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                                                                                                       4 
  Training Machine 
Learning Models 

In the previous chapter, you learned how Amazon SageMaker Autopilot makes it easy 

to build, train, and optimize models automatically, without writing a line of machine 

learning code. 

For problem types that are not supported by SageMaker Autopilot, the next best option is 

to use one of the algorithms already implemented in SageMaker, and to train it on your 

dataset. These algorithms are referred to as built-in algorithms, and they cover many 

typical machine learning problems, from classification to time series to 

anomaly detection. 

In this chapter, you will learn about built-in algorithms for supervised and unsupervised 

learning, what type of problems you can solve with them, and how to use them with the 

SageMaker SDK: 

• Discovering the built-in algorithms in Amazon SageMaker 

• Training and deploying models with built-in algorithms 

• Using the SageMaker SDK with built-in algorithms 

• Working with more built-in algorithms 



Technical requirements 
You will need an AWS account to run the examples included in this chapter. If 

you don't already have one, please point your browser to https://aws.amazon.com/ 
getting-started/ to create it. You should also familiarize yourself with the AWS Free 
Tier (https://aws.amazon.com/free/), which lets you use many AWS services for 
free within certain usage limits. 

You will need to install and to configure the AWS command-line interface for 

your account (https://aws.amazon.com/cli/). 

You will need a working Python 3.x environment. Be careful not to use Python 2.7, 

as it is no longer maintained. Installing the Anaconda distribution (https://www. 

anaconda.com/) is not mandatory, but strongly encouraged as it includes many 

projects that we will need (Jupyter, pandas, numpy, and more). 

Code examples included in the book are available on GitHub at 
https://github. com/PacktPublishing/Learn-Amazon-SageMaker. 
You will need to install a Git client to access them (https://git-scm.com/). 

 

Discovering the built-in algorithms in Amazon 
SageMaker 
Built-in algorithms are machine learning algorithms implemented, and in some cases 

invented, by Amazon (https://docs.aws.amazon.com/sagemaker/latest/ 

dg/algos.html). They let you quickly train and deploy your own models without 

writing a line of machine learning code. Indeed, since the training and prediction 

algorithm is readily available, you don't have to worry about implementing it, and you can 

focus on the machine learning problem at hand. As usual, with SageMaker, infrastructure 

is fully managed, saving you even more time. 

In this section, you'll learn about the built-in algorithms for traditional machine learning 

problems. Algorithms for computer vision and natural language processing will be 

covered in the next two chapters. 

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://www.anaconda.com/
https://www.anaconda.com/
https://github.com/PacktPublishing/Learn-Amazon-SageMaker
https://github.com/PacktPublishing/Learn-Amazon-SageMaker
https://git-scm.com/
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
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Supervised learning 

Supervised learning focuses on problems that require a labeled dataset, such as regression, 

or classification: 

• Linear Learner builds linear models to solve regression problems, as well as 

classification problems (binary or multi-class). 

• Factorization Machines builds linear models to solve regression problems, as well 

as classification problems (binary or multi-class). Factorization machines are 

a generalization of linear models, and they're a good fit for high dimension sparse 

datasets, such as user-item interaction matrices in recommendation problems. 

• K-nearest neighbors (KNN) builds non-parametric models for regression and 

classification problems. 

• XGBoost builds models for regression, classification, and ranking problems. 

XGBoost is possibly the most widely used machine algorithm used today, and 

SageMaker uses the open source implementation available at https://github. 

com/dmlc/xgboost. 

• DeepAR builds forecasting models for multivariate time series. DeepAR is an 

Amazon-invented algorithm based on Recurrent Neural Networks, and you can 

read more about it at https://arxiv.org/abs/1704.04110. 

• Object2Vec learns low-dimension embeddings from general-purpose high 

dimensional objects. Object2Vec is an Amazon-invented algorithm. 

 

Unsupervised learning 

Unsupervised learning doesn't require a labeled dataset, and includes problems such 

as clustering or anomaly detection: 

• K-means builds clustering models. SageMaker uses a modified version of the 

web-scale k-means clustering algorithm (https://www.eecs.tufts. 

edu/~dsculley/papers/fastkmeans.pdf). 

• Principal Component Analysis (PCA) builds dimensionality reduction models. 

• Random Cut Forest builds anomaly detection models. 

• IP Insights builds models to identify usage patterns for IPv4 addresses. This comes 

in handy for monitoring, cybersecurity, and so on. 

We'll cover some of these algorithms in detail in the rest of this chapter. 

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://arxiv.org/abs/1704.04110
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
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A word about scalability 

Before we dive into training and deploying models with the algorithms, you may wonder 

why you should use them instead of their counterparts in well-known libraries such as 

scikit-learn and R. 

First, these algorithms have been implemented and tuned by Amazon teams, who are not 

exactly newcomers to machine learning! A lot of effort has been put into making sure that 

these algorithms run as fast as possible on AWS infrastructure, no matter what type of 

instance you use. In addition, many of these algorithms support distributed training out 

of the box, letting you split model training across a cluster of fully managed instances. 

Thanks to this, benchmarks indicate that these algorithms are generally 10x better than 

competing implementations. In many cases, they are also much more cost effective. You 

can learn more about this at the following links: 

• AWS Tel Aviv Summit 2018: "Speed Up Your Machine Learning Workflows with 

Built-In Algorithms": https://www.youtube.com/watch?v=IeIUr78OrE0 

• "Elastic Machine Learning Algorithms in Amazon", Liberty et al., SIGMOD'20: 

SageMaker: https://dl.acm.org/doi/abs/10.1145/3318464.3386126 

Of course, these algorithms benefit from all the features present in SageMaker, as you will 

find out by the end of the book. 

 

Training and deploying models with built-in 
algorithms 
Amazon SageMaker lets you train and deploy models in many different configurations. 

Although it encourages best practices, it is a modular service that lets you do things your 

own way. 

In this section, we first look at a typical end-to-end workflow, where we use SageMaker 

from data upload all the way to model deployment. Then, we discuss alternative 

workflows, and how you can cherry pick the features that you need. Finally, we will take 

a look under the hood, and see what happens from an infrastructure perspective when we 

train and deploy. 

https://www.youtube.com/watch?v=IeIUr78OrE0
https://dl.acm.org/doi/abs/10.1145/3318464.3386126
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Understanding the end-to-end workflow 

Let's look at a typical SageMaker workflow. You'll see it again and again in our examples, 
as well as in the AWS notebooks available on GitHub (https://github.com/ 
awslabs/amazon-sagemaker-examples/): 

1. Make your dataset available in Amazon S3: In most examples, we'll download 

a dataset from the internet, or load a local copy. However, in real life, your raw 

dataset would probably already be in S3, and you would prepare it using one of the 

services discussed in Chapter 2, Handling Data Preparation Tasks: splitting it for 

training and validation, engineering features, and so on. In any case, the dataset 

must be in a format that the algorithm understands, such as CSV and protobuf. 

2. Configure the training job: This is where you select the algorithm that you want 

to train with, set hyperparameters, and define infrastructure requirements for the 

training job. 

3. Launch the training job: This is where we pass it the location of your dataset in 

S3. Training takes place on managed infrastructure, created and provisioned 

automatically according to your requirements. Once training is complete, the model 

artifact is saved in S3. Training infrastructure is terminated automatically, and you 

only pay for what you actually used. 

4. Deploy the model: You can deploy a model either on a real-time HTTPS endpoint 

for live prediction, or for batch transform. Again, you simply need to define 

infrastructure requirements. 

5. Predict data: Either invoking a real-time endpoint or a batch transformer. As you 

would expect, infrastructure is managed here too. For production, you would also 

monitor the quality of data and predictions. 

6. Clean up!: This involves taking the endpoint down, to avoid unnecessary charges. 

Understanding this workflow is critical in being productive with Amazon SageMaker. 

Fortunately, the SageMaker SDK has simple APIs that closely match these steps, so you 

shouldn't be confused about which one to use, and when to use it. 

Before we start looking at the SDK, let's consider alternative workflows that could make 

sense in your business and technical environments. 

 
Using alternative workflows 

Amazon SageMaker is a modular service that lets you work your way. Let's first consider 

a workflow where you would train on SageMaker and deploy on your own server, 

whatever the reasons may be. 



Training and deploying models with built-in algorithms 116 
 

 

Exporting a model 

Steps 1-3 would be the same as in the previous example, and then you would do 

the following: 

1. Download the training artifact from S3, which is materialized as 

a model.tar.gz file. 

2. Extract the model stored in the artifact. 

3. On your own server, load the model with the appropriate machine learning library: 

a) For XGBoost models: Use one of the implementations available at 

https://xgboost.ai/. 

b) For BlazingText models: Use the fastText implementation available at 

https://fasttext.cc/. 

c) For all other models: Use Apache MXNet (https://mxnet.apache.org/). 

Importing a model 

Now, let's see how you could import an existing model and deploy it on SageMaker: 

1. Package your model in a model artifact (model.tar.gz). 

2. Upload the artifact to an S3 bucket. 

3. Register the artifact as a SageMaker model. 

4. Deploy the model and predict, just like in the previous steps 4 and 5. 

This is just a quick look. We'll run full examples for both workflows in Chapter 11, 

Managing Models in Production. 

 

Using fully managed infrastructure 

All SageMaker jobs run on managed infrastructure. Let's take a look under the hood, and 

see what happens when we train and deploy models. 

 

Packaging algorithms in Docker containers 

All SageMaker algorithms must be packaged in Docker containers. Don't worry, you don't 

need to know much about Docker in order to use SageMaker. If you're not familiar with 

it, I would recommend going through this tutorial to understand key concepts and tools: 

https://docs.docker.com/get-started/. It's always good to know a little more 

than actually required! 

https://xgboost.ai/
https://fasttext.cc/
https://mxnet.apache.org/
https://docs.docker.com/get-started/
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As you would expect, built-in algorithms are pre-packaged, and containers are readily 

available for training and deployment. They are hosted in Amazon Elastic Container 

Registry (ECR), AWS' Docker registry service (https://aws.amazon.com/ecr/). 

As ECR is a region-based service, you will find a collection of containers in each region 

where SageMaker is available. 

You can find the list of built-in algorithm containers at https://docs.aws.amazon. 
com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths. 

html. For instance, the name of the container for the Linear Learner algorithm in the 

eu-west-1 region is 438346466558.dkr.ecr.eu-west-1.amazonaws.com/ 
linear-learner:latest. These containers can only be pulled to SageMaker 
managed instances, so you won't be able to run them on your local machine. 

Now let's look at the underlying infrastructure. 

 

Creating the training infrastructure 

When you launch a training job, SageMaker fires up infrastructure according to your 

requirements (instance type and instance count). 

Once a training instance is in service, it pulls the appropriate training container from 

ECR. Hyperparameters are applied to the algorithm, which also receives the location 

of your dataset. By default, the algorithm then copies the full dataset from S3, and starts 

training. If distributed training is configured, SageMaker automatically distributes dataset 

batches to the different instances in the cluster. 

Once training is complete, the model is packaged in a model artifact saved in S3. Then, 

the training infrastructure is shut down automatically. Logs are available in Amazon 

CloudWatch Logs. Last but not least, you're only charged for the exact amount of 

training time. 

 
Creating the prediction infrastructure 

When you launch a deployment job, SageMaker once again creates infrastructure 

according to your requirements. 

Let's focus on real-time endpoints for now, and not on batch transform. 

Once an endpoint instance is in service, it pulls the appropriate prediction container 

from ECR, and loads your model from S3. Then, the HTTPS endpoint is provisioned, 

and is ready for prediction within minutes. 

If you configured the endpoint with several instances, load balancing and high availability 

are set up automatically. If you configured Auto Scaling, this is applied as well. 

https://aws.amazon.com/ecr/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html
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As you would expect, an endpoint stays up until it's deleted explicitly, either in the AWS 

Console or with a SageMaker API call. In the meantime, you will be charged for the 

endpoint, so please make sure to delete endpoints that you don't need! 

Now that we understand the big picture, let's start looking at the SageMaker SDK, and 

how we can use it to train and deploy models. 

 

Using the SageMaker SDK with built-in 
algorithms 
Being familiar with the SageMaker SDK is important to making the most of SageMaker. 

You can find its documentation at https://sagemaker.readthedocs.io. 

Walking through a simple example is the best way to get started. In this section, we'll use 

the Linear Learner algorithm to train a regression model on the Boston Housing dataset. 

We'll proceed very slowly, leaving no stone unturned. Once again, these concepts are 

essential, so please take your time, and make sure you understand every step fully. 

 

Preparing data 

Built-in algorithms expect the dataset to be in a certain format, such as CSV, protobuf, 
or libsvm. Supported formats are listed in the algorithm documentation. For instance, 

Linear Learner supports CSV and recordIO-wrapped protobuf (https://docs.aws. 
amazon.com/sagemaker/latest/dg/linear-learner.html#ll-input_ 

output). 

Our input dataset is already in the repository in CSV format, so let's use that. Dataset 

preparation will be extremely simple, and we'll run it manually: 

1. Using pandas, we load the CSV dataset with pandas: 
 

Note: 

Reminder: I recommend that you follow along and run the code available in 

the companion GitHub repository. Every effort has been made to check all code 

samples present in the text. However, for those of you who have an electronic 

version, copying and pasting may have unpredictable results: formatting issues, 

weird quotes, and so on. 

import pandas as pd 

dataset = pd.read_csv('housing.csv') 

https://sagemaker.readthedocs.io/
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2. Then, we print the shape of the dataset: 

  print(dataset.shape)  

It contains 506 samples and 13 columns: 

  (506, 13)  

 

3. Now, we display the first 5 lines of the dataset: 

  dataset[:5]  

This prints out the table visible in the following diagram. For each house, we see 

12 features, and a target attribute (medv) set to the median value of the house in 

thousands of dollars: 
 

Figure 4.1 – Viewing the dataset 

4. Reading the algorithm documentation (https://docs.aws.amazon.com/ 

sagemaker/latest/dg/cdf-training.html), we see that Amazon 

SageMaker requires that a CSV file doesn't have a header record and that the target 

variable is in the first column. Accordingly, we move the medv column to the front 

of the dataframe: 
 

 

5. A bit of scikit-learn magic helps split the dataframe up into two parts: 90% 

for training, and 10% for validation: 
 

dataset = pd.concat([dataset['medv'], 

dataset.drop(['medv'], axis=1)], 

axis=1) 

training_dataset, validation_dataset = train_test_ 

split(dataset, test_size=0.1) 

from sklearn.model_selection import train_test_split 

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html
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6. We save these two splits to individual CSV files, without either an index or a header: 
 
 

 

7. We now need to upload these two files to S3. We could use any bucket, and 

here we'll use the default bucket conveniently created by SageMaker in the 

region we're running in. We can find its name with the 

sagemaker.Session. default_bucket() API: 

 
 

 

8. Finally, we use the sagemaker.Session.upload_data() API to upload the 

two CSV files to the default bucket. Here, the training and validation datasets are 

made of a single file each, but we could upload multiple files if needed. For this 

reason, we must upload the datasets under different S3 prefixes, so that their files 

won't be mixed up: 
 

prefix = 'boston-housing' 

training_data_path = sess.upload_data( 

path='training_dataset.csv', 

key_prefix=prefix + '/input/training') 

validation_data_path = sess.upload_data( 

path='validation_dataset.csv', 

key_prefix=prefix + '/input/validation') 

print(training_data_path) 

print(validation_data_path) 

The two S3 paths look like this. Of course, the account number in the default bucket 

name will be different: 
 

 

Now that data is ready in S3, we can configure the training job. 

validation_dataset.to_csv('validation_dataset.csv', 

index=False, header=False) 

sess = sagemaker.Session() 

bucket = sess.default_bucket() 

s3://sagemaker-eu-west-1-123456789012/boston-housing/ 

input/validation/validation_dataset.csv 

training_dataset.to_csv('training_dataset.csv', 

index=False, header=False) 

import sagemaker 

s3://sagemaker-eu-west-1-123456789012/boston-housing/ 

input/training/training_dataset.csv 
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Configuring a training job 

The Estimator object (sagemaker.estimator.Estimator) is the cornerstone 

of model training. It lets you select the appropriate algorithm, define your training 

infrastructure requirements, and more. 

The SageMaker SDK also includes algorithm-specific estimators, such as sagemaker. 

LinearLearner or sagemaker.PCA. I generally find them less flexible than the 

generic estimator (no CSV support, for one thing), and I don't recommend using them. 

Using the Estimator object also lets you reuse your code across examples, as we will see 

in the next sections: 

1. Earlier in this chapter, we learned that SageMaker algorithms are packaged in 

Docker containers. Using boto3 and the image_uris.retrieve() API, we 

can easily find the name of the Linear Learner algorithm in the region 

we're running: 
 

 

 

2. Now that we know the name of the container, we can configure our training job 

with the Estimator object. In addition to the container name, we also pass the 

IAM role that SageMaker instances will use, the instance type and instance count 

to use for training, as well as the output location for the model. Estimator will 

generate a training job automatically, and we could also set our own prefix with the 

base_job_name parameter: 
 

 

 

SageMaker supports plenty of different instance types, with some differences 

across AWS regions. You can find the full list at 
https://docs.aws.amazon.com/ 

sagemaker/latest/dg/instance-types-az.html. 

region = boto3.Session().region_name 

container = image_uris.retrieve('linear-learner', region) 

ll_estimator = Estimator( 

container, 

role=sagemaker.get_execution_role(), 

instance_count=1, 

instance_type='ml.m5.large', 

output_path='s3://{}/{}/output'.format(bucket, 

prefix)) 

import boto3 

from sagemaker import image_uris 

from sagemaker.estimator import Estimator 

https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html
https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html
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Which one should we use here? Looking at the Linear Learner documentation 

(https://docs.aws.amazon.com/sagemaker/latest/dg/linear- 

learner.html#ll-instances), we see that you can train the Linear Learner 

algorithm on single- or multi-machine CPU and GPU instances. Here, we're working 

with a tiny dataset, so let's select the smallest training instance available in our 

region: ml.m5.large. 

Checking the pricing page (https://aws.amazon.com/sagemaker/ 

pricing/), we see that this instance costs $0.15 per hour in the eu-west-1 

region (the one I'm using for this job). 

3. Next, we have to set hyperparameters. This step is possibly one of the most obscure 

and most difficult parts of any machine learning project. Here's my tried and 

tested advice: read the algorithm documentation, stick to mandatory parameters 

only unless you really know what you're doing, and quickly check optional 

parameters for default values that could clash with your dataset. In Chapter 10, 

Advanced Training Techniques, we'll see how to solve hyperparameter selection with 

Automatic Model Tuning. 

Let's look at the documentation, and see which hyperparameters are mandatory 

(https://docs.aws.amazon.com/sagemaker/latest/dg/ll_ 

hyperparameters.html). As it turns out, there is only one: predictor_ 

type. It defines the type of problem that Linear Learner is training on 

(regression, binary classification, or multiclass classification). 

Taking a deeper look, we see that the default value for mini_batch_size is 1000: 

this isn't going to work well with our 506-sample dataset, so let's set it to 32. We also 

learn that the normalize_data parameter is set to true by default, which makes 

it unnecessary to normalize data ourselves: 
 

4. Now, let's define the data channels: a channel is a named source of data passed to 

a SageMaker estimator. All built-in algorithms need at least a train channel, and 

many also accept additional channels for validation and testing. Here, we have two 

channels, which both provide data in CSV format. The TrainingInput() API 

lets us define their location, their format, whether they are compressed, and so on: 
 

ll_estimator.set_hyperparameters( 

predictor_type='regressor', 

mini_batch_size=32) 

training_data_channel = sagemaker.TrainingInput( 

s3_data=training_data_path, 

content_type='text/csv') 

https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-instances
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html#ll-instances
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
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By default, data served by a channel will be fully copied to each training instance, 

which is fine for small datasets. We'll study alternatives in Chapter 10, Advanced 

Training Techniques. 

5. Everything is now ready for training, so let's launch our job. 

 

Launching a training job 

All it takes is one line of code: 

1. We simply pass a Python dictionary containing the two channels to the fit() API: 
 

Immediately, the training job starts: 

  Starting - Starting the training job.  

 

2. As soon as the job is launched, it appears in the SageMaker console in the Training 

jobs section, and in the Experiments tab of SageMaker Studio. There, you can see 

all job metadata: the location of the dataset, hyperparameters, and more. 

3. The training log is visible in the notebook, and it's also stored in Amazon 

CloudWatch Logs, under the /aws/sagemaker/TrainingJobs prefix. 

Here are the first few lines, showing the infrastructure being 

provisioned, as explained earlier in the Using fully managed 

infrastructure section: 

4. At the end of the training log, we see information on the mean square error (MSE) 

and loss metrics: 

validation_data_channel = sagemaker.TrainingInput( 

s3_data=validation_data_path, 

content_type='text/csv') 

ll_estimator.fit({'train': training_data_channel, 

'validation': validation_data_channel}) 

Starting - Starting the training job... 

Starting - Launching requested ML instances...... 

Starting - Preparing the instances for training... 

Downloading - Downloading input data... 

Training - Training image download completed. 

#quality_metric: host=algo-1, validation mse 

<loss>=13.7226685169 

#quality_metric: host=algo-1, validation absolute_loss 

<loss>=2.86944983987 
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5. Once training is complete, the model is copied automatically to S3, and SageMaker 

tells us how long the job took: 
 

We mentioned earlier than the cost for an ml.m5.large instance is $0.15 per 

hour. As we trained for 49 seconds, this job cost us (49/3600)*0.15= $0.002, one 

fifth of a penny. Any time spent setting up infrastructure ourselves would have 

certainly cost more! 

6. Looking at the output location in our S3 bucket, we see the model artifact: 
 

You should see the model artifact: model.tar.gz 

We'll see in Chapter 11, Deploying Machine Learning Models, what's inside that 

artifact, and how to deploy the model outside of SageMaker. For now, let's 

deploy it to a real-time endpoint. 

Deploying a model 

This is my favorite part in SageMaker; we only need one line of code to deploy a model 

to an HTTPS endpoint: 

1. It's good practice to create identifiable and unique endpoint names. We could also 

let SageMaker create one for us during deployment: 
 

Here, the endpoint name is linear-learner-demo-29-08-37-25. 

Uploading - Uploading generated training model 

Completed - Training job completed 

Training seconds: 49 

Billable seconds: 49 

%%bash -s "$ll_estimator.output_path" 

aws s3 ls --recursive $1 

timestamp = strftime('%d-%H-%M-%S', gmtime()) 

endpoint_name = 'linear-learner-demo-'+timestamp 

print(endpoint_name) 

from time import strftime, gmtime 
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2. We deploy the model using the deploy() API. As this is a test endpoint, we use 

the smallest endpoint instance available, ml.t2.medium. In the eu-west-1 region, 

this will only cost us $0.07 per hour: 
 

While the endpoint is created, we can see it in the Endpoints section of the 

SageMaker console, and in the Endpoints tab of SageMaker Studio. 

3. A few minutes later, the endpoint is in service. We can use the predict() API 

to send it a CSV sample for prediction. We set content type and serialization 

accordingly: built-in functions are available, and we use them as is: 
 

ll_predictor.content_type = 'text/csv' 

ll_predictor.serializer = 

sagemaker.serializers.CSVSerializer() 

ll_predictor.deserializer = 

sagemaker.deserializers.CSVDeserializer() 

test_sample = '0.00632,18.00,2.310,0,0.5380,6.5750,65.20, 

4.0900,1,296.0,15.30,4.98' 

response = ll_predictor.predict(test_sample) 

print(response) 

The prediction output tells us that this house should cost $30,173: 

[['{"predictions": [{"score": 30.17342185974121}]}']] 

We can also predict multiple samples at a time: 

 

 

 

 

 

Now the prediction output is as follows: 

 

When we're done working with the endpoint, we shouldn't forget to delete it to avoid 

unnecessary charges. 

[['{"predictions": [{"score": 30.413358688354492}', 

'{"score": 24.884408950805664}]}']] 

test_samples = [ 

'0.00632,18.00,2.310,0,0.5380,6.5750,65.20,4.0900,1,296.0 

,15.30,4.98', 

'0.02731,0.00,7.070,0,0.4690,6.4210,78.90,4.9671,2,242.0, 

17.80,9.14'] 

ll_predictor = ll_estimator.deploy( 

endpoint_name=endpoint_name, 

initial_instance_count=1, 

instance_type='ml.t2.medium') 

response = ll_predictor.predict(test_samples) 

print(response) 
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Cleaning up 

Deleting an endpoint is as simple as calling the delete_endpoint() API: 

  ll_predictor.delete_endpoint()  

 

At the risk of repeating myself, the topics covered in this section are extremely important, 

so please make sure you're completely familiar with them, as we'll constantly use them 

in the rest of the book. Please spend some time reading the service and SDK 

documentation as well: 

• https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html 

• https://sagemaker.readthedocs.io 

Now let's explore other built-in algorithms. You'll see that the workflow and the code 

are very similar! 

 

Working with more built-in algorithms 
In the rest of this chapter, we will run more examples with built-in algorithms, both in 

supervised and unsupervised mode. This will help you become very familiar with the 

SageMaker SDK, and learn how to solve actual machine learning problems. The following 

list shows some of these algorithms: 

• Classification with XGBoost 

• Recommendation with Factorization Machines 

• Dimensionality reduction with PCA 

• Anomaly detection with Random Cut Forest 

 

Classification with XGBoost 

Let's train a model on the Boston Housing dataset with the XGBoost algorithm 
(https://github.com/dmlc/xgboost). As we will see in Chapter 7, Using Built-in 

Frameworks, SageMaker also supports XGBoost scripts: 

1. We reuse the dataset preparation steps from the previous examples. 

2. We find the name of the XGBoost container. As several versions are supported, 

we select the latest one (1.0-1 at the time of writing): 
 

import boto3 

from sagemaker import image_uris 

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://sagemaker.readthedocs.io/
https://github.com/dmlc/xgboost
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3. We configure the Estimator function. The code is strictly identical to the one 

used with LinearLearner: 
 

 

4. Taking a look at the hyperparameters (https://docs.aws.amazon.com/ 

sagemaker/latest/dg/xgboost_hyperparameters.html), we see that 

the only required one is num_round. As it's not obvious which value to set, 

we'll go for a large value, and we'll also define the early_stopping_rounds 

parameter in order to avoid overfitting. Of course, we need to set the objective for 

a regression problem: 
 

 

5. We define the training input, just like in the previous example: 
 

 

6. We then launch the training job: 
 

region = boto3.Session().region_name 

container = image_uris.retrieve('xgboost', region, 

version='latest') 

xgb_estimator = Estimator( 

container, 

role=sagemaker.get_execution_role(), 

instance_count=1, 

instance_type='ml.m5.large', 

output_path='s3://{}/{}/output'.format(bucket, 

prefix)) 

xgb_estimator.set_hyperparameters( 

objective='reg:linear', 

num_round=200, 

early_stopping_rounds=10) 

training_data_channel = sagemaker.TrainingInput( 

s3_data=training_data_path, 

content_type='text/csv') 

validation_data_channel = sagemaker.TrainingInput( 

s3_data=validation_data_path, 

content_type='text/csv') 

xgb_estimator.fit({'train': training_data_channel, 

'validation': validation_data_channel}) 

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost_hyperparameters.html
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7. The job only ran for 22 rounds, meaning that early stopping was triggered. Looking 

at the training log, we see that round #12 was actually the best one, with a root 

mean square error (RMSE) of 2.43126: 
 

 

8. Deploying still takes one line of code: 
 
 

 

 
 

9. Once the model is deployed, we used the predict() API again to send 

it a CSV sample: 
 

test_sample = '0.00632,18.00,2.310,0,0.5380,6.5750,65.20, 

4.0900,1,296.0,15.30,4.98' 

xgb_predictor.content_type = 'text/csv' 

xgb_predictor.serializer = 

sagemaker.serializers.CSVSerializer() 

xgb_predictor.deserializer = 

sagemaker.deserializers.CSVDeserializer() 

response = xgb_predictor.predict(test_sample) 

print(response) 

The result tells us that this house should cost $23,754. 
 

10. Finally, we delete the endpoint when we're done: 
 

As you can see, the SageMaker workflow is pretty simple, and makes it easy to experiment 

quickly with different algorithms without having to rewrite all your code. 

timestamp = strftime('%d-%H-%M-%S', gmtime()) 

endpoint_name = 'xgb-demo'+'-'+timestamp 

xgb_predictor = xgb_estimator.deploy( 

endpoint_name=endpoint_name, 

initial_instance_count=1, 

instance_type='ml.t2.medium') 

[12]#011train-rmse:1.25702#011validation-rmse:2.43126 

<output removed> 

[22]#011train-rmse:0.722193#011validation-rmse:2.43355 

from time import strftime, gmtime 

[['23.73023223876953']] 

xgb_predictor.delete_endpoint() 
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Let's move on to the Factorization Machines algorithm. In the process, we will learn about 

the highly efficient recordIO-wrapped protobuf format. 

 

Recommendation with Factorization Machines 

Factorization Machines is a generalization of linear models (https://www.csie. 
ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf). They're well-suited for high 
dimension sparse datasets, such as user-item interaction matrices for 
recommendation. 

In this example, we're going to train a recommendation model based on the MovieLens 

dataset (https://grouplens.org/datasets/movielens/). 

The dataset exists in several versions. To minimize training times, we'll use the 100k 

version. It contains 100,000 ratings (integer values from 1 to 5) assigned by 943 users 

to 1,682 movies. The dataset is already split for training and validation. 

As you know by now, training and deploying with SageMaker is very simple. Most of the 

code will be identical to the two previous examples, which is great! This lets us focus on 

understanding and preparing data. 

 

Understanding sparse datasets 

Imagine building a matrix to store this dataset. It would have 943 lines (one per user) 

and 1,682 columns (one per movie). Cells would store the ratings. The following diagram 

shows a basic example: 
 

Figure 4.2 – Sparse matrix 

Hence, the matrix would have 943*1,682=1,586,126 cells. However, as only 100,000 

ratings are present, 93.69% of cells would be empty. Storing our dataset this way would be 

extremely inefficient. It would needlessly consume RAM, storage, and network bandwidth 

to store and transfer lots of zero values! 

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://grouplens.org/datasets/movielens/
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In fact, things are much worse, as the algorithm expects the input dataset to look like in 

the following diagram: 
 

Figure 4.3 – Sparse matrix 

Why do we need to store data this way? The answer is simple: Factorization Machines 

is a supervised learning algorithm, so we need to train it on labeled samples. 

Looking at the preceding diagram, we see that each line represents a movie review. 

The matrix on the left stores its one-hot encoded features (users and movies), and the 

vector on the right stores its label. For instance, the last line tells us that user 4 has given 

movie 5 a "5" rating. 

The size of this matrix is 100,000 lines by 2,625 columns (943 movies plus 1,682 

movies). The total number of cells is 262,500,000, which are only 0.076% full (200,000 / 

262,500,000). If we used a 32-bit value for each cell, we would need almost a gigabyte 

of memory to store this matrix. This is horribly inefficient, but still manageable. 

Just for fun, let's do the same exercise for the largest version of MovieLens, which has 25 

million ratings, 62,000 movies and 162,000 users. The matrix would have 25 million lines 

and 224,000 columns, for a total of 5,600,000,000,000 cells. Yes, that's 5.6 trillion cells, and 

although they would be 99.999% empty, we would still need over 20 terabytes of RAM 

to store them. Ouch. If that's not bad enough, consider recommendation models with 

millions of users and products: the numbers are mind-boggling! 

Instead of using a plain matrix, we'll use a sparse matrix, a data structure specifically 

designed and optimized for sparse datasets. Scipy has exactly the object we 

need, named lil_matrix 

(https://docs.scipy.org/doc/scipy/reference/ 

generated/scipy.sparse.lil_matrix.html). This will help us to get rid 

of all these nasty zeros. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
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Understanding protobuf and RecordIO 

So how will we pass this sparse matrix to the SageMaker algorithm? As you would expect, 

we're going to serialize the object, and store it in S3. We're not going to use Python 

serialization, however. Instead, we're going to use protobuf (https://developers. 

google.com/protocol-buffers/), a popular and efficient serialization mechanism. 

In addition, we're going to store the protobuf-encoded data in a record format called 
RecordIO (https://mxnet.apache.org/api/faq/recordio/). Our dataset 
will be stored as a sequence of records in a single file. This has the following benefits: 

• A single file is easier to move around: who wants to deal with thousands 

of individual files that can get lost or corrupted? 

• A sequential file is faster to read, which makes the training process more efficient. 

• A sequence of records is easy to split for distributed training. 

Don't worry if you're not familiar with protobuf and RecordIO. The SageMaker SDK 

includes utility functions that hide their complexity. 

 

Building a Factorization Machines model on MovieLens 

We will begin building the model using the following steps: 

1. In a Jupyter notebook, we first download and extract the MovieLens dataset: 
 

 

2. As the dataset is ordered by user ID, we shuffle it as a precaution. Then, we take 

a look at the first few lines: 
 

We see four columns: the user ID, the movie ID, the rating, and a timestamp 

(which we'll ignore in our model): 
 

378 43 3 880056609 

919 558 5 875372988 

90 285 5 891383687 

249 245 2 879571999 

416 64 5 893212929 

%%sh 

wget http://files.grouplens.org/datasets/movielens/ 

ml-100k.zip 

unzip ml-100k.zip 

%cd ml-100k 

!shuf ua.base -o ua.base.shuffled 

!head -5 ua.base.shuffled 

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://mxnet.apache.org/api/faq/recordio/
http://files.grouplens.org/datasets/movielens/
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3. We define sizing constants: 
 

 

 

4. Now, let's write a function to load a dataset into a sparse matrix. Based on the 

previous explanation, we go through the dataset line by line. In the X matrix, 

we set the appropriate user and movie columns to 1. We also store the rating in the 

Y vector: 
 

import csv 

import numpy as np 

from scipy.sparse import lil_matrix 

def loadDataset(filename, lines, columns): 

X = lil_matrix((lines, columns)).astype('float32') 

Y = [] 

line=0 

with open(filename,'r') as f: 

samples=csv.reader(f,delimiter='\t') 

for userId,movieId,rating,timestamp in samples: 

X[line,int(userId)-1] = 1 

X[line,int(num_users)+int(movieId)-1] = 1 

Y.append(int(rating)) 

line=line+1 

Y=np.array(Y).astype('float32') 

return X,Y 

5. We then process the training and test datasets: 
 

 

 

num_ratings_train = 90570 

num_ratings_test = 9430 

X_test, Y_test = loadDataset('ua.test', 

num_ratings_test, 

num_features) 

num_users = 943 

num_movies = 1682 

num_features = num_users+num_movies 

X_train, Y_train = loadDataset('ua.base.shuffled', 

num_ratings_train, 

num_features) 
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6. We check that the shapes are what we expect: 
 

This displays the dataset shapes: 

 

7. Now, let's write a function that converts a dataset to the RecordIO-wrapped 

protobuf, and uploads it to an S3 bucket. We first create an in-memory binary 

stream with io.BytesIO(). Then, we use the life-saving write_spmatrix_ 

to_sparse_tensor() function to write the sample matrix and the label vector to 

that buffer in protobuf format. Finally, we use boto3 to upload the buffer to S3: 
 

 

 

 

Had our data been stored in a numpy array instead of lilmatrix, we would 

have used the write_numpy_to_dense_tensor() function instead. It has the 

same effect. 

8. We apply this function to both datasets, and we store their S3 paths: 
 

import sagemaker 

bucket = sagemaker.Session().default_bucket() 

prefix = 'fm-movielens' 

train_key = 'train.protobuf' 

train_prefix = '{}/{}'.format(prefix, 'train') 

test_key = 'test.protobuf' 

test_prefix = '{}/{}'.format(prefix, 'test') 

(90570, 2625) 

(90570,) 

(9430, 2625) 

(9430,) 

def writeDatasetToProtobuf(X, Y, bucket, prefix, key): 

buf = io.BytesIO() 

smac.write_spmatrix_to_sparse_tensor(buf, X, Y) 

buf.seek(0) 

obj = '{}/{}'.format(prefix, key) 

 

boto3.resource('s3').Bucket(bucket).Object(obj). 

upload_fileobj(buf) return 's3://{}/{}'.format(bucket,obj) 

print(X_train.shape) 

print(Y_train.shape) 

print(X_test.shape) 

print(Y_test.shape) 

import io, boto3 

import sagemaker.amazon.common as smac 
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9. Taking a look at the S3 bucket in a terminal, we see that the training dataset 

only takes 5.5 MB. The combination of sparse matrix, protobuf, and RecordIO 

has paid off: 
 

 

 

10. What comes next is SageMaker business as usual. We find the name of the 

Factorization Machines container, configure the Estimator function, and set the 

hyperparameters: 
 

from sagemaker import image_uris 

region=boto3.Session().region_name 

container=image_uris.retrieve('factorization-machines', 

region) 

fm=sagemaker.estimator.Estimator( 

container, 

role=sagemaker.get_execution_role(), 

instance_count=1, 

instance_type='ml.c5.xlarge', 

output_path=output_prefix) 

fm.set_hyperparameters( 

feature_dim=num_features, 

predictor_type='regressor', 

num_factors=64, 

epochs=10) 

Looking at the documentation (https://docs.aws.amazon.com/ 

sagemaker/latest/dg/fact-machines-hyperparameters.html), 

we see that the required hyperparameters are feature_dim, predictor_type, 

and num_factors. The default setting for epochs is 1, which feels a little low, 

so we use 10 instead. 

output_prefix = 's3://{}/{}/output'.format(bucket, 

prefix) 
train_data = writeDatasetToProtobuf(X_train, Y_train, 

bucket, train_prefix, train_key) 

test_data = writeDatasetToProtobuf(X_test, Y_test, 

bucket, test_prefix, test_key) 

5796480 train.protobuf 

$ aws s3 ls s3://sagemaker-eu-west-1-123456789012/ 

fm-movielens/train/train.protobuf 

https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines-hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines-hyperparameters.html
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11. We then launch the training job. Did you notice that we didn't configure training 

inputs? We're simply passing the location of the two protobuf files. As protobuf 

is the default format for Factorization Machines (as well as other built-in 

algorithms), we can save a step: 
 

 

12. Once the job is over, we deploy the model to a real-time endpoint: 
 

 

 

13. We'll now send samples to the endpoint in JSON format (https://docs.aws. 

amazon.com/sagemaker/latest/dg/fact-machines.html#fm- 

inputoutput). For this purpose, we write a custom serializer to convert input 

data to JSON. The default JSON deserializer will be used automatically since we set 

the content type to 'application/json': 
 

 

 

 
 

14. We send the first three samples of the test set for prediction: 
 

The prediction looks like this: 

 

fm_predictor = fm.deploy( 

endpoint_name=endpoint_name, 

instance_type='ml.t2.medium', 

initial_instance_count=1) 

def fm_serializer(data): 

js = {'instances': []} 

for row in data: 

js['instances'].append({'features': 

row.tolist()}) 

return json.dumps(js) 

fm_predictor.content_type = 'application/json' 

fm_predictor.serializer = fm_serializer 

{'predictions': [{'score': 3.3772034645080566}, {'score': 

3.4299235343933105}, {'score': 3.6053106784820557}]} 

fm.fit({'train': train_data, 'test': test_data}) 

endpoint_name = 'fm-movielens-100k' 

import json 

result = fm_predictor.predict(X_test[:3].toarray()) 

print(result) 
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15. Using this model, we could fill all the empty cells in the recommendation matrix. 

For each user, we would simply predict the score of all movies, and store say the top 

50 movies. That information would be stored in a backend, and the corresponding 

metadata (title, genre, and so on) would be displayed to the user in 

a frontend application. 

16. Finally, we delete the endpoint: 

  fm_predictor.delete_endpoint()  

 

So far, we've only used supervised learning algorithms. In the next section, we'll move on 

to unsupervised learning with Principal Component Analysis. 

 

Using Principal Component Analysis 

Principal Component Analysis (PCA) is a dimension reductionality algorithm. It's 

often applied as a preliminary step before regression or classification. Let's use it on the 

protobuf dataset built in the Factorization Machines example. Its 2,625 columns are 

a good candidate for dimensionality reduction! We will use PCA by observing the 

following steps: 

1. Starting from the processed dataset, we configure the Estimator for PCA. 

By now, you should (almost) be able to do this with your eyes closed: 
 
 

 

 
 

2. We then set the hyperparameters. The required ones are the initial number of 

features, the number of principal components to compute, and the batch size: 
 

region = boto3.Session().region_name 

container = image_uris.retrieve('pca', region) 
pca = sagemaker.estimator.Estimator( 

container=container, 

role=sagemaker.get_execution_role(), 

instance_count=1, 

instance_type='ml.c5.xlarge', 

output_path=output_prefix) 

import boto3 

from sagemaker import image_uris 

pca.set_hyperparameters(feature_dim=num_features, 

num_components=64, 

mini_batch_size=1024) 
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3. We train and deploy the model: 
 

 

4. Then, we predict the first test sample, using the same serialization code as in the 

previous example: 
 

import json 

def pca_serializer(data): 

js = {'instances': []} 

for row in data: 

js['instances'].append({'features': 

row.tolist()}) 

return json.dumps(js) 

pca_predictor.content_type = 'application/json' 

pca_predictor.serializer = pca_serializer 

result = pca_predictor.predict(X_test[0].toarray()) 

print(result) 

This prints out the 64 principal components of the test sample. In real life, 

we typically would process the dataset with this model, save the results, and use 

them to train a regression model: 

Don't forget to delete the endpoint when you're done. Then, let's run one more 

unsupervised learning example to conclude this chapter! 

pca.fit({'train': train_data, 'test': test_data}) 

 

pca_predictor = pca.deploy( 

endpoint_name='pca-movielens-100k', 

instance_type='ml.t2.medium', 

initial_instance_count=1) 

{'projections': [{'projection': [-0.008711372502148151, 

0.0019895541481673717, 0.002355781616643071, 

0.012406938709318638, -0.0069608548656105995, 

-0.009556426666676998, <output removed>]}]} 
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Detecting anomalies with Random Cut Forest 

Random Cut Forest (RCF) is an unsupervised learning algorithm for anomaly detection 

(https://proceedings.mlr.press/v48/guha16.pdf). We're going to apply 

it to a subset of the household electric power consumption dataset (https://archive. 

ics.uci.edu/ml/), available in the GitHub repository for this book. The data has been 

aggregated hourly over a period of little less than a year (just under 8,000 values): 

1. In a Jupyter notebook, we load the dataset with pandas, and we display the 

first few lines: 
 
 

 

 

As shown in the following screenshot, the dataset has three columns: an hourly 

timestamp, the power consumption value (in kilowatt-hours), and the client ID: 
 

Figure 4.4 – Viewing the columns 

2. Using matplotlib, we plot the dataset to get a quick idea of what it looks like: 
 

 

 

The plot is shown in the following diagram. We see three time series corresponding 

to three different clients: 

df = pd.read_csv('item-demand-time.csv', dtype = object, 

names=['timestamp','value','client']) 

df.head(3) 

df.value=pd.to_numeric(df.value) 

df_plot=df.pivot(index='timestamp',columns='item', 

values='value') 

df_plot.plot(figsize=(40,10)) 

import pandas as pd 

import matplotlib 

import matplotlib.pyplot as plt 

https://proceedings.mlr.press/v48/guha16.pdf
https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
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Figure 4.5 – Viewing the dataset 

3. There are two issues with this dataset. First, it contains several time series: RCF 

can only train a model on a single series. Second, RCF requires integer values. 

Let's solve both problem with pandas: we only keep the "client_12" time 

series, we multiply its values by 100, and cast them to the integer type: 
 

The following diagram shows the first lines of the transformed dataset: 
 

Figure 4.6 – The values of the first lines 

4. We plot it again to check that it looks like expected. Note the large drop right after 

step 2,000, highlighted by a box in the following diagram. This is clearly an anomaly, 

and hopefully our model will catch it: 

Figure 4.7 – Viewing a single time series 

df = df[df['item']=='client_12'] 

df = df.drop(['item', 'timestamp'], axis=1) 

df.value *= 100 

df.value = df.value.astype('int32') 

df.head() 
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5. As in the previous examples, we save the dataset to a CSV file, which we upload 

to S3: 
 

import boto3 

import sagemaker 

sess = sagemaker.Session() 

bucket = sess.default_bucket() 

prefix = 'electricity' 

df.to_csv('electricity.csv', index=False, header=False) 

training_data_path = sess.upload_data( 

path='electricity.csv', 

key_prefix=prefix + 

'/input/training') 

6. Then, we define the training channel. There are a couple of quirks that we haven't 

met before. SageMaker generally doesn't have many of these, and reading the 

documentation goes a long way in pinpointing them (https://docs.aws. 

amazon.com/sagemaker/latest/dg/randomcutforest.html). 

First, the content type must state that data is not labeled. The reason for this is that 

RCF can accept an optional test channel where anomalies are labeled (label_ 

size=1). Even though the training channel never has labels, we still need to tell 

RCF. Second, the only distribution policy supported in RCF is ShardedByS3Key. 

This policy splits the dataset across the different instances in the training cluster, 

instead of sending them a full copy. We won't run distributed training here, but we 

need to set that policy nonetheless: 
 

 

7. The rest is business as usual: train and deploy! Once again, we reuse the code for the 

previous examples, and it's almost unchanged: 
 

 

 

rcf_data = {'train': training_data_channel} 

role = sagemaker.get_execution_role() 

region = boto3.Session().region_name 

container = image_uris.retrieve('randomcutforest', 

region) 

training_data_channel = 

sagemaker.TrainingInput( 

s3_data=training_data_path, 

content_type='text/csv;label_size=0', 

distribution='ShardedByS3Key') 

from sagemaker.estimator import Estimator 

from sagemaker import image_uris 

https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html
https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html
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8. After a few minutes, the model is deployed. We convert the input time series to 

a Python list, and we send it to the endpoint for prediction. We use CSV and JSON, 

respectively, for serialization and deserialization: 
 

 

 

 

The response contains the anomaly score for each value in the time series. It looks 

like this: 

 

9. We then convert this response to a Python list, and we then compute its mean and 

its standard deviation: 
 

 

 

 

rcf_estimator = Estimator(container, 

role=role, 

instance_count=1, 

instance_type='ml.m5.large', 

output_path='s3://{}/{}/output'.format(bucket, 

prefix)) 

rcf_estimator.set_hyperparameters(feature_dim=1) 

rcf_estimator.fit(rcf_data) 

endpoint_name = 'rcf-demo' 

rcf_predictor = rcf_estimator.deploy( 

endpoint_name=endpoint_name, 

initial_instance_count=1, 

instance_type='ml.t2.medium') 

rcf_predictor.deserializer = 

sagemaker.deserializers.JSONDeserializer() 

values = df['value'].astype('str').tolist() 

response = rcf_predictor.predict(values) 

print(response) 

scores = [] 

for s in response['scores']: 

scores.append(s['score']) 
score_mean = mean(scores) 

score_std = stdev(scores) 

rcf_predictor.content_type = 'text/csv' 

rcf_predictor.serializer = 

sagemaker.serializers.CSVSerializer() 

{'scores': [{'score': 1.0868037776}, {'score': 

1.5307718138}, {'score': 1.4208102841} … 

from statistics import mean,stdev 
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10. We plot a subset of the time series and the corresponding scores. Let's focus on 

the [2000-2500] interval, as this is where we saw a large drop. We also plot 

a line representing the mean plus three standard deviations (99.7% of the score 

distribution): any score largely exceeding the line is likely to be an anomaly: 
 

The drop is clearly visible in the following plot: 
 

Figure 4.8 – Zooming in on an anomaly 

As you can see on the following score plot, its score is sky high! Beyond a doubt, 

this value is an anomaly: 

Figure 4.9 – Viewing anomaly scores 

df[2000:2500].plot(figsize=(40,10)) 

plt.figure(figsize=(40,10)) 

plt.plot(scores[2000:2500]) 

plt.autoscale(tight=True) 

plt.axhline(y=score_mean+3*score_std, color='red') 

plt.show() 
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Exploring other intervals of the time series, we could certainly find more. Who said machine 

learning wasn't fun? 

11. Finally, we delete the endpoint: 

  rcf_predictor.delete_endpoint()  

 

Having gone through five complete examples, you should now be familiar with built-in 
algorithms, the SageMaker workflow, and the SDK. To fully master these topics, I would 
recommend experimenting with your datasets, and running the additional examples available at 
https://github.com/awslabs/amazon-sagemaker-examples/ 

tree/master/introduction_to_amazon_algorithms. 

 

Summary 
As you can see, built-in algorithms are a great way to quickly train and deploy models without 

having to write any machine learning code. 

In this chapter, you learned about the SageMaker workflow, and how to implement it with a handful 

of APIs from the SageMaker SDK, without ever worrying about infrastructure. 

You learned how to work with data in CSV and RecordIO-wrapped protobuf format, the latter 

being the preferred format for large-scale training on bulky datasets. 

You also learned how to build models with important algorithms for supervised and 

unsupervised learning: Linear Learner, XGBoost, Factorization Machines, PCA, and Random 

Cut Forest. 

In the next chapter, you will learn how to use additional built-in algorithms to build computer 

vision models. 

 

 

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction_to_amazon_algorithms

