
223

9Handling failures securely

This chapter covers
¡	Separating business and technical exceptions

¡	Removing security issues by designing for
failure

¡	Why availability is an important security goal

¡	Designing for resilience for a more secure
system

¡	Unvalidated data and security vulnerabilities

What is it that makes failures so interesting from a security perspective? Could it be
that many systems reveal their internal secrets when they fail? Or is it how handling
failure defines a system’s level of security? Regardless, recognizing that failures and
security go hand-in-hand is incredibly important when designing secure software.
This, in turn, requires understanding what the security implications are when mak-
ing certain design choices. For example, if you choose to use exceptions to signal
errors, you need to make sure you don’t leak sensitive data. Or when integrating
systems, if you don’t recognize the danger of cascading failures, you could end up
with a system as fragile as a house of cards.

224 chapter 9 Handling failures securely

Regardless of which design choices you make, or why, you need to consider failure.
The focus of this chapter isn’t to tell you which design is better, but rather to give you
insight into the security implications when making certain design choices. Also, the
scope of failures is huge. To give you an idea of how complex the topic is, we’ll show you
examples ranging from low-level code constructs to high-level system design. All in all,
this is a good starting point for learning how to handle failures securely. With that said,
let’s start with one of the most common design choices—exceptions.

9.1 Using exceptions to deal with failure
Exceptions are often used to represent failures because they allow you to disrupt the
normal flow of an application program.1 Because of this, it’s common that exceptions
carry information about why and where the execution flow was disrupted—the why is
described in the message and the where by the stack trace. In listing 9.1, you see a stack
trace resulting from a closed database connection. At first glance, it seems harmless,
but if you look carefully, you’ll see that it reveals information that you might want to
keep secret. For example, the first line shows that the exception is a java.sql.SQL
Exception. This tells you that data is stored in a relational database, and the system can
be susceptible to SQL injection attacks. The same line also shows that the code is writ-
ten in Java, which hints that the overall system might be vulnerable to exploits present
in the language and the Java Virtual Machine (JVM).

Listing 9.1 Stack trace of a SQL exception when the database connection was closed

java.sql.SQLException: Closed Connection
 at oracle.jdbc.driver.DatabaseError...
 at oracle.jdbc.driver.DatabaseError.throwSqlException(...
 at oracle.jdbc.driver.PhysicalConnection.rollback(...
 at org.apache.tomcat.dbcp.dbcp.DelegatingConnection...
 at org.apache.tomcat.dbcp.dbcp.PoolingDataSource$
 PoolGuardConnectionWrapper.rollback(...
 at net.sf.hibernate.transaction.JDBCTransaction...
...

Obviously, the level of detail in a stack trace is meant for troubleshooting rather than
sharing. But why is it that stack traces get revealed to the end user every now and
then? The answer lies in a combination of sloppy design and not understanding why

1 See the Oracle documentation on exceptions at https://docs.oracle.com/javase/tutorial/essential/
exceptions/definition.html.

java.sql.SQLException shows Java is used. SQLException indicates that data
is stored in a relational database.

org.apache.tomcat.dbcp shows
that Apache Tomcat’s database
connection pool component is used.2

net.sf.hibernate shows that Hibernate
is used as an object relational mapper.3

2 See the Apache Commons DBCP documentation at https://commons.apache.org/proper/
commons-dbcp/index.html.

3 See “Hibernate ORM: What Is Object/Relational Mapping?” at http://hibernate.org/orm/what-is-
an-orm/.

 225Using exceptions to deal with failure

exceptions are thrown. To illustrate this, we’ll walk you through an example where sen-
sitive business information is leaked from the domain because of intermixing business
and technical exceptions of the same type. The example also helps to demonstrate
why it’s important to never include business data in technical exceptions, regardless of
whether it’s sensitive or not.

9.1.1 Throwing exceptions

As illustrated in figure 9.1, there are three main reasons why exceptions are thrown in
an application: business rule violations, technical errors, and failures in the underlying
framework. All exceptions share the same objective of preventing illegal actions, but
the purpose of each one differs. For example, business exceptions prevent actions that
are considered illegal from a domain perspective, such as withdrawing money from a
bank account with insufficient funds or adding items to a paid order. Technical excep-
tions are exceptions that aren’t concerned about domain rules. Instead, they prevent
actions that are illegal from a technical point of view, such as adding items to an order
without enough memory allocated.

We believe separating business exceptions and technical exceptions is a good design
strategy because technical details don’t belong in the domain.4 But not everyone agrees.
Some choose to favor designs that intermix business exceptions and technical excep-
tions because the main objective is to prevent illegal actions, regardless of whether
the illegality is technical or not. This might seem to be a minor detail, but intermixing
exceptions is a door opener to a lot of complexity and potential security problems.

Business
exceptions

Technical
exceptions

Domain rule
violations

Framework
violations

Technical
violations

Figure 9.1 Three reasons for throwing exceptions in an application: domain rule
violations, technical violations, and framework violations

4 See Dan B. Johnsson’s essay “Distinguish Business Exceptions from Technical” in 97 Things Every Pro-
grammer Should Know: Collective Wisdom from the Experts, edited by Kevlin Henney (O’Reilly, 2010).

226 chapter 9 Handling failures securely

In listing 9.2, business and technical exceptions are intermixed using the same excep-
tion type. The main flow is fairly straightforward: a customer’s accounts are fetched
from a database, and the account matching the provided account number is returned.
As part of this, an exception is thrown if no account is found or if an error occurs in the
database.

Listing 9.2 Intermixing business and technical exceptions using the same type

import static java.lang.String.format;
import static org.apache.commons.lang3.Validate.notNull;

public Account fetchAccountFor(final Customer customer,
 final AccountNumber accountNumber) {
 notNull(customer);
 notNull(accountNumber);

 try {
 return accountDatabase
 .selectAccountsFor(customer)
 .stream()
 .filter(account >
 account.number().equals(accountNumber))
 .findFirst()
 .orElseThrow(
 () > new IllegalStateException(
 format("No account matching %s for %s",
 accountNumber.value(), customer)));
 } catch (SQLException e) {
 throw new IllegalStateException(
 format("Unable to retrieve account %s for %s",
 accountNumber.value(), customer), e);
 }
}

The documentation of IllegalStateException specifies that it should be used to sig-
nal that a method has been invoked at an illegal or inappropriate time. It could be
argued that not matching an account is neither illegal nor inappropriate and using
an IllegalStateException is incorrect—a better choice might be IllegalArgument
Exception. But using IllegalStateException as a generic way of signaling failure is
quite common, and we’ve decided to follow this pattern to better illustrate the prob-
lem of intermixing technical and business exceptions.

Throwing an exception when no account is found is logically sound, but is this a
technical problem or a business rule violation? From a technical point of view, not
matching an account is perfectly fine, but from a business perspective, you might want
to communicate this to the user—for example, “Incorrect account number, please try
again.” This motivates having business rules around it, which makes the exception a
business exception.

Fetches the customer’s
accounts from the database

Selects only the accounts
that match the provided
account number

Selects the first matching
account because there can

only be one matching
account per account number

Throws an IllegalStateException
if there’s no matching account
for the provided account number

Translates a SQLException into an IllegalStateException
with a specific message if there’s an error in the database

 227Using exceptions to deal with failure

The second exception (thrown in the catch clause) is caused by a failing database
connection or a malformed SQL query in the database. This also needs to be communi-
cated, but not by the domain. Instead, you could rely on the surrounding framework to
give an appropriate message—for example, “We’re experiencing some technical prob-
lems at the moment, please try again later.” This means the domain doesn’t need rules
for this exception, which makes it a technical exception. But how can you tell if you’re
dealing with a business or technical exception when both are of type IllegalState
Exception? Well, this is why you shouldn’t intermix business and technical exceptions
using the same type. But sometimes things are just the way they are, so let’s find out how
to handle this and learn what the security implications are.

Be careful using findFirst
The Java Stream API offers a rich set of functionality, where findFirst is a method that
lets you short-circuit stream processing by selecting the first occurrence of an object. In
listing 9.2, it’s assumed that a one-to-one mapping exists between account and account
number. Applying findFirst might then seem to be the natural choice, but this is where
you need to be careful.

If you choose to use findFirst, it implies you don’t care which element you choose as
long as it exists. But that’s not the case when fetching accounts: associating an account
number with the correct account is imperative, and anything else is a disaster. The only
reason that findFirst works in fetchAccountFor is because of the underlying rela-
tionship between account and account number. If this suddenly changes (either inten-
tionally or because of a bug), the behavior of fetching accounts becomes random, and
that’s a hard bug to find!

A better solution is to use the Stream API’s reduce method instead of findFirst to
state the uniqueness assumption explicitly and to fail if multiple elements are found.
The reduce operation is sometimes perceived as complex and hard to understand, but
the essence is that it reduces the number of elements in a stream by applying an asso-
ciative accumulation function to derive a new element. For example, summation can be
expressed as reduce((a, b) → a + b). This implies that reduce executes only if there
are two or more elements present in a stream, and this is something you can use as a guar-
antee or contract. If reduce executes, you know the uniqueness requirement has been
violated, but instead of reducing two elements into one, you throw an exception; for exam-
ple, reduce((accountA, accountB) → throw new IllegalStateException(...).
This way, assumptions are stated explicitly, along with avoiding ambiguities and random
behavior by design.

9.1.2 Handling exceptions

Handling exceptions seems easy at first; you surround a statement with a trycatch block
and you’re done. But when different failures use the same exception type, things get a
bit more complicated. In listing 9.3, you see the calling code of the fetch AccountFor
method in listing 9.2. Because you want to deal with only business exceptions in the

228 chapter 9 Handling failures securely

domain, you need to figure out how to distinguish between business exceptions and
technical exceptions, even though both are of type IllegalStateException.

Unfortunately, you don’t have much to go on, because both exceptions carry the
same data. The only tangible difference is the internal message: the business excep-
tion message contains “No account matching,” and the technical exception contains
“Unable to retrieve account.” This allows you to use the message as a discriminator and
pass technical exceptions to a global exception handler that catches all exceptions, logs
the payload, and rolls back the transaction due to technical problems.

Listing 9.3 Separating technical and business exceptions by message contents

import static org.apache.commons.lang3.Validate.notNull;

private final AccountRepository repository;

public Balance accountBalance(final Customer customer,
 final AccountNumber accountNumber) {
 notNull(customer);
 notNull(accountNumber);

 try {
 return repository.fetchAccountFor(customer, accountNumber)
 .balance();
 } catch (IllegalStateException e) {
 if (e.getMessage().contains("No account matching")) {
 return Balance.unknown(accountNumber);
 }
 throw e;
 }
}

But what happens if you change the message or add another business exception with a
different message? Won’t that cause the exception to propagate out of the domain? It
certainly will, and this is how sensitive data often ends up in logs or accidentally being
displayed to the end user.

In listing 9.1, you saw how stack traces reveal information that doesn’t make sense
to show to a normal user. Instead, displaying a default error page with an informative
message would be far better; for example, the message “Oops, something has gone
terribly wrong. Sorry for the inconvenience. Please try again later.” A global exception
handler is often used for this purpose because it prevents exceptions from propagat-
ing to the end user by catching all exceptions. Different frameworks use different solu-
tions for this, but the idea is the same. All transactions execute via a global exception
handler, and if an exception is caught, the exception payload is logged and the trans-
action is rolled back. This way, it’s possible to prevent exceptions from propagating
further, which makes it a lot harder for an attacker to retrieve internal information
when a transaction fails.

Let’s turn back to the accountBalance method in listing 9.3. It’s obvious you can’t
discriminate based on the exception message, because it makes the design too fragile.

Checks the internal message to determine
if it’s a business exception or not

Returns an unknown balance
for the requested account
number if the message matchesPropagates the exception further up the

call stack if the message doesn’t match

 229Using exceptions to deal with failure

Instead, you should separate business and technical exceptions by explicitly defining
exceptions that are important for the business.

In listing 9.4, you can see an explicit domain exception (AccountNotFound) that sig-
nifies the event of not matching an account. The exception extends the generic type
AccountException, which acts only as a marker type—a design decision that helps to
prevent accidental business exceptions from leaking from the handling logic.

Listing 9.4 An explicit domain exception signifying that no account has been found

import static org.apache.commons.lang3.Validate.notNull;

public abstract class AccountException extends
 RuntimeException {}

public class AccountNotFound extends
 AccountException {
 private final AccountNumber accountNumber;
 private final Customer customer;

 public AccountNotFound(final AccountNumber accountNumber,
 final Customer customer) {
 this.accountNumber = notNull(accountNumber);
 this.customer = notNull(customer);
 }
 ...
}

In listing 9.5, the fetchAccountFor method is revised to use the AccountNotFound
exception instead of a generic IllegalStateException. This way, the code is clarified
in the sense that you don’t need to provide a message or worry about intermixing its
purpose with other exceptions.

Listing 9.5 Explicitly defining a domain exception to signal that no account is found

import static java.lang.String.format;
import static org.apache.commons.lang3.Validate.notNull;

private final AccountDatabase accountDatabase;

public Account fetchAccountFor(final Customer customer,
 final AccountNumber accountNumber) {
 notNull(customer);
 notNull(accountNumber);

 try {
 return accountDatabase
 .selectAccountsFor(customer).stream()
 .filter(account > account.number().equals(accountNumber))
 .findFirst()
 .orElseThrow(() >
 new AccountNotFound(accountNumber,customer));

Generic domain type that all
account exceptions extend

Explicit domain exception
that signifies that no
account has been found

Replaces the generic
IllegalStateException with an

explicit domain exception

230 chapter 9 Handling failures securely

 } catch (SQLException e) {
 throw new IllegalStateException(
 format("Unable to retrieve account %s for %s",
 accountNumber.value(), customer), e);
 }
}

In listing 9.6, the handling logic is revised to catch the exceptions AccountNotFound and
AccountException. From a security perspective, this is much better because it allows
less complex mappings between business rules and exceptions, compared with using
only generic exceptions such as IllegalStateException. Catching AccountException
seems redundant, but this safety net is quite important. Because all business exceptions
extend AccountException, it’s possible to guarantee that all business exceptions are
handled and that only technical exceptions propagate to the global exception handler.

Listing 9.6 Revised handling logic with explicit domain exception

import static java.lang.String.format;
import static org.apache.commons.lang3.Validate.notNull;

private final AccountRepository repository;

public Balance accountBalance(final Customer customer,
 final AccountNumber accountNumber) {
 notNull(customer);
 notNull(accountNumber);

 try {
 return repository.fetchAccountFor(customer, accountNumber)
 .balance();
 }
 catch (AccountNotFound e) {
 return Balance.unknown(accountNumber);
 }
 catch (AccountException e) {
 throw new IllegalStateException(
 format("Unhandled domain exception: %s",
 e.getClass().getSimpleName()));
 }
}

Separating business exceptions and technical exceptions clearly makes the code less com-
plex and helps prevent accidental leakage of business information. But sensitive data isn’t
leaked only through unhandled business exceptions. It’s often the case that business data
is included in technical exceptions for debugging and failure analysis as well; for example,
in listing 9.5, the SQLException is mapped to an IllegalStateException that includes
the account number and customer data, which are needed only during failure analysis.
To some extent, this counteracts the work of separating business and technical excep-
tions, because sensitive data leaks regardless. To address this issue, you need a design that
enforces security in depth—so let’s have a look at how to deal with exception payload.

Handles AccountNotFound exception explicitly
without parsing the internal message

Catches all unhandled business exceptions

Signals that an unhandled domain
exception has been detected and that
the transaction should be aborted

 231Using exceptions to deal with failure

9.1.3 Dealing with exception payload

There are two parts of an exception that are of special interest when analyzing failures:
the type and the payload. By combining type information and payload data, you get
an understanding of what failed and why it failed. As a consequence, many developers
tend to include lots of business information in exceptions, regardless of how sensitive
it is. For example, in the next listing, you see a snippet from the fetchAccountFor
example where an IllegalStateException is populated with the account number
and customer data, even though it’s a technical exception.

Listing 9.7 Including sensitive data in a technical exception

import static java.lang.String.format;

catch (SQLException e) {
 throw new IllegalStateException(
 format("Unable to retrieve account %s for %s",
 accountNumber.value(), customer), e);
}

Having the account number and customer data during failure analysis certainly helps,
but from a security perspective, you have a major problem. All technical exceptions
propagate to the global exception handler that logs all exception data before rolling
back the transaction. This means that the account number and customer data, like
Social Security number, address, and customer ID, get logged when a database error
occurs—a major security problem that requires logs to be placed under strict access
and authorization control. And this isn’t what you want when developers need access
to production logs.

Obviously, you don’t want sensitive data to escape the business domain, but some-
times it’s hard to recognize what’s sensitive. Exceptions can travel across context
boundaries, and insensitive data in one context could become sensitive when entering
another context. For example, a car’s license plate number tends to be seen as public
information, but if someone runs your car’s plate against the Department of Motor
Vehicles database to identify you, it suddenly becomes information you don’t want to
share. This puts you in a difficult position. On one hand, you need enough information
to facilitate failure analysis; on the other hand, you want to prevent data leakage. How
does this affect the design?

To start with, you need to recognize that almost any business data is potentially sensi-
tive in another context. This means it’s good design practice to never include business
data in technical exceptions, regardless of whether it’s sensitive or not. Also, you need
to make sure to provide only information that makes sense from a technical perspec-
tive; for example, “Unable to connect to database with ID XYZ,” instead of the account
number and customer data that caused the failure. This way, you know that it’s safe to
propagate technical exceptions from the domain and that the payload never contains
sensitive business data.

Leaks account number
and customer data from
the business domain
when logged by the
global exception handler

232 chapter 9 Handling failures securely

But following this practice gets you only halfway. You also need to identify sensitive
data in your domain and model it as such. In chapter 5, you learned about the read-once
pattern, which prevents data from being read multiple times and accidentally serial-
ized; for example, when sent over the network or written to log files. If the account
number and customer data had been modeled as sensitive and the read-once pattern
used, illegal logging in the global exception handler would have been detected.

The choice of using exceptions to represent technical errors and valid results pri-
marily opens the door to data leakage problems. By separating business and technical
exceptions along with using the read-once pattern, it’s possible to solve this—but is it
the best solution, or is there another way? Perhaps, so let’s evaluate how to handle fail-
ures without exceptions and see what security benefits there are.

9.2 Handling failures without exceptions
Using exceptions to represent failures in domain logic is a common practice, but
another equally common approach is to not use exceptions at all. This approach starts
with the design mindset that failures are a natural and expected outcome of anything
we do. Because exceptions represent something exceptional (the name kind of gives
it away) and failures are expected outcomes, it doesn’t make sense to model them as
exceptions. Instead, a failure should be modeled as a possible result of a performed
operation in the same way a success is. By designing failures as unexceptional out-
comes, you can avoid several of the problems that come from using exceptions—
including ambiguity between domain and technical exceptions, and inadvertently
leaking sensitive information.

If you look at the logic you implement in an application, it quickly becomes obvious
that it’s not only about happy cases. When you execute a method, you have an intention
of performing a specific action. Performing that action can almost always have multiple
outcomes. At the very least, it can succeed or it can fail. In this section, you’ll learn how
to gain more security by designing failures without using exceptions.

To explain this design approach, let’s illustrate the difference between designing fail-
ures as exceptions versus designing them as expected outcomes. We’ll do this by solving
the same task using the two different approaches. The task is to implement a system to
transfer money between bank accounts. In the current domain of banking, a money
transfer can have two possible outcomes: either the transaction is performed or it fails
due to insufficient funds (figure 9.2).

9.2.1 Failures aren’t exceptional

If you choose to design using exceptions, your implementation will look something like
listing 9.8. The method to transfer money from one bank account to another is called
transfer and takes two arguments: the amount to transfer and the destination account.
The first thing that needs to be done in the transfer method is to check that there are
enough funds in the source account to cover the transfer. If the source account is lacking
funds, an InsufficientFundsException is thrown; in which case, the exception needs

Has
sufficient
funds?

Yes

No

Initiate
transfer

Execute
transfer

Execution flow of
a money transfer

Reject
transfer

Figure 9.2 The possible outcomes of a money transfer between bank accounts

 233Handling failures without exceptions

to be handled appropriately—perhaps by asking the user to adjust the amount or abort
the transaction. If sufficient funds are available, you can execute the transfer by calling
another backend system through the executeTransfer(amount, toAccount) method.
This method can also throw exceptions in case of a failure. If the executeTransfer
method is successful, nothing more happens and the code calling transfer continues to
execute as normal.

Listing 9.8 Using exceptions for business logic

import static org.apache.commons.lang3.Validate.notNull;

public final class Account {

 public void transfer(final Amount amount,
 final Account toAccount)
 throws InsufficientFundsException {
 notNull(amount);
 notNull(toAccount);

 if (balance().isLessThan(amount)) {
 throw new InsufficientFundsException();
 }

 executeTransfer(amount, toAccount);
 }

 public Amount balance() {
 return calculateBalance();
 }

 // ...
}

Checks whether there are sufficient funds

Throws an exception if there
aren’t enough funds

Calls underlying systems to execute the
transfer; may also throw exceptions

But following this practice gets you only halfway. You also need to identify sensitive
data in your domain and model it as such. In chapter 5, you learned about the read-once
pattern, which prevents data from being read multiple times and accidentally serial-
ized; for example, when sent over the network or written to log files. If the account
number and customer data had been modeled as sensitive and the read-once pattern
used, illegal logging in the global exception handler would have been detected.

The choice of using exceptions to represent technical errors and valid results pri-
marily opens the door to data leakage problems. By separating business and technical
exceptions along with using the read-once pattern, it’s possible to solve this—but is it
the best solution, or is there another way? Perhaps, so let’s evaluate how to handle fail-
ures without exceptions and see what security benefits there are.

9.2 Handling failures without exceptions
Using exceptions to represent failures in domain logic is a common practice, but
another equally common approach is to not use exceptions at all. This approach starts
with the design mindset that failures are a natural and expected outcome of anything
we do. Because exceptions represent something exceptional (the name kind of gives
it away) and failures are expected outcomes, it doesn’t make sense to model them as
exceptions. Instead, a failure should be modeled as a possible result of a performed
operation in the same way a success is. By designing failures as unexceptional out-
comes, you can avoid several of the problems that come from using exceptions—
including ambiguity between domain and technical exceptions, and inadvertently
leaking sensitive information.

If you look at the logic you implement in an application, it quickly becomes obvious
that it’s not only about happy cases. When you execute a method, you have an intention
of performing a specific action. Performing that action can almost always have multiple
outcomes. At the very least, it can succeed or it can fail. In this section, you’ll learn how
to gain more security by designing failures without using exceptions.

To explain this design approach, let’s illustrate the difference between designing fail-
ures as exceptions versus designing them as expected outcomes. We’ll do this by solving
the same task using the two different approaches. The task is to implement a system to
transfer money between bank accounts. In the current domain of banking, a money
transfer can have two possible outcomes: either the transaction is performed or it fails
due to insufficient funds (figure 9.2).

9.2.1 Failures aren’t exceptional

If you choose to design using exceptions, your implementation will look something like
listing 9.8. The method to transfer money from one bank account to another is called
transfer and takes two arguments: the amount to transfer and the destination account.
The first thing that needs to be done in the transfer method is to check that there are
enough funds in the source account to cover the transfer. If the source account is lacking
funds, an InsufficientFundsException is thrown; in which case, the exception needs

Has
sufficient
funds?

Yes

No

Initiate
transfer

Execute
transfer

Execution flow of
a money transfer

Reject
transfer

Figure 9.2 The possible outcomes of a money transfer between bank accounts

234 chapter 9 Handling failures securely

import static org.apache.commons.lang3.Validate.isTrue;
import static org.apache.commons.lang3.Validate.notNull;

public final class Amount implements Comparable<Amount> {
 private final long value;

 public Amount(final long value) {
 isTrue(value >= 0, "A price cannot be negative");
 this.value = value;
 }

 @Override
 public int compareTo(final Amount that) {
 notNull(that);
 return Long.compare(value, that.value);
 }

 public boolean isLessThan(final Amount that) {
 return compareTo(that) < 0;
 }

 // ...

}

With this approach, you’re handling the flow of your business logic using two mecha-
nisms in the programming language. One is the result from calling a method (in this
case, the result is void), and the other is the exception mechanism. You’re using the
exception mechanism of the programming language as part of your control flow.

Let’s stop for a second and think about the semantics of using exceptions as a con-
trol flow in the transfer method. By doing so, you’re saying that not having sufficient
funds in the source account is an exceptional occurrence. You’re treating the negative
result as something exceptional. This is a common way of designing code, but there’s an
alternative way to view failures. This alternative way stems from the perspective that fail-
ures aren’t exceptional but rather an expected outcome of any task you try to perform.

9.2.2 Designing for failures

In banking, it’s not uncommon for users to try to initiate a transfer of an amount that’s
larger than the current account balance. This can, for example, happen if the amount
is entered incorrectly, or if the user thinks they have more money in the account than
they actually have. For whatever reason, it’s relatively common for a money transfer to
fail due to insufficient funds. Not having sufficient funds is therefore an expected out-
come of the operation “trying to transfer money.” Because it’s an expected outcome, it
shouldn’t be modeled as an exceptional one. Rather, it should be modeled as a possi-
ble result of the action.

If you redesign the transfer method from listing 9.8 so that insufficient funds are
an expected outcome, you’ll have something like that in listing 9.9. This new method
won’t throw any exceptions as part of the logical flow. Instead, it returns the result of
the transfer operation. The result can either be a success or a failure, and in the case

 235Handling failures without exceptions

of a failure, it’s possible for the calling code to find out what type of failure it was by
inspecting the result. If there aren’t enough funds, an INSUFFICIENT_FUNDS failure is
returned. Otherwise, the method continues and will try to execute the transfer via the
executeTransfer(amount, toAccount) method. The executeTransfer method also
returns a result that can either be a success or a failure due to difficulties in executing
the transfer. When the executeTransfer method finishes, the money transfer either
succeeds or fails, with a failure message indicating the reason for failure.

Listing 9.9 Expected results not modeled as exceptional

import static Result.Failure.INSUFFICIENT_FUNDS;
import static Result.success;
import static org.apache.commons.lang3.Validate.notNull;

public final class Account {

 public Result transfer(final Amount amount,
 final Account toAccount) {
 notNull(amount);
 notNull(toAccount);

 if (balance().isLessThan(amount)) {
 return INSUFFICIENT_FUNDS.failure();
 }

 return executeTransfer(amount, toAccount);
 }

 public Amount balance() {
 return calculateBalance();
 }

 // ...
}

import java.util.Optional;

public final class Result {

 public enum Failure {
 INSUFFICIENT_FUNDS,
 SERVICE_NOT_AVAILABLE;

 public Result failure() {
 return new Result(this);
 }
 }

 public static Result success() {
 return new Result(null);
 }

Checks whether there are sufficient funds

Returns the failure as a result
instead of throwing an exception

Returns the result of calling
the underlying systems to
execute the transfer

Different types of possible failures

236 chapter 9 Handling failures securely

 private final Failure failure;

 private Result(final Failure failure) {
 this.failure = failure;
 }

 public boolean isFailure() {
 return failure != null;
 }

 public boolean isSuccess() {
 return !isFailure();
 }

 public Optional<Failure> failure() {
 return Optional.ofNullable(failure);
 }
}

It’s worth pointing out that the Result shown in listing 9.9 is a basic implementation.
Once you start using result objects, you’ll probably find that you want to design them
in certain ways to make them easy to work with and error-free. As an example, if you’re
using a functional style of programming, you might want to add the ability to perform
operations such as map, flatmap, and reduce to simplify dealing with results. Exactly
how you choose to design them is up to you or your team.

By designing failures as expected and unexceptional outcomes, you completely elim-
inate the use of exceptions as part of the domain logic. By doing so, you’re able to either
avoid or reduce the risk of many of the security issues you faced when designing your code
with exceptions. Some of the security benefits of this approach are listed in table 9.1.

Table 9.1 Security benefits of designing failures as expected outcomes

Security issue Solved through

Ambiguity between domain exceptions
and technical exceptions

Domain exceptions are completely removed.

Exception payload leaking into logs Failures aren’t handled by generic error-handling code, and,
therefore, the data the payload carries doesn’t accidentally slip
into error logs.

Inadvertently leaking sensitive
information

Failures are handled in a context that has knowledge about
what’s sensitive and what’s not and knows how to handle sensi-
tive data properly.

In our experience, another benefit of treating failures as unexceptional is that once
you start designing both successes and failures as results, the only exceptions that can
still occur are those caused by either bugs or a violation of an invariant.

So far, you’ve seen how to handle failures in a secure way on a code level by either
using exceptions or designing your failures as unexceptional. In the next section, we’ll

 237Designing for availability

discuss more high-level designs to show you how you can use design principles com-
monly used for resilience to gain security benefits.

9.3 Designing for availability
The availability of data and systems is an important security goal and is part of the
CIA acronym (confidentiality, integrity, and availability).5 The National Institute of
Standards and Technology (NIST) publication “Engineering Principles for Informa-
tion Technology Security” talks about five different goals for IT security: confidenti-
ality, availability, integrity, accountability, and assurance.6 It defines availability as the
“goal that generates the requirement for protection against intentional or accidental
attempts to (1) perform unauthorized deletion of data or (2) otherwise cause a denial
of service or data.” In this section, you’ll learn about design concepts that improve the
availability of a system—concepts you can use to create more secure systems.

We’ve gathered some well-known and commonly used concepts that promote avail-
ability, and it’s our belief that they’re also some of the most important and foundational
principles on the subject. We could easily write an entire book on how to build systems
that are robust and that will stay available even when experiencing failures. Going into
great depth on each concept is beyond the scope of this book, but it’s our intention to
provide you with enough knowledge to understand each one and how they promote the
security of a system. Once you see the connection to security for the concepts described,
they will become even more valuable as guiding design principles.

9.3.1 Resilience

It’s becoming increasingly common to design and build systems to be resilient. A system
that’s resilient is designed to stay functional even during high stress. Stress for a system
can be caused by both internal failures (such as errors in code or failing network com-
munication) and external factors (such as high traffic load). Stress can cause a resilient
system to slow down or run with reduced functionality, and parts of the system can
crash, but the system as a whole will stay available, and it’ll recover once the stress it’s
been put under disappears.

Another way to describe a system that’s resilient is to say it’s stable. You can design
stable systems in several ways (some of which you’ll learn about in this chapter), but the
main goal of a resilient system is to survive failures and continue to provide its service.
Put differently, a resilient system is a system that stays available in the presence of failures.

Because availability is an explicit security goal, and a resilient system stays available
during failures, a system that is resilient must also by definition be a more secure system.
This, in turn, leads to the conclusion that all contemporary and well-established design
practices that promote the resilience and stability of a system are also beneficial to use
when designing secure systems.

5 Go back to chapter 1 for more details on CIA.
6 NIST Special Publication 800-27 Rev A, “Engineering Principles for Information Technology Security

(A Baseline for Achieving Security),” by Gary Stoneburner, Clark Hayden, and Alexis Feringa. Avail-
able at https://csrc.nist.gov/publications/detail/sp/800-27/rev-a/archive/2004-06-21.

238 chapter 9 Handling failures securely

9.3.2 Responsiveness

Say you’ve built a system that’s resilient and stays available during high stress. It doesn’t
crash, but when the load on the system becomes high enough, the response times
increase dramatically. When the system is available but responds slowly, another sys-
tem calling the slow system eventually gets a response, but it can take an unacceptably
long time. From the caller’s point of view, the system under load can be considered to
be unusable, even though it’s technically still available. This is where responsiveness
comes in as an important trait when discussing availability.

For a system to be responsive, it not only needs to survive stress but also has to respond
quickly to anyone trying to use it during times of stress. Even if you’ve optimized the pro-
cessing logic as much as possible to make the system run faster, the system will still have
a threshold for how much stress it can handle before the response times go through
the roof. When this happens, you might wonder how you can possibly make the system
respond any faster. In this situation, it’s important to realize that to stay responsive, it’s
far better to answer quickly with an error saying that the system is unable to accept any
more requests than to have the caller sit around waiting for an answer that might never
come. Any answer is better than no answer, even if that answer is rejecting the request.

To make the system more responsive without rejecting requests, you could, for
example, place all the processing work in a queue. Separating the requests for pro-
cessing and the actual processing makes the system more asynchronous. This way, even
if the work queue is growing because of a high load and the requested work takes a
long time to finish, the system will be able to accept new requests. The caller gets a fast
response saying that the request has been accepted, but it’ll have to wait before the
result of the work is available. The work queue might eventually get full; in which case,
you’ll have to decide how to handle that situation—possibly by denying more work to
be queued and asking the caller to try again later.

Staying responsive is important for security, because for a system to be truly available,
it’s not enough that it be resilient and survive stress, it’s also necessary for it to con-
tinue to respond quickly. How quickly it needs to respond depends on the system you’re
building and the maximum acceptable response time before the system is considered
to be unavailable.

9.3.3 Circuit breakers and timeouts

A useful design pattern when building resilient systems is the circuit breaker pattern.7
This pattern is handy for dealing with failures in a way that promotes system resilience,
responsiveness, and overall availability—and therefore, also security.

The general idea of the circuit breaker pattern is to write code that protects a sys-
tem from failures in the same way that an electrical fuse protects a house in the case
of failure in the electrical system. A fuse is designed to break the electrical circuit if an

7 See Michael T. Nygard’s Release It! Design and Deploy Production-Ready Software (The Pragmatic Bookshelf,
2007).

 239Designing for availability

excessive load is placed on the system (for example, by a faulty appliance or a short-
circuit somewhere). If the circuit doesn’t break, a high electrical current can generate
so much heat that a fire can start. By breaking the circuit, and thereby isolating or stop-
ping the failure, it’s possible to prevent the entire house from burning down.

In the same way that a fuse protects a house, a circuit breaker in software can isolate
failures and prevent an entire system from crashing. Just as an electrical current passes
through a fuse during normal operation, you use a circuit breaker to protect your sys-
tem by having your method calls or requests to other systems pass through it. Figure 9.3
shows an example of a rudimentary circuit breaker.

Depending on which state the circuit breaker is in, the request is handled differently.
If it’s in the closed state, any request performed passes through it. If the request com-
pletes successfully, nothing more happens. If the request fails, it’ll increment a failure
counter. If multiple subsequent calls fail, then the failure count eventually reaches a
threshold that triggers the circuit breaker to open. Once it’s in its open state, any new
requests won’t pass through but will fail immediately by the circuit breaker.

When a circuit breaker is open, it’s effectively applying the fail-fast pattern instead
of letting the requests pass through. If a circuit breaker is open, after a while it’ll tran-
sition into a half-open state. In the half-open state, it can let one or more requests pass
through to see if they’ll succeed. In the event of success, the circuit breaker can return
to its closed state and let all requests pass through. In the event of failure, the circuit
breaker goes back to its open state until it’s ready to let another trial request through.

When you make a call to another service, it’s important to specify a timeout for that
request. If an integration point is unresponsive, you don’t want your application to hang
forever, waiting for a response, because that eventually makes your system unstable.
Because both timeouts and circuit breakers deal with protecting a system when making
requests to other systems, they typically go hand-in-hand. It’s common for implemen-
tations of circuit breakers to track timeouts separately and sometimes to even provide
built-in functionality for managing timeouts for requests.

Closed Open

Half-open

Retry
succeeded

Retry
failed

Time
to retry
elapsed

Failure threshold
reached

Figure 9.3 The three states of a circuit breaker

240 chapter 9 Handling failures securely

Always specify a timeout
In Java, for example, the default timeout for a network call is infinite—meaning that if a
timeout isn’t explicitly set, a network call waits forever for a response. As a result, the
number of systems that have turned into unresponsive memory hogs due to unrespon-
sive integration points is almost infinite too. Whatever environment you’re in, whatever
programming language or framework you use, always make sure you explicitly set a time-
out for all your network requests.

Circuit breakers are typically used when making inter-process requests from one ser-
vice to another, but they can also be used within the same service if it makes sense
to do so. What makes the circuit breaker pattern so effective is that it works well for
preventing failures from spreading from one part of a system to another. Isolating the
failures and offloading the part of the system currently experiencing stress increases
the stability of the system. Through the use of the fail-fast approach, it also improves
the responsiveness of the system. Because circuit breakers promote both the resilience
and the responsiveness of a system, this is an effective design pattern for improving the
security of a system by increasing its availability.

a note on circuit breakers and domain modeling

When using circuit breakers, it’s common to use a default answer when a call fails. This
is sometimes called a fallback answer. This pattern is quite effective and allows systems
to continue to function despite failures, albeit with reduced or limited functionality.

One thing that’s important to remember is that the way the system should behave
if a request fails is usually a decision that affects your domain logic, and, therefore, it’s
a decision that needs to be made together with the domain experts. For example, if
you’re unable to check the inventory for an item when a customer places an order, do
you refuse to take the order and lose a sale, or do you continue processing the order
and deal with the unlikelihood of the item being out of stock? The answer is that it
depends on how the business wants to handle this scenario. Another example is if you
need to get a list of all books written by a particular author. Is it OK to return an empty
list if the remote service you need to call is down? Sometimes that might be acceptable,
but at other times, it’s necessary to convey the failure so the client can distinguish a fail-
ure from the fact that no books exist for a given author.

TIP When you use default or fallback answers with circuit breakers, make sure
to involve the domain experts. Then model and design your failure-handling
code as you would any other business logic.

The approach of designing for failures that you read about earlier in this chapter is
a great way of handling these scenarios. It forces you to handle failures within your
domain logic rather than as part of your infrastructure logic.

Finally, circuit breakers are typically a design tool brought into a codebase by devel-
opers, and it’s easy to think they are only relevant from a technical perspective. More

 241Designing for availability

often than not, the opposite is true. We encourage you to involve your domain experts
and stakeholders in the use of circuit breakers so you can design systems that not
only technically stay available, but also continue to work as intended from a business
perspective.

9.3.4 Bulkheads

The bulkhead design pattern is another tool you can use to efficiently prevent failures
in one part of a system from spreading and taking down the entire system. Bulkheads
can be applied as both a high-level design pattern when architecting infrastructure
(such as servers, networks, routing of traffic, and so on) and a low-level design pattern
for designing resilient code. Because bulkheads are so commonly used and do such
a good job of isolating failures, it’s a pattern that you should become familiar with to
create systems with a high degree of availability.

In ship building, the term bulkhead refers to a wall or panel used to compartmental-
ize the hull into sections that are sealed against both water and fire (figure 9.4). Con-
structing a ship with these types of compartments means that if a water leak or fire were
to occur in one part of the ship, the bulkheads would prevent the ship from taking on
too much water and sinking or the fire from spreading.

In software, the same design techniques can be used to build resilient systems. One
thing that’s interesting with the bulkhead pattern is that it can be applied on different
levels in your architecture. Let’s take a look at each of these levels so you can get an
idea of various ways to apply this pattern.

location level

At a high level, a system’s availability can be improved by running the system on servers
distributed over multiple geographical locations. If one location becomes inoperable—
perhaps because of a power outage, a network fiber dug up during construction work,
or an earthquake—then the other location or locations will still be available to pro-
vide the service. When deploying systems this way, you typically design each location to
be completely self-sustained so that no interdependencies exist. How you choose the
geographic locations depends on the business requirements, but they can be anything
from different parts of a town to different parts of the world.

Partitioning a ship hull by use of bulkheads

Bulkheads

Figure 9.4 A ship hull constructed with bulkheads

242 chapter 9 Handling failures securely

infrastructure level

Zooming in a bit, you can also apply the bulkhead pattern when designing your system
infrastructure. For example, if you have a backend for a webshop, you can have one set
of servers handling the load of customers browsing products and adding them to the
shopping cart and another set of servers handling the checkout and payment flow, as
seen in figure 9.5.

By partitioning the workload on your backend servers, you separate different areas of
business functionality so they don’t affect each other. (You could also choose to parti-
tion your frontend servers, but we’ll disregard that in this example.) For example, a
release of a popular product that you sell could potentially generate so much traffic
that the servers handling product information start to slow down due to the high load.
But because the checkout process is handled by a different set of servers, the ongoing
sales aren’t affected by the high demand on product information. The use of bulk-
heads ensures that the reduction or loss of availability in one part of the system doesn’t
affect the availability of another part. Service-oriented architectures are typically a
good fit for applying bulkheads in this manner.

One thing to watch out for when partitioning services and servers is hidden depen-
dencies. If you have multiple services using the same database, for example, then one
service can cause slow responses or deadlocks in the database, which in turn can reduce
the availability of another service. In this scenario, you’ve failed to properly apply the
bulkhead by not separating the persistence solution. Other common hidden depen-
dencies are message queues; network storage, like storage area networks (SANs) and
network-attached storage (NAS); and shared network infrastructure, like routers and
firewalls. It’s also common to see bulkheading applied via use of virtualization technol-
ogies, such as containers and virtual machines. These technologies are great, but if you
run everything on the same physical hardware, you’ve managed to create not only a lot
of complexity, but also a hidden dependency. If the hardware crashes, it doesn’t matter
how many containers you partitioned your system on—they’ll all go down together.

Frontend

Multiple
instances to
distribute load

Separating load and service instances by business functionality

Backend

Web app

Product info
service

Checkout &
payment service

Figure 9.5 Protecting business functionality by partitioning workload

 243Designing for availability

code level

You can also use bulkheads when designing your code. A common example of the
bulkhead pattern applied on a code level is thread pools. The reason this is common
is that if you let your code create an unlimited number of threads, your application
inevitably grinds to a halt and possibly crashes. An easy and effective way to limit the
number of threads is to use a thread pool. A thread pool lets you set a limit on how
many threads the code can create. You can then use the threads in the pool to process
work. Regardless of how much work needs to be processed, there’ll never be more
threads than are allowed in the pool. You also have the benefit of reusing threads in
the pool instead of constantly creating new ones. Request pools in web servers and con-
nection pools for databases are typical real-world uses of thread pools that you might
have encountered before.

Queues are another code construct you can use in order to isolate failures in your
code base. Queues are often used together with thread pools. If all the threads in the
pool are busy, additional work can be put in a queue. As soon as a thread becomes avail-
able in the pool, the queue can be queried for work to be processed. If work is added to
the queue at a higher rate than the thread pool can process, the queue grows in size. If
this continues, the queue eventually becomes full and, at that point, the application can
refuse to accept any new work.

Going back to the example of the webshop backend that provides product informa-
tion and processes orders, you can write your code to use different thread pools and
queues for different types of work. If one thread pool becomes so busy it needs to put
work in a queue for later processing, the other thread pool can continue unaffected.
Moreover, if the queue for fetching product information becomes full and the system
starts to refuse more requests for product information, the queue for order processing
can still accept new work and continue processing.

By using thread pools and queues as bulkheads, you’re preventing the consumption
of resources in one part of your code from affecting another part. If one part of your
code becomes unavailable, other parts will remain available even if they’re within the
same service instance. This effectively increases the availability of your system.

The Reactive Manifesto
The Reactive Manifesto defines four important traits that need to be present for what it
calls a reactive system: the system must be responsive, resilient, elastic, and message
driven (http://reactivemanifesto.org). A reactive system, according to the manifesto, is a
system that’s “more robust, more resilient, more flexible, and better positioned” to meet
the demands put on modern systems. But, as it turns out, the Reactive Manifesto is also
interesting from a security perspective. Let’s take a look at why.

The goal of the manifesto is to promote good design practices by creating a common, ubiqui-
tous vocabulary to use when discussing modern system design. The manifesto talks about
the four traits and what defines each of them, and it also discusses how to achieve them.

244 chapter 9 Handling failures securely

The main focus of the manifesto is how to build systems that can live up to the demands
put on them. Modern systems need to live up to far higher demands than their prede-
cessors. They need to serve more data to more users and with shorter response times.
Downtime should be minimal, and it’s necessary for modern systems to be able to adapt
to fluctuations in load. Reactive systems meet these demands and are also typically
more modular in their design, which tends to make them easier to develop and to evolve.

A reactive system stays resilient and responsive during periods of high stress. It’s
designed to have a high degree of availability. This makes the Reactive Manifesto inter-
esting from a security perspective, because availability is an important trait for secure sys-
tems. If you’re designing your systems to be reactive, you not only are getting the benefits
of scalability and high capacity, but you’re also improving the security of the systems.

You’ve now learned that availability is an important security goal, and you’ve learned
how you can improve the availability of a system by making it more resilient. You’ve
also seen some common techniques for designing resilient and responsive systems. If
you weren’t familiar with them before, you now have a good starting point for learn-
ing more about building resilient systems. In any case, you’ve hopefully grokked the
connection between resilient systems and security, and learned yet another reason for
building systems that survive failures. Now it’s time to take a look at how to avoid secu-
rity flaws when dealing with bad data.

9.4 Handling bad data
When dealing with data, whether it’s from a database, user input, or an external source,
there’s always a chance it’ll be partially broken by having trailing spaces, missing char-
acters, or other flaws that make it invalid. Regardless of the cause, how your code han-
dles bad data is essential for security. In chapter 4, you learned about using contracts to
protect against bad state and input that doesn’t meet the defined preconditions. This
certainly tightens the design and makes assumptions explicit, but applying contracts
often leads to discussions about repairing data before validation to avoid unnecessary
rejection. Unfortunately, choosing this approach is extremely dangerous because it
can expose vulnerabilities and result in a false sense of security.

But modifying data to avoid false positives isn’t the only security problem to consider.
Another interesting issue is the urge to echo input verbatim in exceptions and write
it to log files when a contract fails. This can be justifiable for debugging purposes, but
from a security perspective, it’s a ticking bomb waiting to explode. To see why, we’ll
guide you through a simple example of a webshop where it has been decided to expand
the membership database with data from another system. Unfortunately, the data qual-
ity is poor, which makes the business decide to apply a repair filter before validation.
This turns out to be a great mistake because, combined with echoing validation failures,
it opens up security vulnerabilities such as cross-site scripting and second-order injec-
tion attacks. Let’s see how this happens by starting with why you shouldn’t blindly repair
data before validation.

(continued)

 245Handling bad data

Cross-site scripting and second-order attacks
In a cross-site scripting (XSS) attack, the attacker sends malicious strings to a site, hoping
that the site will repeat the same strings in the output on the page. For example, if a news
site lets you search for words in articles, it might return “Cannot find an article containing
Jane Doe” if you search for Jane Doe. But if a visitor searches for <script>alert(0)
</script>, they’ll get a result page saying “Cannot find an article containing” and at
the same time cause the server to run some JavaScript that pops up an alert box. This
doesn’t sound so alarming, but an XSS attack might do something much nastier, like
installing a keylogger, sending cookies to a remote server, or worse.

Unfortunately, even logs can be used as the starting point of an attack, and a brows-
er-based admin tool used for viewing logs might have a vulnerability for specific formats.
In that case, an attacker can cause an attack string to be logged and then wait for the
admin to look at that log entry using the vulnerable tool. This is called a second-order
attack because the attacker isn’t attacking the system they face, but rather a second
system behind it.

9.4.1 Don’t repair data before validation

Picture a webshop where users sign up for a membership to get better deals. The reg-
istration form asks them to enter their name, address, and other information that’s
needed to create a membership. The domain model is well defined, and each term in
the membership context has a precise meaning and definition. For example, in listing
9.10, you see that a name has a tight definition and is restricted to alphabetic charac-
ters (a-z and A-Z) and spaces, and a length between 2 and 100 characters. This seems
a bit strict, but names containing special characters, such as Jane T. O’Doe or William
Smith 3rd, are considered rare enough that the business has decided to require users to
drop special characters instead of loosening the contracts; for example, Jane T. O’Doe
needs to be registered as Jane T ODoe.

Listing 9.10 The name domain primitive

import static org.apache.commons.lang3.Validate.inclusiveBetween;
import static org.apache.commons.lang3.Validate.matchesPattern;
import static org.apache.commons.lang3.Validate.notBlank;

public final class Name {
 private final String value;

 public Name(final String value) {
 notBlank(value);
 inclusiveBetween(2, 100, value.length(),
 "Invalid length. Got: " + value.length());
 matchesPattern(value,"^[azAZ]+[azAZ]+$",
 "Invalid name. Got: " + value);
 this.value = value;
 }
 ...
}

A name can’t be empty or null.

A valid name contains
between 2 and 100 characters.

A name can only contain
alphabetic characters (a-z
and A-Z) and spaces.

246 chapter 9 Handling failures securely

But restricting names this way only worked well until it was decided to expand the
membership database with data from another system, then the Name contracts blew up
like fireworks on New Year’s Eve. A failure investigation revealed that the quality of the
new data was poor: some names were empty, others had special characters, and some
contained < and > characters originating from an XML import that went bad a few
years ago.

The preferred solution is to address this at the source, but modifying data to fit the
membership context isn’t as simple as it seems. This is because data is consumed by
several systems, and making adjustments for one system (for example, removing special
characters in a name) might not be acceptable for another. Consequently, the business
decides to leave the data as it is in the database and apply a repair filter before it’s val-
idated in the membership context. This strategy turns out to be a great success, as it
significantly reduces the frequency of unnecessary rejections in the membership con-
text. In fact, the result is so good that it’s decided to apply the filter for all types of input
sources, as illustrated in figure 9.6.

Unfortunately, this is also when things start to get bad from a security perspective. To
see how, you need to understand the relationship between the repair logic, validation,
and failures, as shown in figure 9.7.

As illustrated, input is mutated every time it passes through the filter, and validation
failures are echoed in the browser and log files. Although the data mutation is inten-
tional, it also means the repair filter creates a derivative from the original input that could
become dangerous. For example, consider the problem of cleaning up names with spo-
radic < and > characters. Applying a filter to remove them seems like the right thing to
do; it creates a win-win situation by minimizing unnecessary rejection and avoiding XSS
attacks by dismantling the <script> tag. Or at least, that’s what many tend to believe. The

User input Import Poor
membership

data

Filters out all
bad characters
regardless of
input source

Membership
context

Repair filter

Figure 9.6 Bad characters filtered out for all data sources

D D' Exception
with D' in
payload

Original data

Repair
filter

Name
validation

fails

D' rendered
in browser

D' written
to log files

Mutated data

Interpreted by
browser-based

log analysis tool

Figure 9.7 Relationship between repairing data and validation

 247Handling bad data

truth is, dropping < and > only adds a false sense of security—it’s still possible to launch an
XSS attack. Consider injecting

%3<Cscript%3>Ealert("XSS")%3<C/script%3>E

to the repair filter.8 Dropping the < and > characters yields

%3Cscript%3Ealert("XSS")%3C/script%3E

which is the same JavaScript code as <script>alert("XSS")</script>. The only dif-
ference is that < and > are expressed in hexadecimal. But passing JavaScript code to
the membership context isn’t dangerous per se unless it gets executed!

9.4.2 Never echo input verbatim

In listing 9.11, you see the validation logic applied in the Name constructor. When
%3Cscript%3Ealert("XSS")%3C/script%3E is validated, the regular expression of
matchesPattern fails and an error message is created. As developers, we often want
to know why a contract failed—was it because of a programming error or invalid
input? Consequently, many choose to echo input verbatim in error messages because
it facilitates the failure analysis, but it could also expose vulnerabilities such as XSS
and second-order attacks.

Listing 9.11 Validation applied in the Name constructor

Validate.notBlank(value);
Validate.inclusiveBetween(2, 100, value.length(),
 "Invalid length. Got: " + value.length());

8 <script>alert("XSS")</script> is the classic way of testing if a system interprets input as
data or code (JavaScript).

But restricting names this way only worked well until it was decided to expand the
membership database with data from another system, then the Name contracts blew up
like fireworks on New Year’s Eve. A failure investigation revealed that the quality of the
new data was poor: some names were empty, others had special characters, and some
contained < and > characters originating from an XML import that went bad a few
years ago.

The preferred solution is to address this at the source, but modifying data to fit the
membership context isn’t as simple as it seems. This is because data is consumed by
several systems, and making adjustments for one system (for example, removing special
characters in a name) might not be acceptable for another. Consequently, the business
decides to leave the data as it is in the database and apply a repair filter before it’s val-
idated in the membership context. This strategy turns out to be a great success, as it
significantly reduces the frequency of unnecessary rejections in the membership con-
text. In fact, the result is so good that it’s decided to apply the filter for all types of input
sources, as illustrated in figure 9.6.

Unfortunately, this is also when things start to get bad from a security perspective. To
see how, you need to understand the relationship between the repair logic, validation,
and failures, as shown in figure 9.7.

As illustrated, input is mutated every time it passes through the filter, and validation
failures are echoed in the browser and log files. Although the data mutation is inten-
tional, it also means the repair filter creates a derivative from the original input that could
become dangerous. For example, consider the problem of cleaning up names with spo-
radic < and > characters. Applying a filter to remove them seems like the right thing to
do; it creates a win-win situation by minimizing unnecessary rejection and avoiding XSS
attacks by dismantling the <script> tag. Or at least, that’s what many tend to believe. The

User input Import Poor
membership

data

Filters out all
bad characters
regardless of
input source

Membership
context

Repair filter

Figure 9.6 Bad characters filtered out for all data sources

D D' Exception
with D' in
payload

Original data

Repair
filter

Name
validation

fails

D' rendered
in browser

D' written
to log files

Mutated data

Interpreted by
browser-based

log analysis tool

Figure 9.7 Relationship between repairing data and validation

248 chapter 9 Handling failures securely

Validate.matchesPattern(value, "^[azAZ]+[azAZ]+$",
 "Invalid name. Got: " + value);

By echoing the input verbatim in the validation failure message, the webshop practi-
cally allows attackers to control the output of the application, especially if exception
payload is logged or displayed to the end user. It can seem harmless to log

%3Cscript%3Ealert("XSS")%3C/script%3E

but if log data is analyzed in a browser-based tool without proper escaping,
%3Cscript%3Ealert("XSS")%3C/script%3E could be interpreted as code and exe-
cuted. This simple example only results in an alert box popping up, but the mere fact
that JavaScript is allowed to execute is extremely dangerous—an attacker could take
advantage of this to install a keylogger, steal credentials, or hijack a session.

Although it sounds far-fetched, this kind of attack isn’t unlikely. In chapter 3, you
learned about the importance of context mapping and semantic boundaries. Injecting
data with the intention of targeting vulnerabilities in a second system (a second-order
attack) builds on the behavior of a broken context map, where data is misinterpreted
only because it enters a different context. For instance, in our example, the JavaScript
string only becomes harmful when interpreted as code in the log analyzer tool. Because
of this, it can be difficult to determine whether it’s OK to echo input or not—if you’re
unsure, play it safe and avoid doing so completely.

XSS Polyglots
Cross-site scripting (XSS) is an interesting type of attack because an attack vector can
be crafted in an almost infinite number of ways. This makes it difficult to identify and to
remove XSS flaws from a web application. The general recommendation is to do a secu-
rity audit to find places where user input could end up in the HTML output, but the com-
plexity of XSS makes it hard to guarantee that all places are found.* A complement could
therefore be to test an application using an XSS polyglot, which is an attack vector that’s
executable in multiple contexts (places in the HTML where input is rendered as output).
To illustrate, let’s consider the following injection contexts:

¡	<div class="{{input}}"></div>
¡	<noscript>{{input}}</noscript>
¡	<!{{input}}>

An XSS polyglot is an attack vector that successfully executes a JavaScript (for example,
alert('XSS')) in all three contexts, so let’s see how to do this.

The first context is a class attribute in a div element. To allow script execution, you need
to break out of the class attribute and close the div using a double quote and a greater
than character (">). This is possible with a string that starts with "> followed by a script.
For example, injecting

"><svg onload=alert('XSS')>

results in an HTML string that looks like

<div class=""><svg onload=alert('XSS')>"></div>

Input is echoed verbatim
in the validation failure
message.

 249Summary

This in turn creates an alert box with the message XSS when rendered in a browser. But
to be an XSS polyglot, the attack vector must also apply to all other contexts as well.

The second context is a <noscript> block into which the attack vector is inserted. To
allow for script execution, you need to break out of the context using a </noscript> tag.
This results in

"></noscript><svg onload=alert('XSS')>

which is a slightly more complex attack vector that successfully executes the JavaScript.

The third context is within a comment block. To allow for script execution, the attack vec-
tor must contain > before the script. Adding this to the existing vector results in

"></noscript>><svg onload=alert('XSS')>

which is an XSS polyglot that allows for script execution in all three contexts.

You’ve now learned how to create an XSS polyglot for three contexts presented by the
XSS Polyglot Challenge (a contest that challenges you to create an XSS polyglot for up to
20 contexts using as few characters as possible).† But XSS polyglots are actually part of a
bigger class of attacks called polyglot injections.‡

Polyglot attacks exploit the fact that many applications are implemented using several
languages (for example Java, SQL, and JavaScript), which potentially makes them sus-
ceptible to attack vectors that combine these languages. For example, the attack vector

/*!SLEEP(1)/*/alert(1)/*/*/

combines SQL and JavaScript, which could exploit weaknesses in systems using these
languages.§

By now, you’ve learned why failures need to be considered and how failure handling
affects security. In the next chapter, we’ll shift focus and explore several design con-
cepts used in the cloud that use security; for example, immutable deployments, exter-
nalized configuration, and the three R’s of enterprise security.

Summary
¡	Separating business exceptions and technical exceptions is a good design strat-

egy because technical details don’t belong in the domain.
¡	You shouldn’t intermix technical and business exceptions using the same type.
¡	It’s a good design practice to never include business data in technical exceptions,

regardless of whether it’s sensitive or not.

* See “OWASP Cross-Site Scripting (XSS)” at https://www.owasp.org/index.php/Cross-site_
Scripting_(XSS).

† See “XSS Polyglot Challenge” at https://polyglot.innerht.ml.
‡ See “Polyglots: Crossing Origins by Crossing Formats” at https://research.chalmers.se/

publication/189673.
§ See “Polyglot Payloads in Practice,” by Mathias Karlsson, at https://www.slideshare.net/

MathiasKarlsson2/polyglot-payloads-in-practice-by-avlidienbrunn-at-hackpra.

Validate.matchesPattern(value, "^[azAZ]+[azAZ]+$",
 "Invalid name. Got: " + value);

By echoing the input verbatim in the validation failure message, the webshop practi-
cally allows attackers to control the output of the application, especially if exception
payload is logged or displayed to the end user. It can seem harmless to log

%3Cscript%3Ealert("XSS")%3C/script%3E

but if log data is analyzed in a browser-based tool without proper escaping,
%3Cscript%3Ealert("XSS")%3C/script%3E could be interpreted as code and exe-
cuted. This simple example only results in an alert box popping up, but the mere fact
that JavaScript is allowed to execute is extremely dangerous—an attacker could take
advantage of this to install a keylogger, steal credentials, or hijack a session.

Although it sounds far-fetched, this kind of attack isn’t unlikely. In chapter 3, you
learned about the importance of context mapping and semantic boundaries. Injecting
data with the intention of targeting vulnerabilities in a second system (a second-order
attack) builds on the behavior of a broken context map, where data is misinterpreted
only because it enters a different context. For instance, in our example, the JavaScript
string only becomes harmful when interpreted as code in the log analyzer tool. Because
of this, it can be difficult to determine whether it’s OK to echo input or not—if you’re
unsure, play it safe and avoid doing so completely.

XSS Polyglots
Cross-site scripting (XSS) is an interesting type of attack because an attack vector can
be crafted in an almost infinite number of ways. This makes it difficult to identify and to
remove XSS flaws from a web application. The general recommendation is to do a secu-
rity audit to find places where user input could end up in the HTML output, but the com-
plexity of XSS makes it hard to guarantee that all places are found.* A complement could
therefore be to test an application using an XSS polyglot, which is an attack vector that’s
executable in multiple contexts (places in the HTML where input is rendered as output).
To illustrate, let’s consider the following injection contexts:

¡	<div class="{{input}}"></div>
¡	<noscript>{{input}}</noscript>
¡	<!{{input}}>

An XSS polyglot is an attack vector that successfully executes a JavaScript (for example,
alert('XSS')) in all three contexts, so let’s see how to do this.

The first context is a class attribute in a div element. To allow script execution, you need
to break out of the class attribute and close the div using a double quote and a greater
than character (">). This is possible with a string that starts with "> followed by a script.
For example, injecting

"><svg onload=alert('XSS')>

results in an HTML string that looks like

<div class=""><svg onload=alert('XSS')>"></div>

Input is echoed verbatim
in the validation failure
message.

250 chapter 9 Handling failures securely

¡	You can create more secure code by designing for failures and treating failures as
normal, unexceptional results.

¡	Availability is an important security goal for software systems.
¡	Resilience and responsiveness are traits that add security by improving the avail-

ability of a system.
¡	You can use design patterns like circuit breakers, bulkheads, and timeouts to

design for availability.
¡	Repairing data before validation is dangerous and should be avoided at all costs.
¡	You should never echo input verbatim.

