. This is unrealistic.

The team adopted a new strategy: small batches. Rather than building the
perfect system, they would build a small system and evolve it.

At each step they would be able to show it to their co-workers and customers
to get feedback. They could validate assumptions for real, finally putting a stop to
the endless debates the requirements documents were producing. By monitoring
something—anything—they would learn the reality of what worked best.

Small systems are more flexible andmalleable; therefore, experiments are eas-
ier. Some experiments would work well; others wouldn’t. Because they would
keep things small and flexible, it would be easy to throw away the mistakes.

Thiswould enable the team to pivot. Pivotmeans to change direction based on
recent results. It is better to pivot early in the development process than to realize
well into it that you’ve built something that nobody likes.

Google calls this idea “launch early and often.” Launch as early as possible,
even if that means leaving out most of the features and launching to only a few
users. What you learn from the early launches informs the decisions later on and
produces a better service in the end.

Launching early and often also gives you the opportunity to build operational
infrastructure early. Some companies build a service for a year and then launch it,
informing the operations team only a week prior. IT then has little time to develop
operational practices such as backups, oncall playbooks, and so on. Therefore,
those things are done badly. With the launch-early-and-often strategy, you gain
operational experience early and you have enough time to do it right.

Fail Early and Often

The strategy of “launch early and often” is sometimes called “fail early and
often.” Early launches are so experimental that it is highly likely they will fail.
That is considered a good thing. Small failures are okay, as long as you learn
from them and they lead to future success. If you never fail, you aren’t taking
enough risks (the good kind) and you are missing opportunities to learn.

It is wasteful to discover that your base assumptions were wrong after
months of development. By proving or disproving our assumptions as soon
as possible, we have more success in the end.



2.4 Launching Early and Often 31

Launching early and often is also known as the minimum viable product
(MVP) strategy. As defined by Eric Ries, “The minimum viable product is that
version of a new product which allows a team to collect the maximum amount
of validated learning about customers with the least effort” (Ries 2009). In other
words, rather than focusing on new functionality in each release, focus on testing
an assumption in each release.

The team building themonitoring system adopted the launch-early-and-often
strategy. They decided that each iteration, or small batch, would be one week
long. At the end of the week they would release what was running in their
beta environment to their production environment and ask for feedback from
stakeholders.

For this strategy to work they had to pick very small chunks of work. Taking
a cue from Jason Punyon and Kevin Montrose’s “Providence: Failure Is Always an
Option” (Punyon 2015), they called this “What can get done by Friday?”–driven
development.

Iteration 1 had the goal of monitoring a few servers to get feedback from vari-
ous stakeholders. The team installed an open sourcemonitoring systemon a virtual
machine. This was in sharp contrast to their original plan of a system that would
be highly scalable. Virtual machines have less I/O and network horsepower than
physical machines. Hardware could not be ordered and delivered in a one-week
time frame, however, so the first iteration used virtual machines. It was what could
be done by Friday.

At the end of this iteration, the team didn’t have their dream monitoring
system, but they had more monitoring capability than ever before.

In this iteration they learned that Simple Network Management Protocol
(SNMP) was disabled on most of the organization’s networking equipment. They
would have to coordinate with the network team if they were to collect network
utilization and other statistics. It was better to learn this now than to have their
major deployment scuttled by making this discovery during the final big deploy-
ment. To work around this, the team decided to focus on monitoring things they
did control, such as servers and services. This gave the network team time to create
and implement a project to enable SNMP in a secure and tested way.

Iterations 2 and 3 proceeded well, adding more machines and testing other
configuration options and features.

During iteration 4, however, the team noticed that the other system admin-
istrators and managers hadn’t been using the system much. This was worrisome.
They paused to talk one on one with people to get some honest feedback.

What the team learned was that without the ability to have dashboards that
displayed historical data, the system wasn’t very useful to its users. In all the past
debates this issue had never been raised. Most confessed they hadn’t thought it



32 Chapter 2 The Small Batches Principle

would be important until they saw the system running; others hadn’t raised the
issue because they simply assumed all monitoring systems had dashboards.

It was time to pivot.
The software package that had been the team’s second choice had very sophis-

ticated dashboard capabilities. More importantly, dashboards could be configured
and customized by individual users. Dashboards were self-service.

After much discussion, the team decided to pivot to the other software
package.

In the next iteration, they set up the new software and created an equivalent set
of configurations. This went very quickly because a lot of work from the previous
iterations could be reused: the decisions on what and how to monitor, the work
completed with the network team, and so on.

By iteration 6, the entire team was actively using the new software. Managers
were setting up dashboards to display key metrics that were important to them.
People were enthusiastic about the new system.

Something interesting happened around this time: A major server crashed on
Saturday morning. The monitoring system alerted the SA team, who were able to
fix the problem before people arrived at the office onMonday. In the past there had
been similar outages but repairs had not begun until the SAs arrived on Monday
morning, well after most employees had arrived. This showed management, in a
very tangible way, the value of the system.

Iteration 7 had the goal of writing a proposal to move the monitoring system
to physical machines so that it would scale better. By this time the managers who
would approve such a purchase were enthusiastically using the system; many had
become quite expert at creating custom dashboards. The case was made to move
the system to physical hardware for better scaling and performance, plus a dupli-
cate set of hardware would be used for a hot spare site in another datacenter. The
plan was approved.

In future iterations the system became more valuable to the organization as
the team implemented features such as a more sophisticated oncall schedule, more
monitored services, and so on. The benefits of small batches observed by the SA
team included:

• Testing assumptions early preventswasted effort.The ability to fail early and
often means we can pivot. Problems can be fixed sooner rather than later.

• Providing value earlier builds momentum. People would rather have some
features today than all the features tomorrow. Some monitoring is better than
nomonitoring. The naysayers see results and become advocates.Management
has an easier time approving something that isn’t hypothetical.



2.4 Launching Early and Often 33

• Experimentation is easier.Often, people develop an emotional attachment to
code. With small batches we can be more agile because we haven’t yet grown
attached to our past decisions.

• MVP enables instant gratification. The team saw the results of their work
faster, which improved morale.

• The team was less stressed. There is no big, scary due date, just a constant
flow of new features.

• Big-batch debating is procrastination. Much of the early debate had been
about details and features that didn’t matter or didn’t get implemented.

The first few weeks were the hardest. The initial configuration required special
skills. Once it was running, however, peoplewith less technical skill or desire could
add rules andmake dashboards. In otherwords, by taking a lead and setting up the
scaffolding, others can follow. This is an important point of technical leadership.
Technical leadership means going first and making it easy for others to follow.

A benefit of using the MVPmodel is that the system is always working or in a
shippable state. The system is always providing benefit, even if not all the features
are delivered. Therefore, if more urgent projects take the team away, the sys-
tem is still usable and running. If the original big-batch plan had continued, the
appearance of a more urgent project might have left the system half-developed
and unlaunched. The work done so far would have been for naught.

Another thing the team realized during this process was that not all launches
were of equal value. Some launches were significant because of the time and work
put into them, but included only internal changes and scaffolding. Other launches
included features that were tangibly useful to the primary users of the system.
Launches in this latter category were the only thing that mattered to management
when they measured progress. It was most important to work toward goals that
produced features that would be visibly helpful and meaningful to people outside
of the team.

Thanksgiving

The U.S. Thanksgiving holiday involves a large feast. If you are not used to
cooking a largemeal formany people, this once-a-year event can be a stressful,
scary time. Any mistakes are magnified by their visibility: All your relatives
are there to see you fail. It is a big batch.

You can turn this into a small batch by trying new recipes in the weeks
ahead of time, by attempting test runs of large items, or by having the event
be potluck. These techniques reduce risk and stress for all involved.



34 Chapter 2 The Small Batches Principle

2.5 Summary
Why are small batches better?

Small batches result in happier customers. Features get delivered sooner. Bugs
are fixed faster.

Small batches reduce risk. By testing assumptions, the prospect of future fail-
ure is reduced. More people get experience with procedures, which means their
skills are improved.

Small batches reduce waste. They avoid endless debates and perfectionism
that delay the team in getting started. Less time is spent implementing features that
don’t get used. In the event that higher-priority projects come up, the team has
already delivered a usable system.

Small batches encourage experimentation.We can try new things—even crazy
ideas, some of which turn into competition-killing features. We fear failure less
because we can undo a small batch easily if the experiment fails. More importantly,
we learned something that will help us make future improvements.

Small batches improve the ability to innovate. Because experimentation is
encouraged, we test new ideas and keep only the good ones. We can take risks.
We are less attached to old pieces that must be thrown away.

Small batches improve productivity. Bugs are fixed more quickly and the
process of fixing them is accelerated because the code is fresher in our minds.

Small batches encourage automation. When something must happen often,
excuses not to automate go away.

Small batches make system administrators happier. We get instant gratifica-
tion and Hell Month disappears. It is just simply a better way to work.

The small batches principle is an important part of the DevOps methodology
and applies whether you are directly involved in a development process, making
a risky process go more smoothly, deploying an externally developed package, or
cooking a large meal.

Exercises
1. What is the small batches principle?
2. Why are big batches more risky than small batches?
3. Why is it better to push a new software release into productionmonthly rather

than every six months?
4. Pick a number of software projects you are or have been involved in. How fre-

quently were new releases issued? Compare and contrast the projects’ ability
to address bugs and ship new features.

5. Is it better to fail over or take down a perfectly running system than to wait
until it fails on its own?



Exercises 35

6. What is the difference between behavior and process?
7. Why is it better to have a small improvement now than a large improvement

a year from now?
8. Describe the minimum viable product (MVP) strategy. What are the benefits

of it versus a larger, multi-year project plan?
9. List a number of risky behaviors that cannot be improved through practice.

Why are they inherently risky?
10. Which big-batch releases happen in your environment? Describe them

in detail.
11. Pick a project that you are involved in. How could it be restructured so that

people benefit immediately instead of waiting for the entire project to be
complete?


	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Authors
	2 The Small Batches Principle
	2.1 The Carpenter Analogy
	2.2 Fixing Hell Month
	2.3 Improving Emergency Failovers
	2.4 Launching Early and Often
	2.5 Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z




