
M A N N I N G

Dylan Shields

CHAPTER 4

AWS Security
by Dylan Shields

Chapter 4

 Copyright 2020 Manning Publications
To pre-order or learn more about these books go to www.manning.com

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Erin Twohey, corp-sales@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Marija Tudor

ISBN: 9781617298530
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 24 23 22 21 20 19

http://www.manning.com

iii

 contents
4.1 Working with a virtual private cloud 3

4.2 Traffic routing and virtual firewalls 11

4.3 Separating private networks 22

Securing the network:
the virtual private cloud
In the last two chapters, we talked about how to securely configure logical access to
your AWS resources through IAM. In this chapter, we’re going to move on to con-
trolling network access, primarily through a virtual private cloud, or VPC, and its
associated networking resources. Many of the concepts in IAM and VPC are similar.
We want to create rules that determine who has what kind of access to our AWS
resources. In IAM the rules are policies, which specify actions that can be performed
in the API or the console, and these rules are applied to IAM entities (users,

This chapter covers
 Using virtual private clouds (VPCs) and related

resources to configure network access

 Using network routing and virtual firewalls to protect
against network-based attacks

 Configuring multiple VPCs to isolate them from
misconfigurations or vulnerabilities

 Using VPC peering and site-to-site VPN to connect
different private networks
1

2 CHAPTER 4 Securing the network: the virtual private cloud
groups, and so on) who are authenticated using AWS credentials. In the networking
sphere, the rules are concerned with what kind of traffic is permitted into your net-
work, and further to specific resources within your network. For example, a rule
might only permit HTTPS traffic into your network, and only on port 443. Rather
than being applied to authenticated entities, these rules are instead applied based on
the source of the traffic. As an example, you might apply the previous HTTPS traffic
rule to any traffic originating outside your network but allow any kind of traffic origi-
nating inside your network. While the concepts are similar, the mechanisms for creat-
ing and configuring these access rules are completely different. In this chapter, we’ll
go over the primary VPC networking resources and how to set them up.

 Before we dive in, we should talk about why securing your network is important.
While many different kinds of attacks exist against network-accessible resources, we’ll
look at three of the most common. These are attacks that can be easily prevented by
applying the basic principles outlined later in this chapter.

 The first type of attack involves an attacker finding and exfiltrating information
from a publicly accessible database. Why are these databases left vulnerable? One rea-
son is that setting up secure networks can involve creating many resources, and this
isn’t always done correctly. For example, if you create a web server and a database, and
don’t create your own security groups, they will both be in the default security group.
When you allow public network access to the web server, you’ll expose your database
as well. Later in this chapter, we’ll walk through solving this problem by creating
secure network rules with security groups and network ACLs.

 Another common attack is denial of service. You might have heard of it as DoS, or
DDoS (distributed denial of service). The usual form of a denial of service attack is
flooding your application with tons of fake requests to overload your system and pre-
vent you from fulfilling the real requests. We’ll show in this chapter how you can use
AWS networking resources to mitigate certain kinds of denial of service attacks. In the
following chapter, we’ll look at how to prevent more sophisticated denial of service
attacks using Web-App and Next-Gen firewalls.

 A third attack covered in this chapter is getting SSH access to a web server. When
you run a website, you generally open up traffic to the public internet on purpose. But
when you do so, you want to make sure that you haven’t exposed anything private that
might be running on the same server. Many times, an EC2 instance is running a web
server, and the operator opens up all network traffic to the instance. This allows every-
one to view the website, but it also allows everyone to send other kinds of traffic as
well, such as SSH connections. If you run SSH on the default port, use a default user
for the operating system, and use a password for authentication rather than an SSH
key, then it’s only a matter of time before an attacker gains access to the server. In this
chapter, we’ll see how you can easily create rules that allow public access to your web-
site, but not allow other kinds of traffic such as SSH.

3Working with a virtual private cloud
4.1 Working with a virtual private cloud
The rules that we create for controlling network access in AWS apply to various net-
working resources. To understand how those rules work, we first need to understand
the primary networking resources available to us. At the highest level, we have the
VPC. A VPC represents an isolated network. Within a VPC we have subnets, or individ-
ual sub-networks. Most networked resources, such as EC2 instances, are attached to a
subnet. These subnets can be either public or private, which refers to whether or not
resources within the subnet are accessible over the public internet. Traffic between
resources within a VPC will be routed through the VPC. The traffic doesn’t leave the
VPC and isn’t vulnerable to the same kinds of snooping and man-in-the-middle attacks
as if it had gone over the public internet. For this reason, it’s generally better to keep
traffic within a VPC when possible and not route traffic over the public internet. This
is such an important concept that several networking resources exist for specifically
this purpose, such as VPC peering, PrivateLink, and TransitGateways, which we’ll
cover in this and the following chapter.

 In addition to VPCs and Subnets, you should also be familiar with these other net-
working primitives:

 Elastic Network Interface (ENI): A virtual equivalent of a network card.
 Elastic IPs (EIP): A public IPv4 address assigned to your account.
 Internet Gateway (IGW): A resource that allows your network to communicate

with the public internet.
 NAT Gateway: A resource that allows initiating connections to the public inter-

net from within your network, but not the other way around.
 Egress-Only Internet Gateway: The IPv6 equivalent of a NAT Gateway.

In this section, we’ll dive deeper into each of these resources and create a network in
our AWS account that looks like figure 4.1. In the following section we’ll expand on
that diagram, filling in the faded resources in the diagram, the rules that dictate how
traffic flows through the network.

4.1.1 VPCs

Let’s start with VPCs. As we’ve said, a VPC is a virtual network. If you want to create
any networked resources in AWS, you’re going to first have to create a VPC. This is a
relatively easy task, because a VPC has only a couple of options. The main one is the
CIDR block. This is the range of IP addresses that will be available for use in your net-
work. CIDR stands for Classless Inter-Domain Routing and for our purposes, we’re inter-
ested in CIDR blocks, which are a compact notation for describing a range of
sequential IP addresses. Here are several example CIDR blocks:

 10.0.0.0/24
 192.168.1.1/32
 0.0.0.0/0

4 CHAPTER 4 Securing the network: the virtual private cloud
Figure 4.1 Many VPCs are
composed of public and
private subnets. Resources
are attached to these subnets
via elastic network interfaces,
and addressable by their
elastic IP address.

CIDR blocks consist of an IP address followed by a slash and a number between 0 and
32. The IP address refers to the smallest IP in the block, and the number after the
slash refers to the size of the network. The size of the network is IP addresses, where is
the number after the slash. Note that larger numbers correspond to smaller network
sizes. A CIDR block ending in /32 would result in only 1 IP address, and a block end-
ing in /24 would result in 256 addresses. Table 4.1 contains the ranges of IP addresses
that correspond to the previous sample CIDR blocks.

Note that the table describes CIDR blocks in terms of IPv4 addresses, but IPv6
addresses can also be used. The difference is that the number after the slash is
between 0 and 128, rather than 0 and 32.

 There are two important things to consider when choosing a CIDR block for your
VPC. The first is that each networked resource that you put into your VPC will be
assigned its own private IP address within the CIDR block of the VPC. If you create a
VPC with a /24 CIDR block, which has 256 addresses, you can’t put more than 256
resources into that VPC. In fact, AWS reserves five IP addresses within each subnet, so if

Table 4.1 Sample CIDR Block to IP Range Mapping

CIDR Block Equivalent IP Range Note

10.0.0.0/24 10.0.0.0-10.0.0.255 Contains the 256 addresses starting at 10.0.0.0

192.168.1.1/32 192.168.1.1 Only contains one address

0.0.0.0/0 0.0.0.0-255.255.255.255 Covers the entire IPv4 address space

5Working with a virtual private cloud
even if you only had one subnet you could only put 251 resources into a VPC of size
/24. While there’s a way to associate an additional CIDR block to your VPC, you should
choose a network size large enough to support all of the resources that you plan to put
in the VPC. The second point to consider is that overlapping IP ranges create routing
issues. For example, Google uses the IP addresses in the block 64.233.160.0/24. If you
create a VPC with that same block, then you will end up with hosts that have the same
IP address as the Google servers. This makes it difficult to determine where traffic
should be routed. For this reason, you should stick to the ranges that have been
reserved for private networks, like 10.0.0.0/8 (10.0.0.0—10.255.255.255), and
172.16.0.0/12 (172.16.0.0—172.31.255.255). In addition, you shouldn’t use overlap-
ping ranges for any two VPCs if you plan to route traffic between them.

 AWS automatically creates a VPC for you in your account, called the default VPC.
This VPC is configured with the CIDR range: 172.31.0.0/16. It’s initialized with public
subnets and an internet gateway. This makes it easy to get started with many AWS ser-
vices such as EC2, because you can launch an instance and access it, without worrying
about setting up these network resources. However, the configuration of the default
VPC is likely not the most secure for whatever you’re doing. We won’t use the default
VPC and will instead create all of the resources ourselves.

 Let’s create our VPC now. We’ll use the AWS CLI create-vpc command:

$ aws ec2 create-vpc \
 --cidr-block 10.0.0.0/24

That command creates our VPC. Right now, there’s nothing in it, and our network is
only a container with a range of IP addresses. The next thing to do is to put subnets
inside our VPC.

4.1.2 Subnets

A subnet is a smaller network within a VPC that contains a partial range of the IP
addresses in the VPC. While VPCs reside within an AWS Region, subnets reside within a
specific availability zone. Subnets are where you can place your networked resources. If
you have an EC2 instance, you cannot launch it in a VPC. You must launch it within a
specific subnet in that VPC. If we want to do something with our VPC, we should create
subnets. We can use the create-subnet AWS CLI command to do so:

$ aws ec2 create-subnet \
 --vpc-id vpc-1234
 --cidr-block 10.0.0.0/26

$ aws ec2 create-subnet \
 --vpc-id vpc-1234
 --cidr-block 10.0.0.64/26

This CIDR block covers IP
addresses 10.0.0.64-10.0.0.127.

We’ve now created two subnets in our VPC. Our network should look like figure 4.2.
 We named these subnets PublicSubnet and PrivateSubnet. As previously men-

tioned, public subnets are ones that can be accessed over the public internet, while

This is the ID of the VPC created earlier.

This CIDR block covers IP
addresses 10.0.0.0-10.0.0.63.

6 CHAPTER 4 Securing the network: the virtual private cloud
Figure 4.2 Subnets are composed of CIDR blocks
that are subsets of the VPC’s CIDR block. The CIDR
blocks of the subnets are non-overlapping.

private subnets are ones that cannot. Right now, both of the subnets we created are
private, as by default there’s no connection between a subnet and the public internet.
Turning a private subnet into a public subnet requires creating an Internet Gateway
and a route table, which we’ll do shortly. For right now, we’ll leave them both private.

 We only created two subnets, and we placed them both in the same availability
zone (AZ), us-east-1a. If you want to put a resource in this VPC, it will have to go into
the us-east-1a AZ. This is fine for our example network, but for production applica-
tions it’s recommended to create subnets in multiple AZs. Distributing resources
across multiple AZs prevents outages in your application in the event of an issue with
an availability zone.

DEFAULT SUBNETS ARE PUBLIC

The default subnets created by AWS in the default VPC are public subnets. They’re
configured with routes to an internet gateway, so if you attach an instance to one of
the default subnets, it will be publicly accessible. It’s worth noting that this differs
from the behavior of a newly created subnet, which is private. You can’t SSH from
your workstation to an instance attached to a private subnet without first configuring
an internet gateway and appropriate routes.

4.1.3 Network Interfaces and IPs

We mentioned in 4.1 that instances are attached to subnets. This is done by first
attaching an elastic network interface (ENI) to the instance, and then attaching that
ENI to the subnet. The process of creating and attaching the ENI is abstracted in the
process of creating an instance. When you create an instance through the AWS CLI or
Console, AWS will automatically create the ENI, attach it to the new instance, and
attach it to the subnet you specify. What exactly is an elastic network interface? Elastic
network interfaces are the virtual equivalent of a NIC or network card on a physical

7Working with a virtual private cloud
machine. These ENIs are the connection between networked resources such as EC2
instances, and your virtual network. In fact, you can attach additional ENIs to your
instances, and those ENIs can be in two different subnets. This creates what are called
dual-homed instances and can be visualized in figure 4.3.

Figure 4.3 Dual-homed
instances belong to
multiple subnets.

In practice, you generally don’t need to worry about creating ENIs. Unless you’re
doing more advanced networking, ENIs will be created for you with standard settings.
For example, when you create an EC2 instance, AWS automatically creates an ENI for
the instance and names it eth0. This is the primary network interface for the instance.
The primary network interface will be associated with the subnet that you chose when
creating the EC2 instance.

 Elastic Network Interfaces are also the mechanism by which IP addresses are asso-
ciated with networked resources. You can associate additional IP address with a
resource by attaching another elastic IP address to the ENI. The IP addresses are their
own resource called Elastic IPs, or EIPs. As with ENIs, you generally don’t need to cre-
ate Elastic IPs. When you create an EC2 instance, AWS automatically creates an EIP
that is the private IP address for the instance. The EIP is attached to the ENI, which is
attached to the instance. The difference with EIPs is that you don’t have access to the
ones created by AWS. You cannot disassociate the EIP from the network interface and
reuse it somewhere else. If you terminate the instance, the EIP will be released. This is
important if you want to keep a public IP address, even when an instance is termi-
nated. To do that you’d create a new Elastic IP manually, and then attach that EIP to
the elastic network interface on the desired instance. Then you have the flexibility of
moving the EIP around wherever you choose.

 Note that the default limit for manually created elastic IPs in your account is five. If
you want to hold onto more than five IP addresses you will have to contact AWS support.

 Getting back to our virtual network, let’s add an EC2 instance to each subnet:

$ aws ec2 run-instances \
 --instance-type t2.micro \
 --vpc-id vpc-1234 \
 --subnet-id subnet-1234

The ID of the VPC created earlier.

The ID of the public subnet.

8 CHAPTER 4 Securing the network: the virtual private cloud
$ aws ec2 run-instances \
 --instance-type t2.micro \
 --vpc-id vpc-1234 \
 --subnet-id subnet-1234

The ID of the private subnet.

What appears to be happening is that the instance is being created in the specified
subnet. However, we know that what’s really happening is that behind the scenes elas-
tic network interfaces and elastic IP addresses are being created for us. Check out fig-
ure 4.4 for what our network looks like now that we’ve added all of these resources.

Figure 4.4 Instances are added to subnets.
The ENI is the resource that is connected to
both the instance and the subnet. Note that the
subnet labeled Public Subnet is still technically
private, because the public internet routing
hasn’t yet been configured.

4.1.4 Internet and NAT gateways

Earlier in section 4.1 we defined a public subnet as a subnet that could be accessed
from the public internet. By default, our VPC and all of the subnets inside of it, are
isolated from the public internet. To allow connections between our VPC and the
internet, we need a gateway. We’ll talk about a couple of gateways in this section. The
first is the internet gateway. An internet gateway, sometimes called an IGW, is a
resource that’s created in a VPC. When an internet gateway is attached to a VPC then
traffic can be routed from inside the VPC to the internet through that IGW, and vice
versa. We can create an internet gateway for our VPC using the create-internet-gate-
way command:

$ aws ec2 create-internet-gateway
$ aws ec2 attach-internet-gateway \
 --internet-gateway-id igw-1234 \
 --vpc-id vpc-1234

Creates a new internet gateway.

Puts the newly created internet
gateway in our VPC.

The ID of the internet gateway
created in the first command.The ID of the VPC

created earlier.

9Working with a virtual private cloud
This creates an internet gateway in our VPC. We can see our new network architecture
in figure 4.5.

Figure 4.5 Adding an
internet gateway to a VPC.

The last step to connect an instance in our VPC to the public internet is to tell our VPC
how to route traffic to the public internet. We’ll see how to do that in the next section.

 The default VPC in your account that’s created by AWS comes with an internet
gateway as well. The routing for the internet gateway is pre-configured as well. This is
why you can create an instance in the AWS Console and SSH to it immediately, with-
out having to configure any network resources.

 Another gateway resource is a NAT Gateway. A NAT gateway allows you to send
traffic out of your VPC to the internet, but not the other way around. This is useful if
you have hosts that need to call out to external services, but you don’t want anyone to
initiate a connection with those hosts. An example could be a build server that pulls
from a public GitHub repository, and puts build artifacts in S3. The server needs inter-
net access to read from GitHub, but we don’t have a need for access to the build
server from the internet. In this case, an NAT gateway would work nicely.

NETWORK ADDRESS TRANSLATION NAT stands for Network Address Transla-
tion. Network address translation is a process of mapping address informa-
tion of packets as they are routed. A NAT gateway performs network address
translation on all traffic passed through it. It modifies the packets to appear as
if they came from the public IP address associated with the NAT gateway,
rather than the private IP address of the host that created them.

An NAT gateway isn’t an alternative to an internet gateway; they actually work in tan-
dem. If you have an instance that needs internet access, you have two choices. You
could route internet-bound traffic to the VPC’s internet gateway, in which case traffic

10 CHAPTER 4 Securing the network: the virtual private cloud
can go in both directions. Or you could route internet-bound traffic to the NAT gate-
way, in which traffic will be sent to the VPC’s internet gateway and out to the public
internet. But traffic cannot go in the other direction. Either way, the internet-bound
traffic will go through the internet gateway.

 Let’s add an NAT gateway to our network.

$ aws ec2 create-nat-gateway \
 --subnet-id subnet-1234 \
 --allocation-id eipalloc-1234

Note two important elements in that command. The first is that NAT gateways are
attached to subnets. This differs from internet gateways which are attached to VPCs.
The second is that we added the NAT gateway to the public subnet. This seems coun-
terintuitive at first, as the public subnet was intended to be for instances that are pub-
licly accessible. If traffic in that subnet was routed through the NAT gateway then they
wouldn’t be publicly accessible. Instead what happens is we route internet-bound traf-
fic in the public subnet to the internet gateway, and internet-bound traffic in the pri-
vate subnet to the NAT gateway residing in the public subnet. The reason that we put
the NAT gateway in the public subnet is that the NAT gateway needs access to the
internet gateway, which we expose in the public subnet, but not in the private one.
We’ll dive further into this in the next section on network rules and routing.

 At this point our network looks like figure 4.6.

Creates a new NAT gateway.

Use the ID of the public subnet.

This is the allocation ID of an EIP, you may
need to create a new EIP for this NAT gateway.

Figure 4.6 Adding an NAT
gateway to a public subnet.

11Traffic routing and virtual firewalls
IPV4 VS IPV6 FOR NAT GATEWAYS Note that NAT gateways are for IPv4 traffic
only. There’s an IPv6 equivalent of a NAT gateway called an egress-only inter-
net gateway. It behaves exactly like a NAT gateway, with the only difference
being that it routes IPv6 traffic only.

4.2 Traffic routing and virtual firewalls
In the previous section, we created several networked resources, but we haven’t speci-
fied how traffic can flow within the network. We’ve said that public subnets need to
route traffic to an internet gateway. That routing is done with route tables, and in this
section we’ll look at how this is done. We’ll also configure two types of virtual firewalls
that give us finer-grained control over what traffic is allowed. The two firewalls we’ll
use in this section are Security Groups, which are applied to instances, and Network
ACLs, which are applied to subnets.

 In this section we are going to expand the network we’ve been working on in this
chapter to include the highlighted items in figure 4.7.

At the end of the section we will have a common networking setup. You can place
instances in the public subnet and they’ll be available over the internet. You can place
instances in the private subnet and they will not be, but they can still be call out to the
internet if needed. Firewalls will be configured so that if you want to SSH into one of
the hosts in the private subnet you must first SSH into an instance in the public subnet
(called a bastion host), and then from there you can SSH into any of the others.

Figure 4.7 The rules and
firewalls in a common
VPC network

12 CHAPTER 4 Securing the network: the virtual private cloud
4.2.1 Route tables

Route tables define how traffic is routed throughout your VPC. A route table is a set of
rules that say where traffic should be directed based on the IP address it was sent to.
Each of these rules is aptly called a route. Every route consists of two parts, a destina-
tion and a target. An example route table with two routes is shown in table 4.2.

The destination of a route is a CIDR block. If traffic is being sent to an IP address within
the destination CIDR block, then that traffic is directed to the route’s target. You have
many options for the target of a route. One option is a gateway such as an internet or
NAT gateway. Another option is “local” which means that the traffic is routed within the
same VPC or subnet. There are other possible targets for a route, listed in table 4.3, but
these are the only ones we talk about in this chapter. In the example routes in table 4.2,
traffic sent to addresses between 10.0.0.0 and 10.0.0.255 is directed to “local”, which
means it’s sent somewhere in the same VPC. The second route matches all traffic (recall
that 0.0.0.0/0 is all IPv4 addresses) and directs it to an internet gateway.

 In our example route table, traffic could potentially match both routes. In that
case, traffic is directed to the more specific route, that is, the one with the larger num-
ber after the slash in the CIDR block. If traffic was sent to the IP address 10.0.0.1, it
would match both routes, but would be sent to the target of Route 1 because that
route is more specific.

Whenever you create a VPC, a route table is automatically created and attached to that
VPC for you. This route table is called the main route table. It’s created with a single
route with a destination CIDR block that matches the CIDR block of the VPC, and the
target is local. This means that by default, resources within a VPC can communicate
with each other without having to configure additional routing. When you create a
new route table that same local route will automatically be created as well.

Table 4.2 A Route Table Directing Intra-VPC Traffic within the VPC.
All Other Traffic is Routed to an Internet Gateway.

Route Destination Target

Route 1 10.0.0.0/24 local

Route 2 0.0.0.0/0 igw-1234

Table 4.3 Options for Route Targets

Possible route targets

Local Internet Gateway

NAT Gateway Egress Only Internet Gateway

Transit Gateway Virtual Private Gateway

VPC Peering Connection Elastic Network Interface

13Traffic routing and virtual firewalls
 Let’s now try setting up the routing resources that will connect our public subnet
to the internet gateway. Right now, all traffic in all of our subnets is controlled by the
main route table. We could add a route to the main route table that goes to the inter-
net gateway, but that would also apply it to our private subnet, which we do not want
to do. Instead, we’ll create a new route table and associate it with our public subnet.
Then the public subnet will route according to the new route table, and the private
subnet will still be route based on the main route table.

 Once we have our route table, and it’s associated with our subnet, we can add the
route to the internet gateway. Recall that a route table is initialized with a local route
within the VPC. There will be two routes. The route table essentially says:

 For traffic to IPs in the VPC, route it within the VPC.
 For any other traffic, route it to the internet gateway.

At this point, our network looks like figure 4.8, where a route table mapping the pub-
lic subnet to the internet gateway is created.

Figure 4.8 Using a route table to
connect a subnet to an internet
gateway. The route table has a default
route that directs local traffic within the
VPC, and a custom route that directs all
other traffic through the IGW.

We also need to create a route to connect our private subnet to the NAT gateway. The
process for that is similar. We’ll create a new route table and associate it with the private
subnet. Then we add a route with a destination of 0.0.0.0/0 and our NAT gateway as the
target. This will send all non-local traffic to the NAT gateway. And that’s it. Now the
instance in the private subnet can reach the public internet. However, you can’t SSH
into the instance because the NAT gateway doesn’t allow traffic in that direction. We can
visualize the addition of this new route table in our network architecture in figure 4.9.

14 CHAPTER 4 Securing the network: the virtual private cloud
Figure 4.9 Using a route table
to connect a private subnet to a
NAT gateway.

The last step allowed instances in the private subnet to send traffic to the public inter-
net. However, with the many resources needed to make that happen, it can be hard to
see what exactly is happening that allows traffic to flow from the private instance to the
public internet. The diagram in figure 4.10 highlights the path that traffic is routed
when a private instance makes a request to a public internet address such as 8.8.8.8.

Figure 4.10 The path of traffic as it flows
between an instance in a private subnet to
a server in the public internet, leveraging
NAT and internet gateways.

15Traffic routing and virtual firewalls
 The process by which the traffic is routed is as follows, with each step labeled in
figure 4.10:

1 The instance in the private subnet makes a request to 8.8.8.8.
2 The request is routed based on the route table associated with the private subnet.
3 The private subnet’s route table directs the traffic to the NAT gateway.
4 The NAT gateway performs the address translation and forwards the traffic.
5 The NAT gateway is in the public subnet, so the forwarded traffic is routed

based on the route table associated with the public subnet.
6 The public subnet’s route table directs the traffic to the internet gateway.
7 The internet gateway handles routing the traffic to the 8.8.8.8 destination over

the public internet.

4.2.2 Security groups

A security group is a set of rules that determine what network traffic is allowed in and
out of an instance. They are a bit like the networking equivalent of IAM policies. In
IAM, you might create a policy that allows s3:PutObject, and attach that policy to a user.
That user can then call the s3:PutObject action. Here you can create a security group
that allows outbound TCP traffic on port 443, and you can assign that security group to
an instance. That instance is then allowed to initiate TCP connections on port 443.

 There are two kinds of rules in a security group, inbound and outbound, and each
is made up of three key elements. For outbound rules, these are the destination, pro-
tocol, and port range. The example TCP outbound rule might look like table 4.4.

This rule says that traffic destined for any IP address, using the TCP protocol, on port
443 is allowed. Like IAM, anything not explicitly allowed is disallowed. The destina-
tion field can be a CIDR block as in the example, or it can be a security group. It can
refer to its own security group. This is useful if you have a group of instances that you
want to allow to communicate with each other only. You can put all of the instances
in the same security group and create a security group rule that only allows traffic
within the security group. The protocol field can be any protocol that has a standard
number based on RFC-52371. The most common is TCP, but other frequently used
protocols are ICMP (1) and UDP (17). The port range field refers to the receiving
port on the destination.

 Inbound rules are the same, except instead of a destination they have a source
field. The source field again can be a CIDR block or a security group. If you want to

Table 4.4 Outbound Security Group Rule Allowing TCP Traffic on Port 443 to Anywhere

Destination Protocol Port range

0.0.0.0/0 TCP (6) 443

1 https://tools.ietf.org/html/rfc5237

https://tools.ietf.org/html/rfc5237

16 CHAPTER 4 Securing the network: the virtual private cloud

.

s

allow SSH access to your instance, you can create an inbound rule in your security
group that looks like table 4.5.

This allows traffic to your instance coming from anywhere, using the TCP protocol
(which is what SSH uses), on port 22 (the default SSH port).

 When you create a VPC, a default security group is created. The default security
group rules are shown in table 4.6.

The inbound rule allows all traffic within the default security group. The outbound
rule allows all traffic to any destination. If you want to be able to SSH into your
instances you’ll need to add a new inbound rule to your default security group. You
can do this by running the following AWS CLI commands:

$ aws ec2 authorize-security-group-ingress \ This command creates a new
inbound rule on a security group --group-id sg-1234 \

 --cidr "0.0.0.0/0" \
 --port 22 \
 --protocol 6

 With this change, you can SSH into any instances that are using the default security
group.

 Let’s go back to the network that we’ve been working on throughout this chapter.
We want to allow public access to our instance in the public subnet. The routes and
networking resources are all there, but the default security group is preventing us
from connecting. One thing we could do is update the default security group to allow
inbound access. However, this isn’t ideal because the default security group is also
being used by the instance in the private subnet. We don’t want to modify the existing
firewall rules on the instance in the private subnet. Instead, we’ll create a new security
group and apply it to the instance in the public subnet.

$ aws ec2 create-security-group \
 --vpc-id vpc-1234 \
 --group-name "PublicAccessSecurityGroup"
$ aws ec2 modify-instance-attribute \

Table 4.5 Inbound Security Group Rule Allowing TCP Traffic on Port 22 from Anywhere

Source Protocol (Number) Port Range

0.0.0.0/0 TCP (6) 22

Table 4.6 Default Security Group Rules

Type Source/destination Protocol Port range

Inbound self All All (0-65535)

Outbound 0.0.0.0/0 All All (0-65535)

This is the ID
of the default

ecurity group. This CIRD block matches all IPs. This is necessary if
you want to be able to SSH in over the internet and
you don’t know what IP you will be calling from.

The ID of the VPC created at
the beginning of the chapter.

17Traffic routing and virtual firewalls

in
p

 --instance-id i-1234 \
 --groups sg-1234 sg-5678

The IDs of the default security group and
the one created in the first command.

 Now both the new security group and the default security group are attached to
the instance. An instance can have up to five security groups. The next step is to add
an inbound security group rule that allows SSH access from the public internet. The
rule was shown in table 4.5 and is repeated here.

The AWS CLI command to create that is the following:

$ aws ec2 authorize-security-group-ingress \
 --group-id sg-1234 \
 --cidr "0.0.0.0/0" \
 --port 22 \
 --protocol 6

Now we should be able to SSH to our instance in the public subnet. We can see how
this looks in our network diagram in figure 4.11.

Figure 4.11
Adding a security
group to restrict
access to instances
in a network.

Table 4.7 Inbound Security Group Rule Allowing TCP Traffic on Port 22 from Anywhere

Source Protocol (number) Port range

0.0.0.0/0 TCP (6) 22

The ID of the
stance in the
ublic subnet.

18 CHAPTER 4 Securing the network: the virtual private cloud
That’s everything we need for our network. All of the resources are configured in the
way that we prescribed at the beginning of the chapter. We have a public subnet where
we can put instances that are accessible to the public, and a private subnet for
instances that should be isolated. With the security group rules we set up, we can use
the instance in the public subnet as a bastion to the instance in the private subnet. We
cannot SSH into the private instance directly, but we can first connect to the public
instance and from there connect to the private one. The SSH connection from the
instance in the public subnet to the instance in the private subnet is allowed due to
the firewall rules on the default security group, which is currently applied to both
instances. The default security group rule allows all outbound access and allows
inbound requests from any instance that is also using the default security group.

COMMON ATTACK: SSH ACCESS TO A WEB SERVER
Let’s look at one way that we can use security group rules to prevent a common attack.
Suppose you have an EC2 instance that’s running a web server. The security group for
the instance allows all inbound traffic so that anyone can view your website. While
checking the logs on the server, you notice tons of failed attempts to SSH to your
instance from IP addresses that you don’t recognize. This is likely from an attacker try-
ing to brute force access to your server. How can you prevent this?

 This can be easily prevented with security groups. The existing security group has
the inbound rule shown in table 4.8.

Opening up public access like this is important for allowing people to visit your web-
site, but it is overly permissive. It’s like the wildcard policies in IAM that grant exces-
sive permissions. What we can do here is restrict this rule to only the traffic that is
necessary for the website. That is typically TCP traffic on ports 80 (HTTP) and 443
(HTTPS). We can remove the existing rule and replace it with two new ones that look
like the ones shown in table 4.9.

Now everyone can still use your website, but attackers can still attempt to SSH into
your server. One thing to note is this will remove your SSH access as well. If you need
it, you can configure a separate bastion instance for connecting to the webserver as we
did earlier in the chapter.

Table 4.8 Permissive Inbound Security Group Rule Allowing All TCP Traffic from All IP Addresses

Source Protocol (number) Port range

0.0.0.0/0 TCP (6) ALL (0-65535)

Table 4.9 More Restrictive Inbound Security Group Allowing Only Web Traffic

Source Protocol (number) Port range

0.0.0.0/0 TCP (6) 80

0.0.0.0/0 TCP (6) 443

19Traffic routing and virtual firewalls
4.2.3 Network ACLs

Network ACLs are virtual firewalls like security groups, but they apply to entire sub-
nets, rather than to specific instances. Network ACLs can be used instead of security
groups when you want to apply the same rules to all instances within a subnet. They
can also be used in addition to security groups to provide defense in depth, an addi-
tional layer of security in case something goes wrong.

 The configuration of network ACL rules is slightly different from security group
rules. The order of security group rules does not matter. If a security group rule
matches some traffic, then it’s allowed. Network ACL rules, on the other hand, are
ordered. The rules are evaluated in order and the first rule that matches the traffic is
the one that gets applied. For example, look at a sample network ACL inbound rule
set in table 4.10.

The first rule allows HTTPS traffic, while the second denies all TCP traffic. If an
HTTPS connection were initiated, it would be allowed, since Rule #100 is evaluated
first, and it allows the traffic.

 Another difference between security groups and network ACLs is that network
ACLs are stateless, while security groups are stateful. This refers to how responses are
handled. Let’s look at a security group, in table 4.11, and a network ACL, in table 4.12,
that appear to do the same thing:

What both of these virtual firewall configurations amount to are rules that say that all
inbound connections are denied, and the only outbound connections that should be
allowed are the TCP connections over port 443. With a stateful firewall, such as the

Table 4.10 Network ACL Rules Allowing HTTPS Traffic into a Subnet

Rule # Type Protocol Port range Source Allow or deny

100 HTTPS TCP 443 0.0.0.0/0 Allow

200 ALL TCP ALL 0.0.0.0/0 Deny

Table 4.11 Security Group Rule Allowing Outbound HTTPS Traffic

Type Destination Protocol (number) Port range

Outbound 0.0.0.0/0 TCP (6) 443

Table 4.12 Network ACL Rules Allowing Outbound HTTPS Traffic

Outbound/inbound Rule # Type Protocol Port range Destination Allow or deny

Outbound 100 HTTPS TCP 443 0.0.0.0/0 Allow

Outbound * ALL ALL ALL 0.0.0.0/0 Deny

Inbound * ALL ALL ALL 0.0.0.0/0 Deny

20 CHAPTER 4 Securing the network: the virtual private cloud
security group, the response to a permitted outbound request is permitted. In a state-
less firewall, such as the network ACL, the response is only permitted if a rule permits
it. In the case of this network ACL, you might be able to make an HTTPS request to a
website, but the connection will time out because you’ll never get a response. That’s
because the response is being dropped due to the inbound rule of the network ACL.
If you want to allow HTTPS traffic originating from your instance with a network ACL,
you need to configure both an inbound and an outbound rule that allows it.

COMMON ATTACK: EXFILTRATION FROM A PUBLICLY ACCESSIBLE DATABASE
Let’s go through an example of using a network ACL to secure an existing network
from a common attack. Suppose you have a public subnet with two instances. One
runs a webserver, and the other runs an open MongoDB database. The database
instance has a public IP address assigned to it and is available over the public internet.
If someone were to run a port scan on that public IP address, they could find your
database and read all of its contents. That attack can be prevented by restricting access
such that only the web server can communicate with the database. Let’s see how we
can accomplish that using network ACLs.

 Suppose that the subnet was using a wide-open network ACL with the rules listed
in table 4.13.

The easiest way to fix this is to restrict it to allow only the necessary traffic. That neces-
sary traffic is HTTPS on port 443, where the webserver is listening. We also need to open
up TCP traffic on port 27017, where the MongoDB server is listening, but only within
the subnet. We can update the network ACL to use the rules in table 4.14 instead.

Table 4.13 Network ACL Rules Allowing All Traffic into and out of a Subnet

Inbound/outbound Rule # Type Protocol Port range Source/destination Allow or deny

Outbound 100 ALL ALL ALL 0.0.0.0/0 Allow

Inbound 200 ALL ALL ALL 0.0.0.0/0 Allow

Table 4.14 Network ACL Rules Allowing Web Traffic Originating Outside the VPC, and Traffic to a
MongoDB Server from Within the VPC

Inbound/outbound Rule # Type Protocol Port range Source/destination Allow or deny

Outbound 100 HTTPS TCP 443 0.0.0.0/0 Allow

Outbound 200 CUSTOM TCP 27017 10.0.0.0/24 Allow

Outbound * ALL ALL ALL 0.0.0.0/0 Deny

Inbound 300 HTTPS TCP 443 0.0.0.0/0 Allow

Inbound 400 CUSTOM TCP 27017 10.0.0.0/24 Allow

Inbound * ALL ALL ALL 0.0.0.0/0 Deny

21Traffic routing and virtual firewalls
These rules lock down our subnet much further. The only traffic allowed in from the
public internet is HTTPS traffic on port 443 (by rules #100 and #300). TCP traffic on
port 27017 is allowed (by rules #200 and #400), but only to and from 10.0.0.0/24, which
is the CIDR block of our subnet. The asterisk rules are catch-alls that apply only if none
of the other rules applied. These reject all traffic that we didn’t specify with an Allow
rule. Those rules are automatically added. We can update the network ACL in the AWS
Console. Open the VPC console and select Network ACLs under the Security tab. Click
on the network ACL you want to update and you can update the inbound and out-
bound rules. Figure 4.12 shows the network ACL rule editing screen. Once you’ve made
this change, the MongoDB database is no longer available on the public internet.

Figure 4.12 Screenshot of configuring network ACL rules in the VPC Console.

COMMON ATTACK: DENIAL OF SERVICE
Network ACLs can also be used to defend against simple denial of service attacks.
These attacks involve an attacker sending a large number of requests to your server
from a small number of sources. If you notice that traffic is spiking, and most of the
traffic is coming from a couple of IP addresses, you can block those IPs using network
ACL rules. This has the effect of blocking all traffic coming from those IPs at the sub-
net level, and those requests will never reach your server. Requests from all other
source IP addresses will be allowed. To create the network ACL rule for this, you have
to create an inbound DENY rule with a low number, on all traffic. For the source of
the rule put the IP address of the attacker in CIDR block format.

 There are many kinds of denial of service attacks, and they can be much more
sophisticated than this. One variant is a distributed denial of service (DDOS) attack,
which involves sending the malicious requests from a large number of sources. This

22 CHAPTER 4 Securing the network: the virtual private cloud
kind of attack cannot be easily blocked with network ACLs or security groups, because
you won’t know what IPs to block, or you won’t be able to block them all. In the next
chapter we’ll introduce more sophisticated firewalls that are better suited for mitigat-
ing these types of attacks.

4.3 Separating private networks
Everything in this chapter so far has been discussed in the context of a single VPC.
While you could manage all of your resources in one VPC, many organizations choose
to separate their infrastructure into several VPCs. In this section, we’ll discuss the pri-
mary reason for using multiple VPCs: network isolation. We’ll also discuss how to cre-
ate secure connections between resources in different VPCs. If you have a private
network outside of AWS, such as the LAN in your office or datacenter, at the end of
this section we’ll go over a couple of ways to create secure connections between a VPC
and your private network.

4.3.1 Using multiple VPCs for network isolation

Recall from chapter 2 that multiple AWS accounts can be used to provide a logical
separation between unrelated resources. While you could create the same logical sep-
aration using IAM in a single account, the policies could be complicated and prone to
mistakes. Using multiple VPCs for unrelated networking-resources is the same. Take a
look at figure 4.13 depicting a network using two VPCs.

Figure 4.13 Network traffic is blocked by default between resources in separate VPCs.

You can see a network separation between the two instances in the diagram. Instance
A cannot communicate with Instance B. This is beneficial for reducing the blast radius
or the potential impact of an attack. Suppose an attacker compromised Instance A. If
network access is allowed between the two instances, then the attacker could leverage
their position on Instance A to compromise Instance B as well. Because that network
access isn’t allowed due to being in separate VPCs, the attacker’s position on Instance
A doesn’t make it any easier to access Instance B.

 The same network separation could have been achieved with security groups or
network ACLs instead of multiple VPCs. In the case of only two instances, it might

23Separating private networks
even have been easier to use a security group rule. But as networks grow larger, using
multiple VPCs becomes a very convenient way to separate resources without the risk of
a mistake. See figure 4.14 which compares preventing access between instances using
a single VPC versus multiple VPCs.

4.3.2 Connections between VPCs

While using two VPCs is a good way to prevent access between resources, there are
times where you need resources in separate VPCs to communicate. One reason for
this is that a VPC can only be in a single region. If you have resources in several
regions, then they’ll have to be separate VPCs. VPCs are also specific to a single AWS
account. If you use multiple accounts, and need connectivity between them, you can’t
put all of the resources from each of the accounts in the same VPC.

 One way to achieve connectivity between two VPCs is by routing traffic over the
public internet, using the tools we’ve already discussed in this chapter. You could fol-
low the steps in section 4.1.4 to create an internet gateway in both VPCs. Then use the

Figure 4.14 Compari
son of blocking traffic
between instances
using multiple VPCs
and security groups
only. It can be
achieved by either
method, but multiple
VPCs provides an
additional level of
security.

24 CHAPTER 4 Securing the network: the virtual private cloud
information from section 4.2 to configure the routing and firewall rules to allow the
networked resources to send and receive traffic from the internet gateway. Figure 4.15
shows what this network setup might look like. However, this isn’t the ideal situation.
If certain firewall rules aren’t configured correctly, you risk allowing access to your
resources to anyone on the public internet. Additionally, public internet traffic
between resources in separate regions isn’t guaranteed to stay within the AWS net-
work. That introduces its own security and availability concerns.

A better way to connect between resources in separate VPCs is through VPC peering
connections. A VPC peering connection is a resource that allows you to route traffic
between resources as if they were in the same VPC. A basic VPC peering setup is
shown in figure 4.16.

Create two
VPCs for
peering.

 Using a VPC peering connection we can connect between VPCs without having to
allow public internet traffic in and out of our VPC. Let’s walk through setting up a
VPC peering connection. Before we get started, we need two VPCs to peer. Let’s cre-
ate two VPCs, each with a single subnet and a single instance:

$ aws ec2 create-vpc \
 --cidr-block 10.0.0.0/24
$ aws ec2 create-vpc \
 --cidr-block 10.0.1.0/24

Figure 4.15 Connecting instances in
different VPCs over the public internet. All
traffic from the public internet is allowed
into the VPC and is only blocked at the
security group or network ACL level.

Use non-overlapping CIDR
ranges for the VPCs.

25Separating private networks
Figure 4.16 VPC peering connections allow
network communication between resources in
separate VPCs without the need for exposing
public internet access.

In order to create a peering connection between two VPCs, they must not have over-
lapping CIDR blocks.

$ aws ec2 create-subnet \
 --vpc-id vpc-1234 \
 --cidr-block 10.0.0.0/24

$ aws ec2 create-subnet \
 --vpc-id vpc-5678 \
 --cidr-block 10.0.1.0/24

 $ aws ec2 run-instances \
 --instance-type t2.micro \
 --vpc-id vpc-1234 \
 --subnet-id subnet-1234
$ aws ec2 run-instances \
 --instance-type t2.micro \
 --vpc-id vpc-5678 \
 --subnet-id subnet-5678

Replace with the ID of the second subnet.

Once we have those resources, we can create the peering connection between them.
This involves the following steps:

1 Create a VPC peering connection request.
2 Accept the peering connection request.
3 Update route tables to direct traffic between VPCs.

Replace with the ID of the first VPC.

Replace with the ID of the second VPC.

Replace with the ID of the first VPC.

Replace with
the ID of the
first subnet.

Replace with the ID of the second VPC.

26 CHAPTER 4 Securing the network: the virtual private cloud
Start by navigating to the VPC console. From there, select Peering Connections from
the sidebar, and click on Create Peering Connection. You’ll be prompted for the IDs
of the VPCs that you created, as seen in the screenshot of the Create Peering Connec-
tions UI in figure 4.17.

Figure 4.17 Screenshot of the Create Peering Connection wizard.

The next step is to accept the newly created peering connection. In the VPC console,
you can do this by clicking on the peering connection request and selecting Actions.
From the Actions menu choose Accept Request and confirm the action. These actions
could also have been completed using the CLI instead of the Management Console.
VPC peering connection requests can be created with the create-vpc-peering-con-
nection command under the EC2 service. You can then accept those requests with
the accept-vpc-peering-connection command.

 The final step is to create the routes that direct traffic between the VPCs. What
we’re going to do is add a route in the first VPC with the peering connection as a tar-
get and the CIDR block of the second VPC as a destination. We’ll do the same thing in
the second VPC, with a route that has the first VPC’s CIDR block as the destination.
This can be done through the VPC console or using the AWS CLI. The routes we need
to create are shown in table 4.15.

27Separating private networks
Once these routes are created, then traffic can flow between the VPCs privately. You
can verify this by trying to ping the private IP address of an instance in the second
VPC using an instance in the first VPC.

 At the beginning of the section, we mentioned that common reasons for needing
connections between VPCs were due to using multiple regions or accounts. Peering
connections can be created for VPCs in different regions (called inter-region peering
connections) or different accounts. This solves the issue of running connections over
the public internet in these situations. Inter-region VPC peering connections also
guarantee that traffic stays within the AWS network as it goes between your cross-
region resources.

4.3.3 Connecting VPCs to private networks

VPC peering connections primarily solve the problem of routing traffic privately
rather than over the public internet. But peering connections only work for VPCs.
What if you have servers running in your garage, office, or datacenter? The idea still
holds that routing those connections privately is better than routing them through
the public internet. If some of your servers aren’t in AWS, you can’t use peering con-
nections for that, but there are other tools you can use. The easiest one to use is AWS
Site-to-Site VPN.

 Site-to-Site VPN is a service that lets you create a VPN tunnel between your non-
AWS network and a VPC in your AWS account. When you set up Site-to-Site VPN for
your VPC, you create a virtual private gateway in your VPC. The virtual private gateway
is similar to an internet gateway, but the traffic going in and out is restricted to only
through the VPN tunnel between your VPC and your private network. To enable the
Site-to-Site VPN on your private network, you need to configure your router with the
VPN settings. The steps to configure the VPN will vary based on your routing device,
but AWS provides examples for the most common devices. Once you’ve set up the vir-
tual private gateway and configured your private network, the Site-to-Site VPN is ready
to go. You can route traffic through your virtual private gateway to your private net-
work using route tables the same way you would for an internet gateway. The virtual
firewall settings for security groups and network ACLs will behave the same as well.

Table 4.15 Routes to Create for a VPC Peering Connection

Route Table Target Destination

Main route table
of the first VPC

pcx-1234
This is the ID of the peering
connection created in step 1.

10.0.1.0/24
This is the CIDR block of the second VPC.

Main route table
of the second VPC

pcx-1234
This is the ID of the peering
connection created in step 1.

10.0.0.0/24
This is the CIDR block of the first VPC.

28 CHAPTER 4 Securing the network: the virtual private cloud
For an overview of how traffic flows between your private network and a VPC with Site-
-to-Site VPN see figure 4.18.

Another option for privately connecting an on-premises network to a VPC is AWS
Direct Connect. Direct Connect is a service that allows you to create a direct line
between your on-premises network and the AWS network. As opposed to using a VPN,
traffic is sent straight to AWS without any hops in between. Direct Connect is more
expensive and difficult to set up than Site-to-Site VPN, but it can be a better option
when you are transferring large amounts of data quickly and are limited by the band-
width of your VPN connection. For more information on setting up AWS Direct Con-
nect, see the documentation at https://aws.amazon.com/directconnect.

Summary
 Network access controls in VPC are similar to the logical access controls of IAM,

but they’re configured in completely different ways.
 Using VPCs and other networking resources allows you to control network

access to and from your AWS resources.
 Configuring built-in virtual firewalls such as Security Groups and Network ACLs

lets you lock down your network and protect against unauthorized access to
your resources.

Figure 4.18 Sample diagram of
a Site-to-Site VPN connection
between an on-premises network
and a VPC.

29Separating private networks
 Putting resources into separate VPCs isolates them from each other and pre-
vents a compromised resource from accessing other resources.

 Setting up a peering connection between VPCs allows you to isolate resources
in separate VPCs while still allowing for private connections between them.

 Using VPC Peering, Site-to-Site VPN, or Direct Connect allows you to connect
to a resource without residing in the same VPC, and also avoids the risks associ-
ated with sending traffic over the public internet.

	contents
	4 Securing the network: the virtual private cloud
	4.1 Working with a virtual private cloud
	4.1.1 VPCs
	4.1.2 Subnets
	4.1.3 Network Interfaces and IPs
	4.1.4 Internet and NAT gateways

	4.2 Traffic routing and virtual firewalls
	4.2.1 Route tables
	4.2.2 Security groups
	4.2.3 Network ACLs

	4.3 Separating private networks
	4.3.1 Using multiple VPCs for network isolation
	4.3.2 Connections between VPCs
	4.3.3 Connecting VPCs to private networks

	Summary

