
2012
royalholloway

series

Malware Armouring:
The Case Against
Incident-related
Binary Analysis

By Steve HendrikSe and JoHn auSten

A traditional incident response process
based on binary analysis may be futile when
dealing with today’s armoured malware.
Learn how malware is shielded from analysis
and how security pros can redirect their
antimalware efforts.

2012
royal

Holloway
SerieS

Malware arMouring: The Case againsT inCidenT-relaTed Binary analysis 2

2012
royalholloway

series

Malware armouring:
the Case against incident-
related Binary analysis

While an important step in the incident response process is to understand
the breadth of an intrusion and its impact to the organisation, advances in
malware armouring have made it virtually impossible to decipher the true
nature and intent of the malware. So effective incident response should
focus primarily on early detection and identification of threats, and timely
and effective response using some auto-
mated eradication method.

incident response
In a commercial enterprise the most
important reason for having an active inci-
dent response process for malware infes-
tations is to understand the impact of the
infestation. At best, a complete listing of
all the systems and data that the malware
was in contact with will allow identifica-
tion of leaked or compromised intellectual
property.

The incident response process is respon-
sible for accurately identifying the threat
and its propagation methods, thus allow-
ing for quick and effective cleaning and recovery of the corporate network.
If the threat has not been accurately identified, or if the threat has taken
an extended amount of time to characterise, unnecessary damage may be
realised in the form of additional data loss or cost of remediation effort.

IncIdent

response

ArmourIng

technIques

encodIng

conclusIons

computer security incident
response is made up of several
interconnected phases. they
form a circle where the output
of each phase is fed into the next,
and that from the last phase is
fed back into the first:

• identification

• Containment

• eradication

• recovery

• lessons learned

Malware arMouring: The Case againsT inCidenT-relaTed Binary analysis 3

2012
royalholloway

series Malware arMouring: tHe CaSe againSt inCident-related Binary analySiS

The organisation should be able to understand how the threat was able
to bypass existing controls to gain a foothold in the corporate environ-
ment. The bypass may have resulted from weak technical controls, weak
policy, or weak user awareness and training. Once these areas of weakness
are identified, they can be fed back into the incident response process as
opportunities for improvement.

Preparation. Depending on the organisation’s response requirements,
a response team will be formed of staff from departments like public
relations, product management, human
resources, legal and the various IT
functions.

Clearly, the processes and procedures
required for analysis of malware executa-
bles and an effective response should be
developed and tested prior to an actual inci-
dent. In this way, the analysts in the team
will have experience using the tools and
can recognise valid output from the tools.

identification. Once a suspicious host
has been identified, the search for the mali-
cious executable begins. In the family of system activity monitoring tools,
the tools most useful are those that can identify:

1. inconsistencies between high level (API) calls and low level
(direct) calls

2. processes in “run”-able state that aren’t shown in the task list
3. registry anomalies or inconsistencies
4. hidden sections of disk (both allocated and not)
5. non-standard network port use or activity

Containment. With the confirmed identification of an executable file
spawning a malicious process on the computer, the incident response
process moves into the containment phase. Its primary goal is to keep the
problem from getting worse. In the commercial enterprise, this goal is likely
to include the collection and delivery of a specimen copy of the malicious
executable file to the business partner responsible for creating a “detect
and clean” A/V signature.

Once the specimen has been sent to the A/V partner, short–term con-

Tools for malware analysis can
be classified into four families:

• File identification and
manipulation tools

• System delta tools

• System activity
monitoring tools

• File deconstruction tools

IncIdent

response

ArmourIng

technIques

encodIng

conclusIons

Malware arMouring: The Case againsT inCidenT-relaTed Binary analysis 4

2012
royalholloway

series

tainment efforts will be undertaken, which may include installing a network
access control list (ACL) to disallow any in- or out- bound network traf-
fic from the host, the blocking of certain executables, or disconnection of
infected machines from the corporate network.

eradication. The goal of the eradication phase is to get rid of the attacker’s
artifacts on the machine, including accounts, malicious code, pirated soft-
ware, pornographic material or anything else the malicious actor has left on
the machine. Once the malware has been identified and analysed, compen-
sating controls can be applied to remove the threat of re-infection and/or
spread of the infection.

recovery. The goal of the recovery phase is to put the impacted systems
back into production in a safe manner. Once the threat has been removed
from the environment, the task of recovering work product interrupted by
the infection can commence. Data can be recovered from backups and put
back into production once the data has been scrubbed to ensure it is free
from malicious additions or modifications.

lessons learned. The goal of the lessons learned phase is to document
what happened and improve the organisations’ capabilities. By assessing
the incident, from infection to identified impact, an organisation can evalu-
ate the controls for their effectiveness in stopping identified threats. This
evaluation should provide a list of areas that can be given priority from the
perspective of compensating control implementation.

armouring techniques
The goal of all armouring techniques in malware is to delay or stop the
analysis of an executable by behavioural observation and/or reverse engi-
neering. This maximises its effective lifespan in the network—intranet or
Internet—and the anonymity of both the attackers and their controlling
servers.

Effective lifespan is the amount of time that the malware can exist within
a system or network without being detected by mainstream detection
mechanisms like those listed in above under “identification”.

Organisations will have limited success in cleaning a system if they are
not able to identify all of the locations in which the malware has embedded
itself. Once identified, a malware specimen will be analysed for the follow-
ing purposes:

Malware arMouring: tHe CaSe againSt inCident-related Binary analySiS

IncIdent

response

ArmourIng

technIques

encodIng

conclusIons

Malware arMouring: The Case againsT inCidenT-relaTed Binary analysis 5

2012
royalholloway

series

1. development of a compensating control against the malware
threat—for detection and cleaning

2. Quantification of incident impact

3. technical curiosity or research, which includes “borrowing”
another malware writer’s techniques

encoding
There is a family of armouring techniques that all revolve around obfuscat-
ing the human readable content of the malware from the analyst. These
encoding techniques do not alter the malware’s execution flow; rather they
simply mask the user input/output routines under a veil of obfuscation.

String encoding. During development any character-based English read-
able strings are replaced in the malware by an encoded equivalent. With-
out this, the strings stored within the executable bring a wealth of insight
about its workings to the analyst. However, if dumping of strings yields no
actionable intelligence, the malware could be opened in a debugger or dis-
assembler and analysed to identify the string encoding and decoding func-
tions. Once these functions are identified, each of the encoded strings, also
identified in the disassembly process, can
be manually decoded to identify its actual
message.

Payload encoding (encryption). Payload
encoding works much like string encod-
ing, but is applied to the communication
between victim and controller over the net-
work. Prior to sending any communication
over the network, the data is put through an
encoding or encryption algorithm.

This encoding can also be applied to pay-
loads stored on the local disk of the infected
computer—like keylogger data files. In the process of media and/or net-
work capture analysis, these encrypted/encoded payloads may be found,
but no intelligence will be gleaned from them due to the encoding. As
before, an analyst may be able to open the malware in a debugger or disas-
sembler and identify the routine responsible for the encoding of the data,

Effective lifespan of armoured
malware is maximised by the

following capabilities:

• Hidden methods of spread
and infection

• unknown capabilities

• resistance to identification
and classification

IncIdent

response

ArmourIng

technIques

encodIng

conclusIons

Malware arMouring: tHe CaSe againSt inCident-related Binary analySiS

Malware arMouring: The Case againsT inCidenT-relaTed Binary analysis 6

2012
royalholloway

series

but the task will be quite laborious and may even lead to the abandonment
of the analysis of the malware.

executable Packing. Malware authors use their own packers to com-
press an executable or DLL. Every standard Windows file based on the PE
(Portable Executable) format has a loader
section containing the instructions required
for decompressing each section of the
stored file prior to copying it to memory.
Since the loader is responsible for protect-
ing the rest of the executable, the packer
implements protection against analysis,
such as encryption or debugger detection.

Due to section relocations and the
removal of run-time library dependency
references, not all malware can be success-
fully unpacked into valid executable format.
This often forces the analyst into manual
analysis of the executable which is tedious, error prone and may lead to
abandonment of the analysis.

virtual Machine environment (vMe) detection. Security researchers
have observed that there are multiple kernel data structures within a run-
ning system that give clues to whether the running system is within a vir-
tual machine environment. Malware is often able to query these tables to
determine if it is being run inside a virtualised machine.

In addition to kernel structure differences, most VMEs have device driv-
ers that optimise the use of shared and/or virtualised hardware. Similarly,
there are typically communication channels between the host and guest
operating systems. Often these device drivers or communications channels
can be discovered, which identifies the environment as being virtual.

If a piece of malware is able to detect whether the environment is virtual,
it can execute differently from when the malware is executing on “bare
metal” hardware. Thus hackers can use VME detection to hinder analysis
by returning fake or manufactured results in an effort to divert attention
away from the actual goals of the malware.

run-time decryption. Run-time decryption is similar in most ways to a
packer, with the exception that instead of only using a compression algo-
rithm to reduce the size of an executable, the executable is compressed,

Malware arMouring: tHe CaSe againSt inCident-related Binary analySiS

Malware is analysed for the
purpose of:

1. developing compensating
controls

2. Quantification of incident
impact

3. research into malware
techniques

IncIdent

response

ArmourIng

technIques

encodIng

conclusIons

Malware arMouring: The Case againsT inCidenT-relaTed Binary analysis 7

2012
royalholloway

series

encrypted, and then written to disk. Like a packer, for which the unpack-
ing routine is distributed with the executable, the decryption routine for an
encrypted executable is stored inside the executable and is distributed with
each copy.

In much the same way as a packer can be defeated by manually unpack-
ing the executable, an encrypted executable can be manually decrypted
and returned to its native machine ready state. Since the decryption routine
is attached to the executable, the analyst has all the required data needed
to defeat the armouring technique.

Polymorphism and Metamorphism. One of the shortcomings of runtime-
encrypted malware is that while the virus body looks different from gen-
eration to generation, the decrypter that is embedded in the virus remains
constant for all generations. As a result, it
is possible to detect the virus indirectly by
recognising the code pattern of the decryp-
ter. Polymorphism is a particularly robust
form of runtime encryption. A polymorphic
virus generally makes several changes to
the default encryption settings, as well as
altering the decryption code.

In contrast to polymorphism, the idea
behind metamorphism is to alter the con-
tent of the virus itself, rather than hiding
the content with encryption. The typical
execution phases of metamorphic malware
start with the capability to locate its own
code within the host program, then decode,
analyse, transform itself to a new entity and
finally reattach to a new host.

While the self-transforming techniques
for creating metamorphic malware provide
great benefit to the malware author, metamorphism adds complexity and
as much as 80% more code to the malware.

 A strategy recently devised to offer the benefits of polymorphism and
metamorphism while not adding considerable complexity to the malware
itself is known as “server-side polymorphism”. Instead of having the mal-
ware carry the transformation routines within it; the malware is either
transformed upon distribution from the server, or the malware is updated
to a transformed version of itself after initial infection.

Malware arMouring: tHe CaSe againSt inCident-related Binary analySiS

Packing an executable
offers many advantages
to the malware:

• it is protected from reverse
engineering or analysis

• the unpacked image is never
written to disk, bypassing many
host based protections

• it is an idS (intrusion detec-
tion system) evasion tactic,
as string markers within the
executable are obfuscated

• reduced size is useful
for covert transmission of
payloads.

IncIdent

response

ArmourIng

technIques

encodIng

conclusIons

Malware arMouring: The Case againsT inCidenT-relaTed Binary analysis 8

2012
royalholloway

series

The primary use for polymorphism and metamorphism is to evade detec-
tion by signature-based and heuristic-based tools. Unlike both packed
and run-time encrypted malware, future generations of poly- and meta-
morphic malware will escape detection by signature based monitoring
solutions.

anti-debugging. There are functions available in the Windows API
that return TRUE if the current program is running from within a debug-
ger. Unfortunately, the Windows API is quite high-level and easy to spot
(and bypass) from within the debugger.
In response, developers of malware move
lower in the application stack and bypass
the API call in order to directly query the
process or thread structures and even CPU
registers themselves—which is more diffi-
cult to detect.

An exception is an unintended or unex-
pected event that occurs during the execu-
tion of a program, and requires the execu-
tion of code outside the normal flow of
control. Software exceptions are initiated
explicitly by applications or the operating
system. A side effect of the Unhandled-ExceptionFilter function for handling
exceptions can be used to signal to the malware that it is being executed
from within a debugger.

Timing based detection asserts that the time difference between instruc-
tions is longer when an executable is being debugged than if the CPU is
freely running the executable. If a sequence of instructions takes longer
than expected, the malware can conclude it is running within a debugger
and respond accordingly.

Modified code based detection is based on the developer having stored a
fingerprint (or hash) of the malware itself within the malware. Then, upon
each execution of the binary, the in-memory process fingerprint is com-
pared to the fingerprint stored within the executable. If the fingerprints dif-
fer, the malware can trigger a different payload.

All of the forms of debugger detection are intended for use in hiding the
true nature of machine level instructions from the analyst. If the analyst can
unravel this true nature, he will be able to bypass the various types of pro-
tection intended by these instructions.

Malware arMouring: tHe CaSe againSt inCident-related Binary analySiS

In a polymorphic virus,
the content of the
underlying virus code
body does not change;
encryption alters its
appearance only.

IncIdent

response

ArmourIng

technIques

encodIng

conclusIons

Malware arMouring: The Case againsT inCidenT-relaTed Binary analysis 9

2012
royalholloway

series

Multi-partite. Multi-partite traditionally refers to a malware threat
that has components of both a boot sector virus and a rootkit. This tradi-
tional view has been updated to include the Downloader/Dropper family of
threats. These usually save a range of files to the victim’s drive, and launch
them without any notification or with fake notification of an archive error,
an outdated operating system version, or etc.

The goal of the multi-partite armouring technique is to minimise the
footprint and separate each feature of the malware such that it is harder to
detect and remove, while allowing for easier upgrading and expansion to
new threat capabilities.

conclusions
The primary reason an organisation will
undertake a binary analysis of malware is
to understand the breadth and impact of
the attack. In the case of a malware infec-
tion, the breadth may simply be number
of machines infected. The impact of the
attack will be decided based on the amount
of damage done by the infected machine
under the control of the attacker or by the
amount and type of data corrupted, deleted
or stolen through the infection. Tradition-
ally, in order to understand the damage
potential of either of these, analysis of the
malware was required.

Malware authors recognise that a key
defence against being discovered is the
ability to remain hidden from sight of
traditional security controls. In this way,
one of the goals of binary armouring is to
ensure that the defenders of a network are
unable to differentiate between normal
traffic and traffic that exists as a result of an ongoing infection by mal-
ware. Additionally, the other primary goal of these armouring techniques
is to block the understanding of the mechanics and capabilities of the
armoured executable.

As organisations continue to rely more and more on the computing
infrastructure and the interconnectedness of their business, and while the

Malware arMouring: tHe CaSe againSt inCident-related Binary analySiS

Techniques for malware
self-transformation include:

1. instruction substitution, which
entails the replacement of
an instruction or a group of
instructions with an equivalent
instruction or group.

2. register swapping whereby
the malware mutates itself by
moving operands to different
registers.

3. adding instructions that have
no effect on program out-
comes in order to change the
appearance of the executable.

4. Permuting subroutines to
change the appearance of
the malware.

5. transposing instructions that
have no dependency between
them.

IncIdent

response

ArmourIng

technIques

encodIng

conclusIons

Malware arMouring: The Case againsT inCidenT-relaTed Binary analysis 10

2012
royalholloway

series

proceeds of a successful intrusion continue to soar, malware will continue
to flourish. This malware is created at an alarming rate, it is armoured using
sophisticated techniques, it attacks organisations from every conceivable
vector, and it is difficult to analyse properly. Until such time as a technol-
ogy is created that will accurately identify and block malware, commercial
organisations should allocate their resources to classifying and controlling
access to their sensitive data, rather than trying to decipher the intent of
malware.

Once your AV vendor has created a signature for the malware, your best
course of action is to let the AV solution clean up and disinfect the system,
rather than spending endless time trying to get to the bottom of how the
malware managed to infect in the first place. n

about the authors:
steve hendrikse has a background in system administration and development and has worked in
most disciplines of information security, including penetration testing, technical risk assessment,
incident response and investigation, and operational security monitoring. Currently, hendrikse works
for a multinational telecommunications firm doing application vulnerability assessments and security
code reviews.

John austen is course director for the royal holloway diploma in information security. he was the
head of the Computer Crime unit, new scotland yard, until september 1996. austen was the first
chairman of the interpol Computer Crime Committee, serving from 1991 to 1996 and was responsible
for the worldwide standardisation of police procedure.

Malware arMouring: tHe CaSe againSt inCident-related Binary analySiS

IncIdent

response

ArmourIng

technIques

encodIng

conclusIons

