VMware Horizon Suite

Building End-User Services
VMware Press is the official publisher of VMware books and training materials, which provide guidance on the critical topics facing today's technology professionals and students. Enterprises, as well as small- and medium-sized organizations, adopt virtualization as a more agile way of scaling IT to meet business needs. VMware Press provides proven, technically accurate information that will help them meet their goals for customizing, building, and maintaining their virtual environment.

With books, certification and study guides, video training, and learning tools produced by world-class architects and IT experts, VMware Press helps IT professionals master a diverse range of topics on virtualization and cloud computing. It is the official source of reference materials for preparing for the VMware Certified Professional Examination.

VMware Press is also pleased to have localization partners that can publish its products into more than 42 languages, including Chinese (Simplified), Chinese (Traditional), French, German, Greek, Hindi, Japanese, Korean, Polish, Russian, and Spanish.

For more information about VMware Press, please visit vmwarepress.com.
VMware® Press is a publishing alliance between Pearson and VMware, and is the official publisher of VMware books and training materials that provide guidance for the critical topics facing today’s technology professionals and students.

With books, eBooks, certification study guides, video training, and learning tools produced by world-class architects and IT experts, VMware Press helps IT professionals master a diverse range of topics on virtualization and cloud computing, and is the official source of reference materials for preparing for the VMware certification exams.

vmwarepress.com

Make sure to connect with us!
vmwarepress.com
Dedication

Stephane and Paul worked many long hours to bring together their thoughts, ideas, and experience to collaborate on this project. They would like to dedicate this book to the readers who have provided feedback, support, and insight to their work, thus enabling them to develop and deliver great content.
Contents

Introduction ix

Chapter 1 The New End-User Model 1
The Evolution of the End User 1
An End-User Service Catalog 2
How Do View, Mirage, and Horizon Workspace Deliver a Service Catalog? 3
Considerations for Deploying View, Mirage, and Workspace 4
An Introduction to VMware View, Mirage, and Workspace 18
VMware View 18
VMware Mirage 21
VMware Workspace 24
Summary 25

Chapter 2 VMware View Architecture 27
Introduction 27
Approaching the Design and Architecture 27
Phase I: Requirements Gathering and Assessment 28
Phase II: Analysis 29
Phase III: Calculate 30
Phase IV: Design 32
VMware View Server Architecture 33
VMware View Connection Server 34
VMware View Replica Server 34
VMware View Security Server 35
Local Mode VMs 38
VMware View Transfer Server 39
Summary 51

Chapter 3 VMware Workspace Architecture 53
Introduction 53
Approaching the Design and Architecture 53
Planning Considerations 54
IP Pools 55
Network Services 55
NTP 57
Authentication 58
Certificates 60
SMTP 62
External Storage 62
PostgreSQL 65
Contents xi

Modifying Workspace Data Module Storage 148
 Add Additional VMDKs for Storage 149
Upgrading a Workspace Environment 152
Enabling Workspace with NFS 152
Installing the Workspace Agent on Client Endpoints 153
 Workspace Windows/OS X/iPad/Android Client Deployment 153
Using SSL Certificates in Workspace 156
 Applying an SSL Certificate from a Trusted Third-Party CA 157
 Applying an SSL Certificate from an Internal or Nontrusted External Certificate Authority 158
Summary 158

Chapter 6 Integrating VMware View and Workspace 161
 VMware View and Workspace Integration Considerations 163
 VMware Workspace and View Integration 165
 Troubleshooting Certificate Errors 174
 Add a SAML 2.0 Authenticator 176
 Manage Authenticators 177
 Select an Existing SAML 2.0 Authenticator 177
 Dashboard 177
 Scaling View and Workspace Deployment 179
Summary 183

Chapter 7 View Operations and Management 185
 VMware View Operations 185
 Using View Access Groups 185
 Types of Desktop Pools 187
 Automated Desktop Pools 188
 Manual Desktop Pools 188
 Microsoft RDS Desktop Pool 189
 Creating Desktop Pools 189
 Power Settings 197
 Pool Settings 200
 View Composer 206
 vCenter Settings 209
 Provisioning Settings 211
 Sysprep or QuickPrep? 212
 Entitlement 213
 Replicas 214
 Refresh 214
 Recompose 215
 Rebalance 216
Contents

Managing Persistent Disks 216
Back Up View 218
Replacing Certificates 221
Composer and Certificates 225
Summary 226

Chapter 8 VMware Workspace Operations 227
 Operation of VMware Workspace 227
 Dashboard 230
 Users & Groups 230
 Entitlement 232
 Remove Users 233
 Catalog & Modules 233
 ThinApp Integration 234
 Policies 236
 SAML Overview 237
 Auditing and Tracking 239
 Workspace Clients 240
 Horizon Files 242
 Enable Horizon Files 242
 Add Additional Data VAs 245
 System Diagnostics 246
 Summary 247

Chapter 9 VMware Horizon Mirage 249
 VMware Horizon Mirage Deployment and Design Considerations 249
 Horizon Mirage Planning 251
 Horizon Mirage Components 251
 Prerequisites 253
 Storage Considerations 256
 External Dependencies 256
 Mirage Architecture 256
 Deploying Horizon Mirage Management Server 257
 Horizon Mirage Server 264
 Mirage Day-to-Day Administration 265
 Horizon Mirage Endpoint Restoration 268
 Horizon Mirage Base Layer 269
 Deploying Mirage Base Layer 272
 Horizon Mirage Layer Updates 273
 Horizon Mirage Endpoint Migration 274
Introduction

Writing this book has been a challenge because of the speed of change in the VMware end-user computing software products. When we first talked about the idea of writing about Horizon Suite, Mirage had just been acquired, Workspace was a 1.0 product, and the current release of View was 5.1. It is hard to believe that the evolution of the product line has happened so quickly in a little over a year. With the release of Horizon Suite 6, the need for a book that covers VMware View, Mirage, and Workspace has never been greater, so the effort was worth it.

Much greater than our challenge is the challenge for you, the reader, who is facing a world in which desktop management has become the management of stateless, mobile, streamed desktop or mobility tablet and smartphone workspace management. One might wonder whether in this age of readily available content, along with a plethora of how-to videos, a book dedicated to understanding these technologies has value.

We asked ourselves the same question, and when we reflected, we considered all the times that we really learned something. In reflecting, we realized that we learned the most when we got information that was relevant to what we were doing and was easy to understand and that steered us through what we really needed to know and allowed us to understand 80% of what was important while leaving the 20% for us to look up. It is with this attitude that we approached our topics to save you some time and ease the learning process.

In approaching each topic, we have considered architecture, deployment, and operations, which represent the key understanding that you need to deploy each product within the Horizon Suite comfortably. We have also considered the important integration points between the products, such as delivering View or ThinApp through Workspace. Based on feedback, we have also looked at some critical areas of interest to our readers such as VMware View and Microsoft Lync integration and PC over IP (PCoIP) offloading technologies.

VMware has done much innovation at the infrastructure level that delivers key competitive advantages. Topics such as virtual software-area networking (SAN) and other performance accelerators are considered in addition to vSphere features such as View Storage Accelerator. Although we have covered much, some topics will have to wait until the next release, such as vCenter Automation Center for Desktops. As always, your feedback and support is key in determining what topics make it into the next release.

Motivation for Writing This Book

As fast as VMware View: Building a Successful Desktop was completed, the market evolved from virtual desktop infrastructure to end-user computing. The difference is that
end-user computing takes into account all end-user services and not just desktop requirements. Addressing all end-user computing requirements cannot be done with a single product and requires a suite of products. Horizon is that answer. There was, however, no comprehensive guide to the suite, so we have pulled together expertise, experience, and resources to develop *VMware Horizon Suite: Building End-User Services*.

It is our hope that after reading this book you will be equipped with a more thorough understanding of how to deploy the components of Horizon Suite. We also hope that in reviewing each product you will understand how to match up the solution with the requirement. Each component of Horizon is targeted toward a user requirement; a better understanding of the features and capabilities ensures that they are deployed to meet the right use case. For example, VMware Mirage is designed to address the complexities in managing a distributed desktop environment, whereas Workspace is designed for user mobility and device independence. In bringing together this information under a single publication, we hope to simplify the learning process and shorten your timeframe.

Stephan and I polled our subscribers and learned that there was strong interest in certain areas. We have addressed those explicitly, such as in our chapters reviewing View and Lync integration as well as multimedia options. By stepping you through the architectural and design considerations for View, Workspace, and Mirage, we also hope we can save you some time by avoiding common missteps or pitfalls by sharing our own experience with these products.

Who Should Read This Book

This book is targeted at IT professionals who are involved in delivery of end-user services from an enterprise, managed service, or provider perspective. Those individuals who might already be comfortable with VMware View should read this book to understand the other products of Horizon Suite, such as Mirage or Workspace.

How to Use This Book

If you are looking for knowledge on a particular product (View, Workspace or Mirage), you can read just the relevant chapters. We have approached the topics starting with the familiar View, and then the closely related Workspace, and then Mirage to help you develop an understanding of Horizon Suite. This book is split into 12 chapters, as follows:

- **Chapter 1, “The New End-User Model”:** The chapter covers the evolution of the end user and an introduction to Horizon Suite.
- **Chapter 2, “VMware View Architecture”:** This chapter covers the architecture of VMware View 6.
- **Chapter 3, “VMware Workspace Architecture”:** This chapter covers the architecture of VMware Workspace 1.8.
Chapter 4, “VMware View Implementation”: This chapter covers the installation of VMware View 6.

Chapter 5, “VMware Workspace Implementation”: This chapter covers the installation of VMware Workspace 1.8.

Chapter 6, “Integrating VMware View and Workspace”: This chapter covers the integration of VMware View and Workspace.

Chapter 7, “View Operations and Management”: This chapter covers the most common VMware View operations.

Chapter 8, “VMware Workspace Operations”: This chapter covers the most common VMware Workspace operations.

Chapter 9, “VMware Horizon Mirage”: This chapter covers VMware Mirage architecture and installation.

Chapter 10, “Multimedia”: This chapter covers how to deliver multimedia within a View desktop environment.

Chapter 11, “Integrating Lync and VMware View”: This chapter covers the integration of Microsoft Lync and VMware View.

Chapter 12, “Performance and Monitoring of VMware Horizon”: This chapter covers performance monitoring of VMware View.

Appendix A, “A Design Questionnaire Worksheet”: This is a comprehensive design checklist for end-user computing.

Appendix B, “VMware View Network Ports”: Network diagrams showing the configuration for VMware View for an internal deployment and one that has components in the DMZ and clients connecting from the Internet.

Bonus e-Chapter

Technology is ever changing, at a pace where it’s not easy to keep up with all the changes. This couldn’t be truer at VMware. Just take a look at the releases of VMware View within the past 12 months: three minor releases and one major release, which was just recently announced publicly. VMware View 6 is a game-changer. It has multiple new functionalities and major improvements in the end-user experience and the delivery of high-end graphics. VMware added a major component that delivers full integration of Microsoft Windows Remote Desktop Services Hosts (RDSH) in this release, which at the time of this writing was not yet public.
For this reason, we decided to dedicate an electronic chapter on application virtualization. In this chapter, we cover various aspects of AppVirt, including how to deliver hosted applications using View 6. This feature delivers fully integrated applications and server-based desktops running on Microsoft RDSH. In addition, it will also provide Windows applications seamless window access from Windows or OS X clients. View with hosted applications will give full-screen access to Windows apps from iOS and Android devices to enable mobility in this critical era of cloud computing. The simplicity of this solution is that it leverages existing technology using standard Horizon clients (Windows, OS X, iOS, and Android) with PCoIP.

We firmly believe that even though we were not able to provide this chapter within the book at the time of release, it is important enough to provide electronically. With the purchase of *VMware Horizon Suite: Building End-User Services*, you receive access to the electronic chapter “Application Virtualization: How to Configure and Integrate Application Virtualization and VMware Hosted Applications,” available for download at www.informit.com/store/vmware-horizon-suite-building-end-user-services-9780133479089.
About the Authors

Stephane Asselin, with his 22 years of experience in IT, is an architect in the End-User Computing business unit at VMware. In his recent role, he had national responsibility for Canada for EUC planning, designing, and implementing virtual infrastructure solutions and all processes involved. At VMware, Stephane has worked on EUC presales activities, internal IP, and he has worked as a technical specialist lead on beta programs. He has also done work as a subject matter expert for Horizon Workspace, View, Mirage, vCenter Operations Manager, and ThinApp projects. Previously, he was with Computer Associates as a senior systems engineer, where he worked on enterprise monitoring presales activities and as a technical specialist. As a senior consultant at Microsoft, he was responsible for the plan, design, and implementation of Microsoft solutions within major provincial and federal government, financial, education, and telcos.

In his current role in the EUC business unit at VMware, he’s one of the resources developing enablement materials for all products of the Horizon Suite and technical documentation for training. Knowledge transfer to customers is a key element of his current role. Stephane has co-produced whitepapers such as “VMware Horizon Mirage Branch Office Reference Architecture” and “Horizon Workspace Reference Architecture.” In addition, he runs the popular website myeuc.net.

Paul O’Doherty works for the CTO office of OnX enterprise solutions as a cloud solutions and EUC specialist, specializing in the architecture and delivery of cloud-based infrastructure and end-user services. Paul has written several books, including *VMware View 5: Building a Successful Virtual Desktop*, released by VMware Press. Prior to that, Paul spent 10 years as the managing principal consultant at Gibraltar Solutions architecting and delivering end-user computer and virtualization environments in Fortune 500 companies involving VMware, VMware View, Citrix XenApp, and XenDesktop technologies. Paul has a broad range of infrastructure experience and has achieved numerous industry certifications, such as VCP, CCIE, MCITP, and RCSP, and is recognized as a VMware vExpert. In addition, Paul maintains a popular blog at http://virtualguru.org and has contributed to sites such as http://virtualization.info and is reoccurring speaker at VMUG sessions and other technical conferences.
This page intentionally left blank
Acknowledgments

This is my third project where I have had the opportunity to publish, but it is the first where I’m co-author with a good friend. In the past, I have contributed chapters, but sharing the full writing responsibility has been a whole different ball game.

When Paul and I spoke, I knew that this was the right project for us to bring our experience together to create a good reference for others. This, of course, could not have been possible without the contributions and review of our own tech editors, Justin Venezia and Mike Barnett. Technical review is a critical piece in developing a project like this. In addition to the direct support of our technical editors, I want to thank a number of people for their support and guidance, including Simon Long, a colleague and avid blogger (www.simonlong.co.uk), Michael Burnett at Nutanix, and Todd Methven, an HP end-user client expert who has contributed to our lab and enabled us to test all the ideas and concepts we had. In addition, I would not have been able to dedicate the time without the support and understanding of my manager at VMware, Andrew Johnson.

I also want to thank my supporting team for providing the opportunity and effort to get this book done: Joan Murray, Ellie Bru, as well as my friend and co-author Paul O’Doherty.

My biggest support group is my family, who continue to support all of daddy’s crazy projects. I would like to thank my wife, Marie-Josée, for her incredible patience and understanding, and finally, my three, not “so little anymore” kids: Vincent, Raphaelle, and Guillaume.

—Stephane Asselin

After writing my first publication, *VMware View: Building a Successful Desktop*, I was elated by the response and support I received from the people who invested in it. I was equally excited about the changes in the VMware product line that transformed a virtual desktop product into an entire end-user computing suite. Trying to cover the entire Horizon Suite would not have been possible if I had not been able to engage my good friend Stephane as co-author. I was also relieved when my original editing team, Joan Murray and Ellie Bru, offered their continued support. (Why they do not run in the opposite direction whenever I come up with a new idea still puzzles me.) I also want to thank Tonya Simpson and Seth Kerney, who worked hard to put this book together. In addition to this great team, we were lucky to work with two knowledgeable and experienced technical editors, Justin Venezia and Mike Barnett. My thanks goes out to them for keeping us both focused and honest. Writing a book can be challenging, but I found the experience of writing with this group a real pleasure, which is a measure of their professionalism.
My greatest appreciation goes to my wife, Heather, and family, who even after the time asked on the first book were willing to provide unwavering support on the second. My two wonderful girls, Briar and Hannah, never complained about the time spent writing and kept me motivated with their enthusiasm and encouragement for this project.

I hope that our efforts translate to a greater level of understanding of Horizon Suite for those of you reading this book. I would also like that if in reading this we save you a little time or help in your success so that you can pursue the things you are passionate about.

—Paul O’Doherty
Technical Reviewers

Justin Venezia is a consulting architect with VMware’s End-User Computing Professional Services Engineering group. In this role, he actively participates in real-world delivery of EUC solutions to VMware customers, he supports VMware’s EUC PSO organization with technical content development and enablement, and is involved in EUC engagement delivery. Prior to his role at VMware, Justin was a field architect with Citrix Consulting Services. He has also worked as an architect and IT manager in the healthcare and banking/financial verticals.

Mike Barnett is a systems engineer at VMware specializing in end-user computing. He has worked in IT for 11 years and has been working with VMware technology since 2008. Mike has presented at local VMware user groups as well as VMworld in 2011. He worked in the VMware Global Support Services organization supporting end-user products before moving into the field.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write us directly to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name, email address, and phone number. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: VMwarePress@vmware.com
Mail: VMware Press
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website at www.informit.com/title/9780133479089 and register this book for convenient access to any updates, downloads, or errata that might be available for this book.
This page intentionally left blank
Chapter 7

View Operations and Management

VMware View Operations

This chapter covers the operation of VMware View versus installation or architecture considerations. Perhaps the primary activity that you tend to repeat often is the creation and management of desktop pools, which are covered in this chapter. A few other functions also fall into the general category of management and operations, such as backing up the environment, patching, and replacing the certificates (all of which this chapter also covers).

Using View Access Groups

Before you start creating pools, take advantage of the ability to create access groups to organize your environment and to enable delegation of roles and responsibilities.

Let’s consider the example of task-based workers and assume that they will use Windows Remote Desktop Services (RDS) pools. We are generalizing here, but you would use categories based on your analysis of your environment. Desktop pools are usually categorized by the function of the user, because the function tends to relate to a specific application workload, or by location if you are deploying a multisite architecture. In our example, you can create an access group called Task-Based Users and use it to further segregate the RDS Server pools within the VMware View Administrator console. You can then use the access group structure to delegate roles and responsibilities. Because it is likely that the team that manages your RDS Servers is not the same team that manages your desktops, this is a good use case for creating access groups. If you work in a fairly small organization, I still recommend using access groups, but just restricting their
number. This way, you can delegate easily in the future. In this example, we use the category of Task-Based Users. To create the access group structure, follow these steps:

1. Log in to the VMware View Administrator console.
2. Browse to Inventory and Pools.
3. On the right pane, select **Access Group, New Access Group** from the drop-down, as shown in Figure 7.1.

![Figure 7.1 Creating access groups](image)

4. Create the access groups that you need to organize your VMware View environment. It is ideal if you take the category details that you have created and paste them into the Description field, as shown in Figure 7.2.

![Figure 7.2 Providing full descriptions](image)
5. After you create your pool, under Pool Identification, you now see the access group you created to help categorize your environment properly, as shown in Figure 7.3. This feature also enables you to delegate roles and responsibilities for the access group.

![Figure 7.3 Access groups logically segregate your environment.](image)

Types of Desktop Pools

Within VMware View, there are several types of desktop pools. Pools are used to describe clusters of desktop types that are assigned to users or groups of users. They are also used as objects in the View Management Console for the same purpose—to define desktop types, associate users, and entitle virtual applications. One type of desktop we have not covered is physical. It is possible to proxy physical desktops by installing the VMware Agent on the desktop and adding it to a pool for assignment. In addition, with View 5.1 and above, you can use View Persona on physical desktops. The process is the same in terms of installing the agent, but the creation of the pool varies slightly. We examine this topic further within this chapter.

Although the integration of physical desktops is no longer common due to the improvements in multimedia support in virtual desktops, it can still be used to transition from a PC blade environment to VMware View. For example, you can proxy PC blade users through the VMware View environment while you migrate from physical desktops to virtual ones and use View Persona to migrate the user settings.
Automated Desktop Pools

Automatic desktop pools are desktops that are provisioned and customized by VMware View automatically. They can be deployed either persistently or floating. When we talk about persistence or floating in this case, we are talking about the relationship between the user and the assigned desktop. If you choose persistent, the desktop is assigned to a specific user. You can select to do this automatically so that whatever desktop the user logs in to first becomes the assigned desktop. In addition, you can explicitly assign a desktop by defining a relationship between a desktop and user login as part of the deployment options, or you can manually assign desktops after they have been created through the View Administration console. Persistent pools can be used when the application load is tailored to an individual user or if there is a requirement to store some local data.

Nonpersistent, or floating, pools are assigned for the duration of the session. After a user logs off, the View desktop is available for other users. A floating desktop can be used when you have a large number of users but they do not sign on at the same time (for example, nursing stations in a hospital, management terminals on a manufacturing floor, or kiosk displays).

You can also set properties of the pools to allow for a dynamic and reactive creation of virtual desktops as they are assigned. For example, you can specify a minimum number of virtual desktops to be created when the pool first comes online. Desktops are created until the minimum number is reached. This capability ensures that an adequate number of desktops exist to service users.

You also can adjust the maximum setting for the number of virtual desktops that can exist in a pool. You can use this setting to make sure you do not overtask the supporting physical resources of the virtual desktop environment, such as the volume or logical unit number (LUN) on which the desktops are deployed.

Another setting that you can configure in a pool is the available number. The available number ensures that a constant number of virtual desktops exists to deal with demand. As the available number goes down, new virtual desktops are deployed to ensure the available number is maintained.

Within automated desktop pools, you can deploy full desktops or View Composer desktops. View Composer desktops are made up of linked clones. We discuss Composer later in this chapter.

Manual Desktop Pools

Manual desktop pools are created from existing machines or physical desktops. Machines may be managed by vCenter or unmanaged, as in the case of a physical device. If the users are allowed and the desktops are VMs managed by vCenter, manual desktop pools can also
be used for offline virtual desktops. As with automated desktop pools, these manual pools can be persistent or floating. The source of either persistent or floating manual pools can be vCenter virtual machines (VMs) or physical machines.

Microsoft RDS Desktop Pool

RDS sessions can be managed by VMware View using the Microsoft RDS desktop type of pool. As explained in the preceding chapter, with recent releases of Windows, you can add many desktop attributes, such as themes, to give users the feeling they are using a dedicated and customizable desktop. With the release of View 6, native PCoIP support is available for RDS hosts.

Creating Desktop Pools

You can create a desktop pool within the VMware View Administrator console under Inventory and Pools. From the right pane, click Add.

You have three types of pools to choose from: automated, manual, or RDS. In the example in Figure 7.4, we selected Automated Desktop Pool. In the bottom-right corner, you see a list of supported features. This list varies, especially in the case of a Terminal Services pool.

![Figure 7.4 Types of pools](image)

Within the type, desktops can be dedicated or floating. The setting really describes whether the relationship between the user and virtual desktop persists when the user logs off. Again, in the bottom right of this screen, you see how the features change depending
on what options are selected as you build out the pool. In the example shown in Figure 7.5, we selected **Floating**. After the type is selected, click **Next**.

![Figure 7.5 Dedicated or floating pool?](image)

You can create full virtual machines or linked clones using View Composer. If you select View Composer, one of the features is storage savings, as shown in Figure 7.6. Choose either Full Virtual Machines or View Composer Linked Clones and click **Next**.

![Figure 7.6 View Composer linked clones](image)

Provide an ID (no spaces allowed), display name, view access group, and description; be complete, as shown in Figure 7.7. Configure the pool identification and click **Next**.
You can select numerous settings to control the pool, from power to display to Adobe Flash acceleration, as you can see in Figure 7.8. We review these settings after this example. Select Desktop Pool Settings and click Next.

You can adjust the provisioning of the View desktops under the Provisioning Settings. For example, you can stop the provisioning when an error occurs or allow it to continue by deselecting the option because the default is to stop, as shown in Figure 7.9. You can define a standard naming pattern to keep the names of the View desktops standard and consistent. You also can set a maximum number of desktops allowed in the pool or a number of spare desktops. Setting a value for spare desktops forces desktops to be
deployed in the event that all View desktops in the pool are in use. Plus, you can provision desktops as requested or demanded, which allows you to set a minimum number of available desktops to ensure users are not waiting on View Composer to finish provisioning. Alternatively, you can provision them all upfront. Select Provisioning Settings and click Next.

![Provisioning settings](image1.png)

Figure 7.9 Provisioning settings

If you select View Composer Disks, you have an opportunity to tailor both the disposable file and the user data disk or persistent disk, as shown in Figure 7.10. The “Pool Settings” section later in this chapter covers these settings.

![View Composer settings](image2.png)

Figure 7.10 View Composer settings
Under the Storage Optimization section, we don’t have Virtual SAN or Fast FS Clones (VAAI) configured. Leave the options unchecked, and click Next.

Under vCenter Settings (see Figure 7.11), you select the default image and the VM folder in vCenter under which you would like the VMs created, the host or cluster, resource pool, and datastore. View has added some additional options under the Datastore settings, which we discuss in the next section. Select a datastore here and click Next.

In VMware View 5.3 and above, you can also take advantage of storage features supported in vSphere 5. One of these enhancements is a Content-Based Read Cache (CBRC) or Host-Based Cache, which is referred to as View Storage Accelerator (VSA) in the View Administrator console. This cache is local to the vSphere ESXi host and stores frequently used blocks of VM disk data. CBRC improves performance by offloading some of the I/O read requests to the local ESXi host versus sending them to the storage system or storage-area network (SAN). Using VSA, you can significantly reduce your peak read requests or input/output operations per second (IOPS) in your VMware View environment.

When VSA is enabled a disk digest file is created for each virtual machine disk (VMDK). You can enable VSA for both OS and user disks; however, VMware recommends that you enable it for the OS only.

The disk digest file creates hash values for all the blocks in the VMDK when the pool is created. When a user desktop reads a block, the hash value is checked to determine the block address. If it is in memory, it is returned to the user; otherwise, it is read from disk and placed into memory. The acceleration is done on reads only, so writes are always read from disk and used to update stale data in memory.
You must enable support of VSA through the View Administrator console by enabling it under the properties of your vCenter Server and enabling it under the properties of the desktop pool, as shown in Figure 7.12. To enable this support under the properties of the vCenter Server, follow these steps:

1. Open the View Administrator console and expand Server Configuration.
2. Select your vCenter Server and display the Storage tab.
3. Under Storage, select **Enable View Storage Accelerator**.

When you enable it, you can specify how much memory is used across all hosts or on a per-host basis. The default is 1024 MB, but this can be changed from as little as 100 MB to 2048 MB. If you have different memory configurations on your hosts, configuring per host makes the most sense.

After enabling the VSA under the vCenter properties, you can selectively enable it under the pool settings, as shown in Figure 7.13. It provides the biggest benefit for shared disks that are read frequently, such as View Composer OS disks.
In addition, you can edit the advanced storage settings options after the deployment of a desktop pool by following these steps:

1. Open the View Administrator console and expand **Inventory**.
2. Select the pool from the right pane and click the **Edit** button.
3. Display the Pool Settings tab and Advanced Storage Options, which will display the window that enables you to select VSA, as shown in the figure.

Because it is cache, it must be regenerated on a regular basis. This activity can take up resources on the vSphere host, so you can enforce a “blackout” time period during which regeneration cannot occur, as shown in Figure 7.14.

In addition to the VSA, you can also turn on the reclaim disk space option under the advanced storage options, as shown in Figure 7.15. The reclaim option impacts only the OS disk in linked clones, but it enables ESXi to reclaim disk space without having to initiate a VMware View Refresh operation. You simply enable it and specify a threshold for how big the OS disk is allowed to grow before a reclaim event occurs; the default value is 1 GB. The blackout times you configure for the VSA also apply to reclaim operations. Reclaim is supported on vSphere 5.1 and later, although a patch is required. In addition, the VMs in the pool must be running on virtual hardware version 9 or later.
Each View desktop needs some form of customization to ensure that it deploys properly and is unique on the network. To customize the View desktop, you can use QuickPrep or Sysprep. See the section on pool settings so that you understand the differences between each. After the guest customizations, you can review your settings and click **Finish** to start the deployment of View desktops, as shown in Figure 7.16.
Power Settings

You can make a number of customizations to each pool that allow tighter control over the behavior of a VM, such as what happens when the user logs off. For example, it is possible to power off VMs when not in use to free up resources so that they are available for use by other virtual desktops in the environment. Some settings should be used with other settings. For example, powering off the VM makes sense provided that when you provisioned the pool, you set a value under Pool Sizing for the Number of Spare (Powered On) desktops, as shown in Figure 7.17, to ensure that users are not waiting for virtual desktops to boot. The other options within the pool are as follows:

- **Take No Power Action**: VMware View does not adjust the power option if the user powers down the VM.

- **Always Powered On**: VMware View does not power down the machine, and if it is powered down, the VM is automatically restarted.

- **Suspend When Not in Use**: When a user logs off, the virtual desktop is suspended. This option is also applied to floating desktops when the number of virtual desktops exceeds the setting in the available desktops counter.
- **Power Off When Not in Use:** If a virtual desktop is not in use, it is powered off. For example, if you deploy 10 desktops and 9 are not in use or logged off, View will power them off. I recommend that you combine this option with an available desktop number so that you avoid a situation in which you have users waiting for a VM to boot when connecting. Having a large number of VMs start at the same time can cause significant I/O to the storage system and is generally referred to as a boot storm. By using proper care in setting and tuning the power state options, you can avoid this situation in normal operations.

![Figure 7.17 Number of spare (powered on) desktops](image)

It is also recommended that because you are specifically defining what happens when a user logs off that you disable the user’s ability to change the power state of the VM. You can do this through the Group Policy Object associated with the organizational units (OUs) in which the virtual desktops are deployed. Simply run the Group Policy Management tool and browse to the OU in which your View desktops are deployed. You should already have a Group Policy Object defined, but if you do not, create one by using the following procedure:

1. Select the OU (Horizon in Figure 7.18), right-click, select **Create a GPO in This Domain, and Link It Here**.
2. Provide a name for the Group Policy Object and click OK.

3. Select the Group Policy Object (in this example, it is named VMware Group Policy Object), right-click, and select Edit.

5. Select the Change Start Menu Start Button Policy and enable it, and then change the action to remove the shutdown option. You can select Shutdown, Sleep, Logoff, Lock, Restart, Switch User, or Hibernate.

6. Click Enabled, as shown in Figure 7.19, and then click OK.
Pool Settings

It is important to understand all the settings when configuring a pool and where they would likely apply. Not all settings are available for each type of desktop. For example, for Windows RDS pools, many of the settings are not available because they are not supported. We step through each setting possible and provide a short description, and then give you some idea when they might apply. Because we have covered the types of pools, let’s review the settings under the Pool Settings configuration page.

Pool settings are broken down into General, Remote Settings, Remote Display Protocol, and Adobe Flash Settings for Remote Sessions, as shown in Figure 7.20.

The first setting, which is the state of the pool, determines whether the pool is active or inactive. To activate a pool, set the state to Enabled. You can disable the pool if you need to perform maintenance, such as the refreshing of images.
The next general setting is the capability to restrict the pool to only certain Connection Servers. The general use case is to separate Connection Servers that provide desktops to remote users from Connection Servers providing desktops to users internally. This setting also proves handy if you are a hosting provider and need to separate desktops by company, for example. To see the tags, you must first set them using this procedure:

1. In View Administrator, select **View Configuration, Servers**.
2. In View Connection Servers, select the **View Connection Server** instance and click **Edit**.
3. In the Tag text box shown in Figure 7.21, enter a tag. Separate multiple tags.
4. Click **OK** to save your changes.

The next group of options is in the Remote Settings pane, and the first is the power policy. You have the option of not adjusting what happens when the user logs off, always ensuring desktops are on, suspending them, or powering them off. These options are available from the drop-down menu, as shown in Figure 7.22.
CHAPTER 7 View Operations and Management

Figure 7.21 Connection Server restrictions

Figure 7.22 Remote desktop power policy
The next setting controls how long the desktop waits before logging off a disconnected user, as shown in Figure 7.23. The options are Immediately, Never, or After a Set Number of Minutes. Immediate is appropriate in a floating desktop pool in which it does not matter which desktop users log in to. If a pool provides remote access to users, you should allow for a certain number of minutes to compensate for some intermittent connectivity. If the users run batch processes that need to run for an extended period of time, Never might be the more appropriate selection.

The next available option (see Figure 7.24) determines whether an option to do a hard reset of the VM is available from the user interface (UI) to the user. This does not affect the user’s ability to do an in-guest reboot within Windows.

The last item in the Remote Settings section is the Refresh OS Disk After Logoff, which allows you to complete a refresh operation selectively on a per-desktop basis versus initiating a refresh on the entire pool. This setting applies only to persistent linked clones. If the user association of the pool is set to floating, this option is not available. To configure it, you simply specify a percentage of the total size of the OS disk you would like to trigger the refresh. This only applies to Composer-based VMs and by default is set to Never. In this example, we set it to trigger when the OS disk is 50% utilized, as shown in Figure 7.25.
The next category of pool settings adjusts the display. In View 5, you can force either PCoIP, RDP, or allow users to select which one they would like. For most users, you
should generally control the display protocol. If you do not segregate desktops specifically for remote access, you may allow users to choose, but it requires some education so that the users understand when to use which protocol.

In addition, you can turn on Windows 7 3D Rendering provided you have forced the PCoIP as the display protocol and you are using Windows 7 desktops, of course. Enabling this option restricts the number of monitors to two and the resolution maximum to 1920 × 1200 pixels. Enabling it also provides support for Windows Aero within the desktop. Enabling 3D Rendering and allowing a higher maximum resolution increases the number of pixels required to deliver the View desktop. This, in turn, has an impact on the overall network utilization of the PCoIP session. Take care that you thoroughly test these settings to ensure that a balance exists between the quality of the user experience and the overall network utilization.

Enabling this option allows you to adjust the vRAM setting within View, as shown in Figure 7.26, which adjusts the vRAM setting in the properties of the VM.

![Figure 7.26 Adjusting vRAM settings](image)

PCoIP supports a maximum of four monitors. You can select a maximum number between one and four for the desktop pool, as shown in Figure 7.26. If you force RDP, you do not have the option of adjusting the number of monitors or the resolution settings. The Max Monitors and Max Resolutions are designed to allow tuning of PCoIP. You can limit the resolution of display to one of the following:

- 1680 × 1050
- 1920 × 1200
- 2560 × 1600

Lowering the resolution reduces the number of pixel changes required, reducing the bandwidth compared to higher-resolution settings as well as lowering the amount of video RAM consumed by the VM. You might want to restrict the max resolution and the number of monitors to control general bandwidth utilization.
The last setting in the Remote Display Protocol section allows you to enable access to the View desktop over HTML using HTML 5. What is great about HTML access is that it is clientless access through your HTML 5–compliant web browser. Why wouldn’t you enable this for every pool and avoid client-side software installations? VMware still recommends a native PCoIP client for a feature-rich end-user experience versus HTML access. It was initially released as an option pack for VMware View 5.2.

In the next section, Adobe Flash Settings for Remote Sessions, you are controlling Adobe Flash frame rates and bandwidth to manage traffic while still providing reasonable Flash video quality, as shown in Figure 7.27. Across the LAN the defaults may be acceptable, but for remote-access and WAN situations, you should adjust and test these settings.

View Composer

In this section, we look at what types of VMDKs make up a View Composer–created VM. With Composer, you can separate user settings onto a second drive to allow them to persist. This capability is important because VMs created by Composer need the OS disk to be refreshed, rebalanced, and recomposed as part of normal operations. By not separating user data from the OS VMDK, you run the risk of user data loss when these activities are initiated.
Redirecting user data changes the default location of the user profile to a persistent disk. In addition, you can create a disposable disk or VMDK that becomes the default location of Windows temporary files. Persistent and disposable drives are thinly provisioned, so they consume space only as they are written to.

The VM sees these View Composer drives as additional local drives within the operating system. If you look at the persistent disk, you see the Users folder containing the profiles and a personality folder if you have integrated Persona. In addition, My Documents is redirected to the persistent disk so that the redirection is transparent to the users. If you look at the disposable disk, you see the Windows Temp folder. Both the persistent disk and Persona Management can be used together or independently. Using a persistent disk to provide localization of the profile speeds up login, but it may add an additional degree of complexity. Using a persistent disk to complement Persona Management creates a local persistent cache for the profile while also ensuring it is stored centrally on a file share. When a user requires a Persona profile, the majority of the data is locally available on the persistent disk. Only the differences between the unsynchronized data need to be downloaded from the central file share. If you are going to use them together, you need to ensure that the Remove Local Persona at Log Off policy is not enabled so that the Persona profile is not removed from the persistent disk. The other option is to forgo a persistent disk and just use View Persona to back up user data to a central repository.

Logically, the separation of VMDKs makes sense. The combination of the OS and internal VMDKs and snapshots enables you to refresh the operating system, the persistent disk allows you to keep user configuration activities so that they are not lost, and the nonpersistent disk flushes temporary files on reboot. What, then, is the internal disk for? The internal disk separates the unique machine information in a separate VMDK so that it can be managed properly. This disk is created when the machine is Sysprepped or Quick-Prepped. In addition, the disk stores the machine trust account that is used to authenticate a client machine to a domain controller. It is more generally referred to as the computer account. A computer account password is changed every 30 days by default (it is the same for all Windows versions from 2000 on up) and is set by default in the local policy of the operating system.

If you actually browse the directory store of the VM’s folder, you see the VMDKs shown in Figure 7.28.
In this case, we have VGUDSK02.vmdk, which is the VM's virtual hard drive. We also have VGUDSK02-checkpoint.vmdk, which is the delta file. In addition we have a VMDK file that starts with VGUDSK02-vdm-disposable, which is where the nonpersistent data such as Windows temp files are stored. These files are deleted if the View Connection Server powers off the VM, but not if the user shuts down the desktop within Windows. We also have a VGUDSK02-internal.vmdk that stores the unique properties of the computer such as the computer account password to ensure connectivity to the domain is maintained when the OS disk is refreshed. Because the VGUDSK02-internal.vmdk persists, the relationship between the computer and domain is maintained.

Within a View Composer-created VM, an additional service called the VMware View Composer Guest Agent Server runs, as shown in Figure 7.29.
One of the things this service does is monitor changes to the computer account and ensure that any changes are updated to the internal VMDK. This ensures that if you run a recompose, for example, the computer account and its unique identity persist and are not corrupted in the Active Directory.

vCenter Settings

You have the option of specifying where on your storage system you want to store your replicas and OS disks. When creating a Composer pool under Storage Optimizations, you can specifically direct the OS disk and replicas to certain datastores; you can separate the location of the Replica and the Composer datastore as shown in Figure 7.30. The default location is to store the Replica and OS disk together on the same datastore.

If you click **Select Separate Datastores for Replica and OS Disks**, on the following vCenter Settings page, under datastores using the Browse button, you can specify on which datastores you would like the Replica and OS disks. Because you have fine control on where certain components of View Composer are located, you can take advantage of all the innovations in solid-state drive (SSD) storage. New companies and technologies are allowing you to even more effectively manage I/O. Examples of these companies are Nexenta, PureStorage, and Fusion-I/O. You also can combine both local and shared datastores for this purpose. If you have included localized SSDs in your ESXi hosts, you can also deploy a Replica and Composer linked clones here.

VMware View also attempts to calculate the size required for the VMDKs created on the datastore selected; you can override the sizing calculation by changing the storage overcommit.
Storage overcommit adjusts how much capacity VMware View reserves for the dynamic growth of the files. It can be set to Conservative, Moderate, or Aggressive. Setting it to Aggressive, for example, increases the amount of overcapacity View factors into the deployment of VMs. Some storage systems do inline deduplication with very little impact to performance. If you have this underlying capability, you can get aggressive, but you should also be aware that depending on how your storage subsystem is designed, you could also be consolidating a larger number of I/Os.

- **None**: Storage is not overcommitted.
- **Conservative**: Four times the size of the datastore. This is the default level.
- **Moderate**: Seven times the size of the datastore.
- **Aggressive**: Fifteen times the size of the datastore.

At the bottom of this screen, you see the sizing estimated provided by VMware View. It is important to understand just how View sets the sizing so that you can understand how much is allocated by default. You can find additional information from VMware at www.vmware.com/files/pdf/view_storage_considerations.pdf.

- **Selected Free Space (GB)**: This column shows how much free space is available in the selected datastores. This is just a sum of the real free space with no calculation applied.

- **Min Recommended (GB)**: Based on the max number of desktops, View Administrator calculates the minimum you should have available on your storage and allows
 - Space for two replicas
 - Two times the memory of VM times the number of desktops
 - 20% of the size for persistent desktops times the number of desktops

- **50% Utilization (GB)**: The calculation incorporates 50% OS disk growth compared to the parent VM disk for each desktop and allows
 - Space for two replicas
 - 50% of replica disk times the number of desktops
 - Memory of VM times the number of desktops
 - 50% of the size for the persistent desktops times the number of desktops
Max Recommended (GB): This calculation determines that each desktop consumes the maximum disk space and allows

- Space for two replicas
- 100% of replica disk times the number of desktops
- Memory of VM times the number of desktops
- 100% of the size for persistent desktops times the number of desktops

Provisioning Settings

You can adjust how the VMs are provisioned using the provisioning settings. You are able to adjust the naming convention and provision all at once or provision on demand, for example. Why would you provision on demand? If you have a group of users who require access to computers periodically throughout the day but are not sitting in front of a computer, as a primary function, provisioning on demand ensures virtual desktops are available on request but conserves resources until needed. Let’s look at these settings a little more closely.

The first part of the provisioning settings allow you to enable and stop provisioning on error (see Figure 7.31). Enabling the Stop on Provisioning option is a good idea while you are testing all the functionality of an environment.

The second part of the provisioning settings allows you to specify a general naming pattern or get very specific and specify VM names manually, as shown in Figure 7.32. If you select a manual naming convention, you can start a desktop in maintenance mode,
which denies a login until the desktop is taken out of maintenance mode. You can also associate specific users and start desktops in maintenance mode to allow additional applications to be loaded before users log in.

If this is a dedicated desktop pool, you can enter a list of names and associated users so that you can selectively control which user is assigned to which desktop, as shown in Figure 7.33. If this is a floating pool, user IDs are ignored. When you click Next, a lookup is performed in the Active Directory to ensure the users have associated accounts.

Sysprep or QuickPrep?

With Composer, you can use QuickPrep or select a customization file within virtual center, which provides a full Sysprep to the VM. Sysprep, supplied by Microsoft, is
designed to change the attributes of the computer to ensure the computer is unique within the environment. This includes the security ID (SID) of the computer. Each computer should have its own local unique SID number that gets updated when the computer joins a domain. The SID is a unique number that is used to identify the system to Windows.

Sysprep goes through all files and registry keys on the computer and replaces the current local SID number of the computer with a new local SID. When you use VMware clones, it is possible for two computers to have the same SID. This is why it is necessary to apply a Sysprep to a VM to ensure that it has a unique SID.

Sysprep runs through all the files on the computer and replaces any SID references on the computer with new SIDs and therefore can take longer than QuickPrep. QuickPrep, provided by VMware, is used with View Composer-created VMs (in other words, linked clones). It changes the computer account and adds it to the Active Directory, taking much less time than Sysprep.

Due to the large provisioning time difference between using Sysprep and QuickPrep, you should use QuickPrep unless the applications that you are installing require a unique local SID. For example, some antivirus software requires a locally unique SID on each desktop to run properly.

Entitlement

After creating your desktop pools, you need to assign them to users. Within VMware View, this process is called *entitlement*. Entitlements associate a desktop pool with a selected group of users using Active Directory groups. The procedure for entitling users is as follows:

1. Log in to the VMware View Administrator console.
2. Browse to Inventory and Pools.
3. Select a pool of desktops from the right pane.
4. Select Entitlements.
5. You have the option of searching by user or group. Simply deselect the User or Group check box and click Add. Generally, you should associate pools of desktops to Active Directory groups and not individual users.
6. Enter a name or description and select Find to search for the AD group or user.
7. Select the group and click OK and OK again to entitle the desktops.
Replicas

A replica is a read-only copy of the parent VM and contains a snapshot file of the original configuration. View Composer uses the replica to create the linked clone View desktops. The replica is used to right-size the VM by moving from the parent VM format to a thin-provisioned VM. From VMware View 4.5 and on, you can store replicas in separate datastores.

This enables you to store the replica on high performance disk on the SAN or local SSDs. It is from the replica that the linked clone tree is built. Keep in mind, though, that if you use a local disk, the linked clone tree also resides on the local disk.

The use of local SSDs should be reserved for stateless View desktops in a nonpersistent environment. The point of using a local SSD is to take advantage of the extremely high I/O capabilities of the technology.

When you use View Composer, desktops are created from a replica, a linked clone is created for each VM, and a snapshot is taken to create a checkpoint to enable a refresh or rollback operation.

Now that you have a basic understanding of the makeup of the Composer VMs, you can look a little more in depth at the operational management. In View Composer, you can do several activities to manage the desktops.

Refresh

As the VM grows, the size and storage requirements of the linked clones increase. To reclaim this space and reduce the size of the virtual desktops, you can initiate a refresh. A refresh essentially reverts the machine to the snapshot that was created when the VM was deployed.

The OS disk is reduced in size as the machine is reverted to its initial creation size, reclaiming the space. Because the VM’s machine-specific information is stored in the internal VMDK, this change can happen without having to re-create the computer account in the Active Directory because the trust relationship between the View desktop and the Active Directory is maintained.

You can control how the refresh is initiated. For example you can determine how long it is delayed and adjust the notification provided to users. Let’s go through the steps to apply a refresh to the desktop pool:

1. Within the VMware View Administrator console, browse to Inventory and then Pools.
2. Double-click the pool you want to refresh on the right.
3. Display the Inventory tab to refresh individual desktops or the Settings tab to do the entire pool.
You can select individual desktops from the Inventory tab if you like. From the Inventory tab, under the View Composer drop-down menu, you can select operational tasks such as Refresh, Recompose, Rebalance, or Publish.

You can reschedule the day and time in which the activity takes place (the default is current day and current time) and force or wait for users to log off. You cannot change the grace period for logoff here, but you can see it and update it in the global settings if it needs to be adjusted.

Recompose

A recompose is designed to replace the OS disk of the VM, but it has limitations. You cannot recompose to a different operating system. For example, if your linked clones are using a Windows 7 OS, you cannot recompose to a Windows XP OS. Before you can recompose, you must either change the existing parent VM or create a new one to introduce the linked clones. After the parent has been updated or created, View goes through a similar process to the creation of a new pool. A replica is created first, and then the linked clones are built from the replica. A recompose operation generally follows your image refresh or rebuild cycles, which typically happen every 6 months to a year.

Because a new OS disk is used, a new vdm-initial-checkpoint snapshot is created for use in future refresh operations. The persistent disk with all the user configurations is not replaced as a part of the recompose, allowing the OS to change but preserving the users’ settings. Because it is a new OS, the sysprep Or QuickPrep process is rerun, and a new internal disk is created. A recompose can use a lot of resources in the virtual desktop environment, so it is generally recommended that you initiate a recompose after work hours. The process is similar to a refresh, except that you select Recompose from the View Composer drop-down. The exact process to initiate a recompose is as follows:

1. In View Administrator, browse to Inventory and then Pools.
2. Select the pool to recompose by double-clicking the pool ID in the left column.
3. Choose whether to recompose the whole pool or selected desktops.
4. On the selected pool’s page, display the Settings tab and select View Composer and Recompose. To recompose specific desktops, select individual desktops from the pool by displaying the Inventory tab. Select the desktops to recompose and select View Composer and Recompose.
5. Click Finish.
Rebalance

A rebalance of View desktops redistributes linked clones among available datastores based on the amount of free space available (see http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1021506). This is the only way to move linked clone trees between datastores. The redistribution takes place only if there is an unequal amount of space across datastores. When you rebalance a pool of desktops, the first thing View does is put the VM in maintenance mode so that no one can log in. View then determines what to move based on the amount of space in the datacenters. View separates the OS and persistent disks from the Composer desktop. It then removes the OS and persistent disks and creates a new replica and tree in the datastore. If a replica does not exist in the datastore, it is created first, unless a specific datastore has been identified for replica storage. View deletes the OS disk and creates a new OS linked to the replica. Because this is a new OS disk, Sysprep or QuickPrep is run and a new machine is created. When this process is complete, a new initial-vdm-checkpoint snapshot is created, and the VM's status is updated from provisioned to available. Be aware that the activity you are starting may involve copying a number of full VMs to many datastores plus snapshots and delta files to create the replicas and View desktops. The impact of this process can be very heavy in a large environment, so it should be performed within a maintenance window. The persistent disks are moved from the original target virtual desktop to the new one, so the user configuration information is maintained through the process:

1. In View Administrator, browse to Inventory and then Pools.
2. Select the pool to rebalance by double-clicking the pool ID in the left column.
3. Choose whether to rebalance the whole pool or selected desktops.
4. On the selected pool’s page, display the Settings tab and select View Composer and Rebalance. To rebalance selected desktops, display the Inventory tab. To rebalance specific desktops, select the desktops to rebalance and select View Composer and Rebalance.
5. To rebalance specific desktops, select the desktops to rebalance and select View Composer and Rebalance.
6. Click Finish.

Managing Persistent Disks

It is possible to manage persistent disks on an individual basis. From an operations perspective, you might need to do this if you want to preserve settings from a virtual
desktop that has had a problem to be able to copy them to a new one you have re-created. You need to detach and reattach the persistent disk to preserve the settings.

If you have integrated Persona Management, the user configurations and profile are available centrally from the file repository, so there is less need to reattach persistent disks. This capability can come in handy, however, from time to time. For example, if a user is having issues with a persistent desktop, the help desk can ask that user to log off and reassign the user to another desktop to which you have reattached the user’s persistent disk. Because View Persona ensures the user’s settings transfer to the new View desktop, there is minimal impact to the user. While the user is working, troubleshooting can be performed on the problematic virtual desktop.

All persistent disks are organized into a single view under the Inventory and Persistent Disks section in the VMware View Administrator console. If you look in the right pane, you see all your persistent disks and what state they are in (attached or detached). You also see the desktop, pool, datastore, and the current capacity of the persistent disk.

You can select any disk from the Attached tab and detach its persistent disk. When you do, the associated VM is deleted and removed from inventory. When you detach, you are prompted to keep the disk on the current datastore or move it to another. If you move it to another datastore, you are asked to select a VM folder that the persistent disk should be moved to. From the Detached tab, you can view the detached persistent disks, refresh the inventory, and create new VMs to be reattached to the persistent disks. This capability is a substantial improvement over older releases of View, which required scripts to be run to reassociate user data disks.

The operational procedures to detach and attach persistent disks are as follows:

1. In View Administrator, click **Inventory** and **Persistent Disks**.
2. Select the persistent disk to detach.
3. Click **Detach**.
4. Choose where to store the persistent disk.
5. Use the current datastore. Store the persistent disk on the datastore where it is currently located.
6. Move to the following datastore. Select a new datastore on which to store the persistent disk. Click **Browse**.
7. Click the down arrow and select a new datastore from the **Choose a Datastore** menu.
8. The View Composer persistent disk is saved on the datastore. The associated linked clone desktop is deleted and removed from inventory.
Provided the desktop you want to reattach it to is the same OS, you can reattach it as follows:

1. In View Administrator, click **Inventory** and **Persistent Disks**.
2. Display the Detached tab.
3. Select the persistent disk.
4. Click **Attach**.
5. Select a linked clone desktop on which to attach the persistent disk.
6. Select **Attach as a Secondary Disk**.
7. Click **Finish**.

IMPORTANT
Double-check the permissions on the persistent disk to ensure that System and Administrators have full access. You should also ensure that the local user group has Read & Execute, List Folder Contents and Read, and the special permission Create Folder and Write Data.

After the desktop is joined to the domain, the domain users group is added to the local users group, ensuring the user has the appropriate access to download or create a profile. From the same Detached tab, you can select a detached disk and re-create a desktop OS by selecting the persistent disk and clicking the Recreate Desktop button.

Backing Up View

The practice of redirecting user data to file servers versus backing up user content on their desktops is the same on virtual as it is on physical desktops. Rather than backing up each virtual desktop, you will employ user, group, and profile management to centralize the content on a file server and back up from that point. This exception to backing up View desktops is when you have stateful desktops or desktops in which user configurations or data is stored within the virtual desktop. Although it is still simpler to employ folder redirection and Persona Management to centralize user data for backup even with stateful, it is possible that the View desktops configuration and toolset is unique to the requirements of a single user (for example, developer desktops in which the developer installs and customizes the configuration for their specific need). In this case, the stateful desktop should be backed up.
Whether to back up a desktop is largely determined by the nature of its use and whether it is a full clone or linked clone. There is little value in backing up a linked clone, but it may make sense on a full clone. For example, if the full clone desktop is highly customized when it is initially deployed by the developer, but changes very little after that, once a week might be overkill.

The opposite of a stateful desktop is, of course, a stateless desktop. A stateless desktop does not contain any unique user configuration or data and therefore does not require backup.

There are, however, a few components of the View architecture that you should take steps to protect by having backup policies. This section examines which components of the View architecture are critical and therefore warrant backup. The components that you should consider backing up include the following:

- View Connection Server
 - Including AD-LDS datastore
- View Composer
 - Including database
- View Transfer Server and offline desktop file repository
- The central repository of ThinApp packages
- User Persona file repository
- vCenter database

VMware recommends that with respect to the AD-LDS and vCenter and Composer databases that you back them up in the following order:

1. View Connection Server AD-LDS
2. View Composer database
3. Back up vCenter database

You can use traditional backup tools for backing up the OS, file repositories, and databases, but there is a specific process for backing up the AD-LDS datastore and a sequence recommended by VMware. In addition, by default, each Connection and Composer Server automatically backs up the AD-LDS database locally every day at midnight to a text file that is kept for 7 days. To back up the AD-LDS database manually, you need to ensure that there are no operational desktop pool processes in progress such as a refresh, recompose, creation, or deletion of View desktop instances. For desktop pools that are autoprovisioning VMs based on min and max settings, for example, it is important to turn off the provisioning during the backup. To back up the AD-LDS database, complete the following steps:
1. Log in to the VMware View Administrator console by browsing to the URL https:\ \ [FQDN of View Server]\admin.

2. Expand the Inventory menu and select Pools.

3. Select each automated pool and right-click and select Disable Provisioning.

4. After you have verified that all operational activity has been temporarily disabled, you can run the AD-LDS database export utility. You can find this utility on the VMware View Server within C:\Program Files\VMware\VMware View\Server\ tools\bin; it is called vdmexport.exe.

The tool exports the content in LDAP Data Interchange Format (LDIF), which is a text-based format for exchanging LDAP information. To run the tool, just execute the utility and redirect the content to a file with an .ldf extension. For example:

vdmexport.exe>Viewconfig.ldf

Although you learned how to here, doing this process manually is not very practical (and it is fully automated by View). You can, however, automate many of the processes within View. VMware provides VMware View PowerCLI cmdlets. When you install the View Connection Server, a View PowerCLI console is also installed. When you first run the View PowerCLI, though, you will receive errors because PowerShell’s default settings restrict unsigned or untrusted scripts. To enable the scripts, open Windows PowerShell and follow this process:

1. To verify the current policy, type Get-ExecutionPolicy. You should see that the default setting is restricted.

2. To update the current policy, type Set-ExecutionPolicy Unrestricted.

3. When prompted, type Y to confirm that you want to update the policy.

4. To verify that the policy is now unrestricted, type Get-ExecutionPolicy one more time and you should see that it is now unrestricted.

You can now close the Windows PowerShell console and open the View PowerCLI console. It is possible to disable provisioning using PowerCLI commands. To explain how, we provide an example, but this is not intended to be an extensive review of VMware View PowerCLI. For detailed information on the VMware View PowerCLI, refer to VMware’s online documentation. In this example, we update an automated pool that has been created using View Composer. To update an automated Composer desktop pool, you will use the Update-Auto\ maticLinkedClonePool cmdlet. Because it is likely that you will have a variety of pool types, you want to ensure that you disable provisioning on the appropriate type and specific pool. You can specify a specific pool by providing the pool’s unique ID, which is the name of
the pool within View (and not the display named presented to the users). In this example, we are disabling provisioning on an automated linked clone pool called CALL_CENTER:

```
Update-AutomaticLinkedClonePool -pool_id CALL_CENTER -isProvisioningEnabled $false
```

You can reenable provisioning by changing the value to `$true`, as shown in the following example:

```
Update-AutomaticLinkedClonePool -pool_id CALL_CENTER -isProvisioningEnabled $true
```

Replacing Certificates

When you first install View, it uses self-signed certificates. VMware does not recommend that you use these in production. In a highly secure environment, updating certificates may be required on a regular basis as the certificates expire. This section covers how to replace certificates on the VMware View Server as well as the Composer and Security Server. A Transfer Server does not really use certificates, so replacing them would be of no net benefit.

At a high level, the process that you will follow is to create a Certificate Signing Request (CSR) config file that is used to generate the CSR to request a certificate. Once you receive the signed certificate you will import it and then configure View to use it. This process is outlined in Figure 7.34.

![Figure 7.34: Updating certificates](image-url)
The first part of the process starts with creating a configuration file from which to generate the CSR, as shown in the example request.inf file. The Subject line contains the distinguished name and location of the View Server.

In addition, you can adjust the key length to increase the security of the certificate:

```plaintext
;----------------- request.inf -----------------
[Version]
Signature="$Windows NT$

[NewRequest]
Subject = "CN=demovv001.virtualguru.org, OU=IT, O=virtualguru,L=Newmarket, S=Ontario, C=CA"
; Replace View_Server_FQDN with the FQDN of the View server.
; Replace the remaining Subject attributes.
KeySpec = 1
KeyLength = 2048
; KeyLength is usually chosen from 2048, 3072, or 4096. A KeyLength
; of 1024 is also supported, but it is not recommended.
Exportable = TRUE
MachineKeySet = TRUE
SMIME = False
PrivateKeyArchive = FALSE
UserProtected = FALSE
UseExistingKeySet = FALSE
ProviderName = "Microsoft RSA SChannel Cryptographic Provider"
ProviderType = 12
RequestType = PKCS10
KeyUsage = 0xa0

[EnhancedKeyUsageExtension]
OID=1.3.6.1.5.5.7.3.1 ; this is for Server Authentication
;-----------------------------------------------
```

Create this file, adjust the appropriate values, and save it within a directory on the View Server (for example, c:\cert\request.inf).

After you have the input file, you can use the Microsoft Certificate Request Utility certreq.exe to generate the CSR using the following command syntax from within the directory (in our example, c:\cert):

```
certreq -new request.inf [output file]
```
Replacing Certificates

The utility will generate a CSR within the output file you specified. It is this file that you will submit to the third-party certificate authority (CA) to receive the certificate file. If you maintain your own Windows CA, you can create your own certificate internally. To continue our example, we will use a Microsoft CA.

From the Microsoft CA’s website, select **Request a Certificate**, as shown in Figure 7.35.

![Figure 7.35 Requesting a certificate](Image)

On the Advanced Certificate Request web page, submit a certificate request by using a base-64-encoded CMC or PKCS #10 file, or submit a renewal request by using a base-64-encoded PKCS #7 file, as shown in Figure 7.36.

![Figure 7.36 Advanced certificate request](Image)

On the Request a Certificate web page, click the **Or, Submit an Advanced Certificate Request** link.

On the Submit a Certificate Request or Renewal Request web page, paste the contents of your CSR into the Saved Request window and select the drop-down under the Certificate Template heading and ensure that the Certificate Template being used is Web Server, as shown in Figure 7.37, and click **Submit**.
On the Certificate Issued page, leave the default Der Encoded, and click the Download Certificate link. Ensure that you save the certificate on the View Server (in our example, back in the c:\cert directory).

To import the certificate to the View Server, you can use the certreq.exe utility by using the following command:

certreq.exe -accept [certificate name]

The utility imports the certificate, but View does not start using until you rename it. To rename it, follow these steps on the View Server. If you have multiple View Servers, you will need to run the process on each server:

1. Run an Management Console (MMC) by typing MMC in the Search Program and Files box from the Start menu of the View Server.
2. From the MMC console, select File, Add/Remove Snap-In.
3. Select Certificates from the Available Snap-Ins options and click Add.
4. When prompted for which account will be managed by the snap-in, select Computer Account, and then click Finish.
5. When prompted to select the computer, accept the default Local Computer, and then click Finish and OK.
6. From the MMC, expand **Certificates** and **Personal** and **Certificates**.

7. Right-click the original certificate and select **Properties** and rename to the friendly name **vdmold**.

8. Right-click the new certificate and select **Properties** and add a friendly name called **vdm** and restart the Connection Server.

9. After the reboot, log in to the Connection Server and ensure that under the Dashboard the System Health for the Connection or Security Server shows green, as shown in Figure 7.38.

![System Health](image)

Figure 7.38 Verifying the certificate is accepted

Composer and Certificates

The processes of replacing the certificate on the Composer Server is similar except that you do not need to change the common name but you do have to run the SviConfig utility to bind the updated certificate to the port that Composer uses. The syntax for the utility is as follows:

```
sviconfig -operation=ReplaceCertificate -delete=[false/true]
```

The false or true statement determines whether as part of the process the existing certificate is deleted. False prevents the deletion, and true deletes the certificate when the binding is updated.
Summary

This chapter examined the operational steps in creating, configuring, and managing VMware pools. You looked at what it takes to perform backups of key View components and also replace and update the certificates. Although the steps here are important, they are no substitute for having a good operational process. This involves ensuring that you have predetermined operational windows, for example, so that you can do pool refreshes or rebalances and not impact end-user activity in the environment.

VMware View provides a set of tools that add a lot of capabilities, but it is up to you to integrate them in a way that minimizes disruptions. As with any hosted environment, disruptions to service are amplified in a large VMware View environment. A well-managed change management process for effecting change in your View environment goes a long way to ensuring that users have confidence in the solution and that it remains stable and provides good performance.
Symbols

3D graphics, 294
3D graphics cards, 293

A

access groups, VMware View, 185-187
Active Desktops Statistics, 391
Active Directory
 Horizon Mirage, 256
 Workspace vApp, 124
Active Directory computers, Create
 Computer Objects permission, 168
Active Directory Lightweight Directory Service (AD LDS), 8
AD LDS (Active Directory Lightweight Directory Service), 8, 19, 34
databases, backing up, 219
adapter tuning, vCenter Operations for View, 386

adding
 data VAs, Administrator web page (Workspace), 245-246
 SAML 2.0 Authenticator, 176-177
 Security Servers, 97-99
 VAs (virtual appliances) in Workspace, 63
 VMDKs for storage, Workspace Data module, 149-151
administration, Horizon Mirage, 265-268
 application layers, 285-287
 base layers, 269-272
 collections, 283-284
 deploying base layers, 272-273
 driver libraries, 280-283
 endpoint migration, 274-277
 endpoint restoration, 268-269
 file portal, 277-279
 Horizon Mirage Web Management, 279-280
 logs, 288
 reports, 287-288
 updating base layers, 273-274
Administrator console, Workspace, 135
configuring CoS (Class of Service), 140-142
Data module, 135-137
integrating with VMware View, 142-144
launching View pools, 144-145
user entitlement, 138-140
Administrator web page, Workspace, 229
adding data VAs, 245-246
auditing and tracking, 239-240
catalogs, 229, 233
Dashboard tab, 229-230
entitlement, 232-233
Horizon Files, 242-245
Mobile Profiles, 230
modules, 234
policies, 237
Policies tab, 230
removing users, 233
SAML, 237-239
system diagnostics, 246
ThinApp integration, 234-236
Users & Groups tab, 229-232
Workspace clients, 240-241
Admission Control Policy, 66
Adobe Flash settings, 206
AirWatch, 17
alerts
 vCenter Operations for View, 391-393
VDI, 388
analysis, design and architecture, 29-30
Analytics VM, 380
Android, Workspace Client, 153-156
application layers, Horizon Mirage, 285-287
application-level reports, Horizon Mirage, 288
applications, legacy applications, 163
architecture
 Horizon Mirage, 256
VMware
 local mode VMs, 38
 View Connection Server, 34
 View Replica Server, 34
 View Security Server, 35-37
 View Transfer Server, 39-40
VMware View, 50
analysis, 29-30
calculating, 30-32
design, 32
requirements gathering and assessment, 28
Workspace, 53
authentication, 58
certificates, 60-62
external storage, 62-65
IP pools, 55
network services, 55-56
NTP (Network Time Protocol), 57
planning, 54
Postgres availability, 67-71
Postgres clusters, 71-74
PostgreSQL, 65-66
SMTP (Simple Mail Transfer Protocol), 62
audio, bandwidth (PCoIP), 317
audio quality, PCoIP, 316
auditing Administrator web page, Workspace, 239-240
authentication
design and architecture, Workspace, 58
SAML authentication, 174
automated desktop pools, 188
B
backing up
AD LDS databases, 219
virtual desktops, 218-221
ballooning, 65
bandwidth, 49, 303
audio, PCoIP, 317
bandwidth utilization, PCoIP, 320
Base DN (distinguished name), Active Directory, 126
base layer dry-run reports, Horizon Mirage, 287
base layers, Horizon Mirage, 269-272
deploying, 272-273
updating, 273-274
baselines, performance baselines, 363-364
bind DN, Active Directory, 126
branch reflectors, Horizon Mirage, 16, 23, 252
broker agents, vCOps, 383-384
configuring, 384-386
BTL (build-to-lossless), 50
Build-to-Lossless feature, 313

C
calculating design and architecture, 30-32
catalogs, Administrator web page (Workspace), 229, 233
design and architecture, Workspace, 60-62
end-user service catalogs, 2-3
centralization process, 268
centralized virtual desktop (CVD), 1, 252
certificate errors, troubleshooting, 174-176
certificate notification, Workspace Client, 155
certificate templates, creating in VMware View, 105-111
Certificate Wizard, 350
certificates
Composer Server, 225
design and architecture, Workspace, 60-62
private, 61
renaming View Servers, 224
requesting, 223
self-signed, 61
SSL, Workspace, 156-158
VMware View, 103-105
creating certificate templates, 105-111
replacing, 221-225
change, perception of, 291
check-in process, VMware View, 41
checklist for installing VMware View, 79-80
check-out process, VMware View, 40
CIFS (Common Internet File System), 256
client desktop, 327
client software, installing Liquidware Labs Stratusphere UX, 374
clients, View clients (Microsoft Lync 2013), 357
clusters, Postgres clusters (Workspace), 71-74
collection intervals, vCenter Operations for View, 386
collections, Horizon Mirage, 283-284
Common Internet File System (CIFS), 256
components, Horizon Mirage, 251-253
Composer Server, certificates, 225
compression, 301
crcomputer accounts, 207
configuration
View Composer, 206-207
View Connection Server, 85-88
configurator VA, 25, 114, 152
configurator virtual appliance, certificates, 61
configurator virtual appliance information, 121
configuring
 ESXi for sVGA, 296-297
 View Replica Server, 92
 VMware View Servers, 107
 WANem, 305-308
 Wireshark, 309-312
 Workspace vApp, 120-122
Connection Latency, PCoIP, 321
Connection Server
 installing, 82
 load balancing, 34
 View, 85-88
Connection Server pods, 8
connector VA, 25, 114
Content-Based Read Cache (CBRC), 193
CoS (Class of Service), Workspace
 Administrator console, 140-142
Create Computer Objects permission, 168
CVD (centralized virtual desktop), 1, 252
CVD Integrity report, Horizon Mirage, 288
CVD policy, Horizon Mirage, 263

D

DaaS (desktop-as-a-service), 4
Dashboard tab, Administrator web page (Workspace), 229-230
dashboards
 Manage Authenticators, 177-179
 vCenter Operations for View, 387-391
 View Adapter Status dashboard, 391
 View Desktop Sessions dashboard, 390
 View Main dashboard, 387
 View Pools dashboard, 389
 View Top Desktop VMs dashboard, 389
 View Top Sessions, 388
 View Users dashboard, 388
data collection, 368, 386
data compression, 50
data module, 134
 Workspace Administrator console, 135-137
Data module storage (Workspace), modifying, 148
 adding VMDKs, 149-151
data VAs, 25, 114-116
 Administrator web page, Workspace, 245-246
database permissions, Horizon Mirage, 255
database software, Horizon Mirage, 255
databases
 AD LDS, backing up, 219
 Event Database, 93-94
datastores, linked clones, 216
DDV (Distributed Desktop Virtualization), 14
Delegation of Authentication to VMware, 175
demilitarized zone. See DMZ
deploying
 base layers, Horizon Mirage, 272-273
 Horizon Mirage Management Server, 257-263
 Horizon View, considerations for, 76-77
 VMware View, 4-12
 considerations for, 76-78
 Workspace vApp, 118-120
 initial configuration, 120-122
 security exception, 123-133
 Workspace Setup Wizard, 122
deployment
 OVF deployment, 365
 VMware View and Workspace, scaling, 179-182
Distributed Desktop Virtualization (DDV), 14
Distributed Resource Services (DRS), 6
DMZ (demilitarized zone), 19, 35, 119
DNS (Domain Name System), 115, 368
domains
 multidomain environments, View integration, 171
 VMware View, 169
driver libraries, Horizon Mirage, 280-283
DRS (Distributed Resource Services), 6
dynamic collections, Horizon Mirage, 284
Dynamic Host Protocol (DHCP), 119

endpoint migration, Horizon Mirage, 274-277
desktop, client desktop, 327
desktop-as-a-service (DaaS), 4
desktop pools, 185-187
 automated, 188
 creating, 189-196
 manual, 188
 refresh, 214
 VMware View, 43
desktops
 replicas, 208
 View desktops, Microsoft Lync 2013, 355-356
DHCP (Dynamic Host Control Protocol), 119
disk digest files, 193
disk space
 Liquidware Labs Stratusphere, 371
 reclaiming, 196
disks, View Composer, 207
entitlements
 VMware, rebalance, 216
 VMware View, recompose, 215
environment software, Horizon Mirage, 254
environments, scaling in view, 7
ESXi, 294
 configuring for sVGA, 296-297
EUC (end-user computing), 2
EULA (end-user license agreement), 372
Event Database, 93-94
external dependencies, Horizon Mirage, 256
external file-sharing workflow, 138
external storage, design and architecture (Workspace), 62-65

H

HA (high authority), 65-66
hairpinning, VoIP, 330
HCL (hardware compatibility list), 17
HHDs (host hard drives), 13
Hirstius, Chuck, 303
Horizon Files, Administrator web page (Workspace), 242-245
Horizon Mirage, 249
 Active Directory, 256
 architecture, 256
 components, 251-253
 external dependencies, 256
 Horizon Mirage Servers, 264
 Mirage Management Server, 257-263
 planning, 251

F

file portals, Horizon Mirage, 253, 277-279
firewall rules, VMware View, 96-97
floating desktops, 47
floating pools, 188
folders, VMware View, 187
FPS (frames per second), 315
FQDN (Fully Qualified Domain Name), 89, 167
frames per second (FPS), 315
Fully Qualified Domain Name (FQDN), 89, 167

G

gateway VA, 25, 114-117
GPU (graphics processing unit), 6
Graphics, video support, 6
graphics processing unit (GPU), 6
graphs, PCoIP, 321-323
grep cpuinfo, 68
grep meminfo, 69
Group Policy Management tool, 198
Group Policy Objects, creating, 198-199
CVD, 252
CVD policy, 263
database permissions, 255
database software, 255
deployment and design considerations, 249-250
 architecture, 256
 components, 251-253
 external dependencies, 256
 Horizon Mirage Servers, 264
 Mirage Management Server, 257-263
prerequisites, 253-255
storage considerations, 256
environment software, 254
environmental hardware, 253
ports, 255
reference CVD, 271
reference machine, 255, 270
SQL Server, 256
Horizon Mirage branch reflectors, 252
Horizon Mirage Client, 254
Horizon Mirage file portal, 253
Horizon Mirage Management Console, 251-254
Horizon Mirage Management Server, 251, 254
deploying, 257-263
Horizon Mirage reference machine, 252
Horizon Mirage Server, 251, 254, 264
Horizon Mirage Web Management, 251, 254, 279-280
Horizon Mobile Management, 25
Horizon Mobile Manager, 24
Horizon View
certificates, creating certificate templates, 108
deployment and design considerations, 77
Event Database, 93
host hard drives (HHDs), 13
hypervisor swapping, 65

I

IANA (Internet Assigned Numbers Authority), 48
identity provider (IDP), 237
IDP (identity provider), 237
input/output operations per second (IOPS), 11
installing
Connection Server, 82
Microsoft Lync 2013, 339-343
Microsoft VDI plug-in, 357
Mirage Client, 265
Security Servers, 98
View Client, 101-103
VMware View, 80-85
 checklist, 79-80
 Connection Server, 82
 Windows Server, 84
VMware View Agent, 99
 View Agent custom setup options, 100-101
VMware View Composer on vCenter, 87
WAQem, 305-308
Wireshark, 309-312
integrating
ThinApp, Administrator web page (Workspace), 234-236
VMware View and Workspace, 165-173
considerations for, 163-164
troubleshooting certificate errors, 174-176
Internet Assigned Numbers Authority (IANA), 48
IOPS (input/output operations per second), 11, 193
IP addresses, Workspace vApp, 119
IP pools
design and architecture, Workspace, 55
Workspace Gateway, 117
iPad, Workspace Client, 153-156

J

Java server restart, Workspace vApp, 132
Jitter, 303
| K | Knoppix ISO, 306
KPI (key performance indicator), 370 |
| L | La Cita Collegiale, 295
latency, 303
launching View pools from Workspace, 144-145
LDIF (LDAP Data Interchange Format), 220
legacy applications, 163
legacy PC gap, 163
libraries, driver libraries (Horizon Mirage), 280-283
linked clones, 214
creating, 208
datastores, 216
decreasing size of, 214-215
Liquidware Labs Stratusphere UX, 362, 369-374
client software installation, 374
disk space, 371
hubs, 371
metrics, 375-376
time synchronization, 372
load, PCoIP, 323-324
load balancing, Connection Server, 34
local mode VMs, 38
logical unit numbers (LUNs), 364
logs, Horizon Mirage, 288
lossless compression, 301
lossless data compression, 50
lossy compression, 301
lossy data compression, 50
LUNs (logical unit numbers), 364
Lync Server 2013 Deployment Wizard, 339
Lync Server Topology Builder, 343-352
Lync topology, publishing and building, 343-352 |
| M | MAM (Mobile Access Management), 25
Manage Authenticators, 177
dashboard, 177-179
SAML 2.0 Authenticator, 177
Management Console, Horizon Mirage, 254
manual desktop pools, 188
MDM (mobile device management), 25, 229
media redirection, Microsoft Lync 2013, 355
memory compression, 65
metrics
Stratusphere UX, 375-376
vCenter Operations for View, 393-394
Microsoft Lync 2013, 329, 331-332
installing, 339-343
Lync Server Topology Builder, 343-352
media redirection, 355
.NET Framework 3.5, 335-339
preparing for, 332-334
testing, 352-355
users, setting up, 352-355
verifying you have all prerequisites, 335
View clients, 357
View desktops, 355-356
Windows 2012, 335-339
Microsoft Management Console (MMC), certificate templates, 105
Microsoft VDI plug-in, installing, 357
migrating endpoints, Horizon Mirage, 274-277 |
Mirage, 1, 4, 14-17
 branch reflectors, 16, 23
 overview, 21-23
Mirage Client
 installing, 265
 Pending Devices, 267
 upgrading, 267
Mirage Server, 22
MMC (Microsoft Management Console), certificate templates, 105
MMR (multimedia redirection), 330
Mobile Access Management (MAM), 25
 mobile apps, 134
 Mobile Device Management (MDM), 25, 229
 mobile management, 134
Mobile Profiles, Administrator web page (Mobile Profiles), 230
Mobile Virtual Platform (MVP), 17
 modifying workspace Data module storage, 148
 adding VMDKs, 149-151
modules
 Administrator web page, Workspace, 234
 security exceptions, Workspace vApp, 134
monitoring View Adapter performance, 386
multidomain environments, View integration, 171
multimedia
 delivering a rich end-user experience, 292-294
PCoIP, 300-302
 bandwidth utilization, 320
 Connection Latency, 321
 Connection Quality, 320
 encoding graphs, 321-323
 load, 323-324
 packet counts, 320
third-party tools, 318-319
 tuning, 312-313
 tuning, parameters, 313-318
performance test environment, 302-305
sVGA, configuring ESXi for, 296-297
vDGA (virtual direct graphics acceleration), 300
VMware View with vSGA, 298-300
vSGA (virtual shared graphics acceleration), 295-296
WANem, installing and configuring, 305-308
Wireshark, installing and configuring, 309-312
multimedia redirection (MMR), 330
multitenant, 58
MVP (Mobile Virtual Platform), 17

N
NAS (network-attached storage), 63, 256
.NET Framework 3.5, Microsoft Lync 2013, 335-339
Network Filesystem Storage (NFS), 63
 network mapping, Workspace vApp, 119
 network services, design and architecture (Workspace), 55-56
Network Time Protocol. See NTP
NFS (Network Filesystem Storage), 63
 Workspace, 152-153
Non-trusted external certificate authority, SSL certificates, 158
NTP (Network Time Protocol), 120, 368
 design and architecture, Workspace, 57
NVIDIA, 295-296
OEM (original equipment manufacturer), 300
OS disks, VMs (virtual machines), 215
OS X, Workspace Client, 153-156
OVA deployment, 118
OVF deployment, 365

PCoIP (PC over IP), 48-50
PCoIP Server services, 319
PDV (packet delay variation), 303
Pending Devices, Mirage Client, 267
perception of change, 291
performance, monitoring (View Adapter), 386
performance baselines, 363-364
performance monitoring solutions, 362

Liquidware Labs Stratusphere UX, 362, 369-374
client software installation, 374
disk space, 371
hubs, 371
metrics, 375-376
time synchronization, 372
performance baselines, 363-364
vCenter Operations Management (vCOps), 362
templates, 312
third-party tools, 318-319
tuning, 312-313
VMware View, 48-50
PCoIP Connection Quality graph, 320
PCoIP Encoder, 322
PCoIP Encoder Stats, 322
PCoIP Log Viewer, 303, 318-319
PCoIP Packet Counts, 320

PCoIP (PC over IP), 48-50
PCoIP Server services, 319
PDV (packet delay variation), 303
Pending Devices, Mirage Client, 267
perception of change, 291
performance, monitoring (View Adapter), 386
performance baselines, 363-364
performance monitoring solutions, 362

Liquidware Labs Stratusphere UX, 362, 369-374
client software installation, 374
disk space, 371
hubs, 371
metrics, 375-376
time synchronization, 372
performance baselines, 363-364
vCenter Operations Management (vCOps), 362
templates, 312
third-party tools, 318-319
tuning, 312-313
VMware View, 48-50
PCoIP Connection Quality graph, 320
PCoIP Encoder, 322
PCoIP Encoder Stats, 322
PCoIP Log Viewer, 303, 318-319
PCoIP Packet Counts, 320
Policies tab, Administrator web page (Workspace), 230
Pool Settings, VMware View, 200-205 pools, 43
desktop, 187-189
creating, 189-196
desktop pools, 185
refresh, 214
to enterprise pools, 339
to floating pools, 188
IP pools, Workspace, 55
RDS desktop pools, 189
settings, 197-198
standard pools, 339
View pools, synchronizing, 171
port requirements, Security Server, 37
ports, Horizon Mirage, 255
Postgres availability, design and architecture (Workspace), 67-71
Postgres clusters, design and architecture (Workspace), 71-74
PostgreSQL, design and architecture (Workspace), 65-66
postgres.conf, 69
power options, VMware View, 197-200
preparing for Microsoft Lync 2013, 332-334
prerequisites
Horizon Mirage, 253-255
for Microsoft Lync 2013, 335
private branch exchange (PBX), 330
private certificates, 61
Program Executable (PE)-level report, Horizon Mirage, 288
proof of concept (PoC), 28
provisioning settings, VMware View, 211-212
public file sharing, 137
publishing Lync Topology, 343-352

Q
QoS (Quality of Service), PCoIP, 50
Quality Table, 322
QuickPrep, 212

R
RAID penalties, View, 11
RDS desktop pools, 189
RDSH (Remote Desktop Session Host), 229
rebalancing, 216
rebooting endpoints, 266
reclaim disk space option, 195
reclaiming
disk space, 196
storage, View, 13
recompose, VMware View, 215
reference CVD, Horizon Mirage, 271
reference machines, Horizon Mirage, 252-255, 270
refresh
View Composer, 214-215
VMware View, 214-215
relays, setting up on Workspace or Exchange, 62
Remote Desktop Session Host (RDSH), 229
Remote Graphics Software (RGS), 300
removing users, Administrator web page (Workspace), 233
renaming certificates, View Servers, 224
replacing certificates, VMware View, 221-225
Replica Server, 34
replicas
View Composer, 208
VMware View, 214
replication, VMware View, 41
reports

Horizon Mirage, 287-288
UX inspector reports, 377
requesting certificates, 223
restoring endpoints, Horizon Mirage, 268-269
RGS (Remote Graphics Software), 300
rich end-user experiences, delivering, 292-294
Roles and Features Wizard, 336
rollback, VMware View, 42
RTC objects, 346

S

SaaS, Workspace, 145-148
SAML (Security Assertion Markup Language), 134
 Administrator web page, Workspace, 237-239
SAML 2.0 Authenticator, 177
 adding, 176-177
SAML authentication, 174
SAN (storage-area network), 13, 193, 364
scaling
 environments, View, 7
 VMware View and Workspace deployment, 179-182
Security Assertion Markup Language. See SAML
security exception, Workspace vApp, 123-133
Security Server port requirements, 37
Security Servers
 adding, 97-99
 installing, 98
 VMware View, 95
self-signed certificates, example, 61

servers

Horizon Mirage Management Servers, 251, 264
deploying, 257-263
local mode VMs, 38
Mirage Server, 22
Security Servers, 98-99
 adding, 97
 installing, 98
 VMware View, 95
vCenter servers, 8, 89-91
View Connection Servers, 8, 19, 34, 85-88
View Replica Server, 34
 configuring, 92
View Security Server, 19, 35-37
View Transfer Server, 20, 39-40
VMware
 check-in process, 41
 check-out process, 40
 desktop pools, 43
 PCoIP, 48-50
 Persona Management, 47
 replication, 41
 rollback, 42
 View Composer, 44-46
 VMware View Servers, 33
 configuring, 107
Windows Server, services, 84
service catalogs, 2-3
 Mirage, 4
 VMware View, 3
 Workspace, 4
service VA, 25, 114-116
services, Windows Server, 84
Session Initiation Protocol (SIP), 334
shuffling virtual desktop environments, 330
Simple Mail Transfer Protocol (SMTP), 62
Simple Network Management Protocol (SNMP), 391
single-instance store (SiS), 252
SIP (Session Initiation Protocol), 334
SiS (single-instance store), 252
SMTP (Simple Mail Transfer Protocol), Workspace, 62
SNMP (Simple Network Management Protocol), 391
Soft 3D, 6
software rendering, 292-294
solid-state drives (SSDs), 11
SQL Server, Horizon Mirage, 256
SSDs (solid-state drives), 11
SSL certificates, Workspace, 156-158
SSL offload, 56
standard pools, 339
stateful desktops, 31-32
 backing up View, 218
stateless desktops, 13, 219
storage
 external storage, Workspace, 62-65
 reclaiming, 13
 vCenter settings, 210
storage-area network (SAN), 13, 193, 364
storage considerations, Horizon Mirage, 256
storage report, Horizon Mirage, 287
storage sizing, View, 11
storage vendors, VMware View, 11
Stratusphere Sizing Guide, 371
SUSE, verifying hardware changes, 68
SVGA (Super Video Graphics Array), 6
 configuring ESXi for, 296-297
swap to host cache, 65
switches, 305
synchronization, Workspace vApp, 129
synchronizing View pools, 171
SysPrep, 212
system diagnostics, Administrator web page (Workspace), 246
System Diagnostics page, Workspace, 246
System Info link, Dashboard tab, 230

T

tail drop, 50
tarball format, 304
templates
 certificate templates, creating
 Horizon View, 105
 VMware View, 106-111
 PCoIP, 312
Teradici, 48
Teradici APEX 2800 Server Offload Card, 294
testing Microsoft Lync 2013, 352-355
ThinApp, Administrator web page (Workspace), 234-236
ThinApp packages, 134, 226
third-party CA, SSL certificates, 157
third-party tools, PCoIP, 318-319
time synchronization, Liquidware Labs Stratusphere UX, 372
tools, Group Policy Management tool, 198
TPS (transparent page sharing), 65
tracking Administrator web page, Workspace, 239-240
Trango, 17
transaction logs, Horizon Mirage, 288
Transfer Server, 39-40
transparent page sharing (TPS), 65
troubleshooting certificate errors, 174-176
tuning
 adapters, vCenter Operations for View, 386
 PCoIP, 312-313
 parameters, 313-318
UDP (User Datagram Protocol), 48, 301
UI VM, 380
updating base layers, Horizon Mirage, 273-274
upgrading
 Mirage Client, 267
 Workspace, 152
UPN (user principal name), 169
use-case scenarios, considerations when deploying VMware View, 76
user attributes mapping, Workspace
vApp, 127
User Datagram Protocol (UDP), 48, 301
user entitlement, Workspace Administrator console, 138-140
user principal name (UPN), 169
user segmentation, architecture and design, 29
users
 removing from Administrator web page (Workspace), 233
 rich end-user experiences, delivering, 292-294
 setting up in Microsoft Lync 2013, 352-355
Users & Groups tab, Administrator web page (Workspace), 229-232
USMT (User State Migration Tool), 263
UX inspector reports, 377

V

V4V adapter, 382
vApp, 116, 380
 vCenter Operations for View
 adapter tuning, 386
 alerting, 391-393
dashboards, 387-391
metrics, 393-394
vCOps for View Adapter, 380-383
vCOps for View Broker Agent, 383-384
configuring, 384-386
vApp appliances, Workspace, 115
VAs (virtual appliances), Workspace, 24-25, 53-54
adding, 63
vCenter, installing (View Composer), 87
vCenter Operations, 364
vCenter Operations for View, 378
 adapter tuning, 386
 alerting, 391-393
dashboards, 387-391
metrics, 393-394
vCenter Operations Management.
 See vCOps
vCenter Operations Manager
 Advanced, 378
 Enterprise, 378
vCenter Operations Manager for View, 378
vCenter Operations Manager for VMs, 378
vCenter Operations Server, 379
vCenter Servers, 8
 adding, 89-91
vCenter settings, VMware View, 209-211
vCOps (vCenter Operations Management), 362, 377-379
 performance baselines, 364
vApp, 380
 configuring vCOps Manager for View Broker Agent, 384-386
 installing vCOps for View Broker Agent, 383-384
vCenter Operation for View, adapter tuning, 386
vCenter Operation for View, alerting, 391-393
vCenter Operation for View, dashboards, 387-391
vCenter Operation for View, metrics, 393-394
vCOps for View Adapter, 380-383
workflows, 379
vCOps for View Adapter, 380-383
vCOps for View Broker Agent, 383-384
configuring, 384-386
vDGA (virtual direct graphics acceleration), 6, 300
VDI (virtual desktop infrastructure), 2, 28, 76, 330
VDI alerts, 388
VDI Environment Indicators, 387
VDI Health Tree, 388
VDI Tier Health, 388
VDM (Virtual Desktop Manager), 300
verifying
plug-ins, 358-359
SUSE recognizes hardware changes, 68
VIB (vSphere installation bundle), 297
video support, 6
view
scaling environments, 7
storage, reclaiming, 13
View Adapter, 378
monitoring performance, 386
View Adapter Status dashboard, 391
View Agent custom setup options, 100-101
View Blast, 7
View blocks, 8
View Client
installing, 101-103
Microsoft Lync 2013, 357
View Composer, 13, 21
configuring, 206
disks, 207
refresh, 214-215
replicas, 208
VMware View, 44-46
View Connection Server, 19, 34
configuring, 85-88
View Connection servers, 8
View desktops, 8-9, 12
Microsoft Lync 2013, 355-356
View Desktop Sessions dashboard, 390
view events collection, vCenter Operations for View, 386
View Main dashboard, 387
View Planner, 302, 323-327
View Pool Statistics, 390
View pools, 134
launching from Workspace, 144-145
synchronizing, 171
View Pools dashboard, 389
View PowerCLI, 220
View Replica Server, 34
configuring, 92
View Security Server, 19, 35-37
View Servers, renaming certificates, 224
View Top Desktop VMs dashboard, 389
View Top Sessions dashboard, 388
View Transfer Server, 20, 39-40
View Users dashboard, 388
virtual appliances. See VAs
virtual desktop environments, shuffling, 330
virtual desktop infrastructure (VDI), 2, 28, 76, 330
Virtual Desktop Manager (VDM), 300
virtual desktops, 12
backing up, 218-221
rebalancing, 216
reducing size, 214-215
replicas, 208
virtual direct graphics acceleration (vDGA), 6, 300
virtual machine. See VMs
Virtual SAN, 13-14
virtual Shared Graphics Acceleration (vSGA), 6, 295
virtual storage acceleration (VSA), 12
VM disks (VMDKs), 148
VM monitoring, 66
VMDKs (virtual hard drives), 62, 148, 193
adding for storage, Workspace Data module, 149-151
VMotion, 6
VMs (virtual machines), 1
Analytics VM, 380
OS disks, 215
UI VM, 380
VMware
certificates, replacing, 221-225
entitlements, rebalance, 216
VMware Horizon View Connection Server, 84
VMware Horizon View Framework Component, 84
VMware Horizon View Message Bus Component, 84
VMware Horizon View PCoIP Secure Gateway, 84
VMware Horizon View Script Host, 85
VMware Horizon View Security Gateway Component, 85
VMware Horizon View Web Component, 85
VMware Mirage. See Horizon Mirage
VMware View, 1
access groups, 185-187
architecture, 50
backing up, 218-221
certificates, 103-105
creating certificate templates, 105-111
Composer, 206-208, 214-215
deploying, 4-12
deployment and design considerations, 76-78
design and architecture
analysis, 29-30
calculating, 30-32
design, 32
requirements gathering and assessment, 28
desktop pools, 187-189
creating, 189-196
domains, 169
entitlement, 213
refresh, 214-215
replicas, 214
entitlements, recompose, 215
Event Database, 93-94
firewall rules, 96-97
folders, 187
installing, 80-85
checklist, 79-80
Connection Server, 82
Windows Server, 84
integrating with Workspace, 142-144, 165-173
considerations for, 163-164
troubleshooting certificate errors, 174-176
overview, 18-21
persistent disks, 216-218
Pool Settings, 200-205
power options, 197-200
provisioning settings, 211-212
QuickPrep, 212
RAID penalties, 11
scaling deployment, 179-182
Security Servers, 95
 adding, 97-99
servers, 33
 check-in process, 41
 check-out process, 40
desktop pools, 43
local mode VMs, 38
PCoIP, 48-50
Persona Management, 47
 replication, 41
 rollback, 42
 View Composer, 44-46
 View Connection Server, 34
 View Replica Server, 34
 View Security Server, 35-37
 View Transfer Server, 39-40
service catalogs, 3
stateless desktops, 13
storage sizing, 11
storage vendors, 11
SysPrep, 212
 vCenter settings, 209-211
vCOps, 377
 with vSGA, 298-300
VMware View Agent, installing, 99
 View Agent custom setup options, 100-101
VMware View Blast Secure Gateway, 84
VMware View Composer, installing on vCenter, 87
VMware View Composer Guest Agent Server, 208
VMware View Planner, 325-327
VMware View Servers, configuring, 107
VMware Workspace. See Workspace
VMware Workspace FQDN, 60
VMwareVDMDS, 85
VoIP, 329-330
 hairpinning, 330
vPostgres virtual appliance, 67-68
VSA (virtual storage acceleration), 12
vSGA (virtual shared graphics acceleration), 6, 293-296
 VMware View, 298-300
vSphere Flash Read Cache, 13
vSphere HA, 65-66
vSphere installation bundle (VIB), 297
vSwitch, 304

W

WAL (Write Ahead Log), 67
WAN (wide area networks), 49
WANem, 302-304
 installing and configuring, 305-308
Wanova, 1
Web Applications, Workspace, 145-148
Web apps, 134
Web Management console, Horizon Mirage, 279
Weighted Random Early Detection (WRED), 51
Windows, Workspace Client, 153-156
Windows 2012, Microsoft Lync 2013, 335-339
Windows AERO, 293
Windows Server, services, 84
Wireshark, 303
 installing and configuring, 309-312
wizards
Certificate Wizard, 350
Lync Server 2013 Deployment Wizard, 339
Roles and Features Wizard, 336
Workspace Client Wizard, 155
Workspace Setup Wizard, 122
Workflow, vCOps, 379
Workplace, 18
Workspace, 17
Administrator console, 135
configuring CoS (Class of Service), 140-142
Data module, 135-137
integrating with VMware View, 142-144
launching View pools, 144-145
user entitlement, 138-140
Administrator web page, 229
adding data VAs, 245-246
auditing and tracking, 239-240
catalogs, 229, 233
Dashboard tab, 229-230
entitlement, 232-233
Horizon Files, 242-245
Mobile Profiles, 230
modules, 234
policies, 237
Policies tab, 230
removing users, 233
SAML, 237-239
system diagnostics, 246
ThinApp integration, 234-236
Users & Groups tab, 229-232
Workspace clients, 240-241
deployment and design considerations, 113-115
design and architecture, 53
authentication, 58
certificates, 60-62
external storage, 62-65
IP pools, 55
network services, 55-56
NTP (Network Time Protocol), 57
planning, 54
Postgres availability, 67-71
Postgres clusters, 71-74
PostgreSQL, 65-66
SMTP (Simple Mail Transfer Protocol), 62
implementation
VApp appliances, 115
Workspace Configurator VA, 116
Workspace Connector, 116
Workspace Data, 116
Workspace Gateway, 116-117
Workspace Service VA, 116
integrating with VMware View, 165-173
considerations for, 163-164
troubleshooting certificate errors, 174-176
modifying Data module storage, 148
adding VMDKs, 149-151
NFS, 152-153
overview, 24-25
scaling deployment, 179-182
service catalogs, 4
SSL certificates, 156-158
upgrading, 152
VAs (virtual appliances), 25, 53-54
Web Applications, 145-148
Workspace Client
Administrator web page, Workspace, 240-241
Windows/OS X/iPad/Android deployment, 153-156
Workspace Client certificate notification, 155
Workspace Client Wizard, 155
Workspace configurator, 114
Workspace Configurator VA, 116
Workspace Connector, 114-116
Workspace Data, 114-116
Workspace Gateway, 114-117
Workspace Manager, 114
Workspace Pod, deployment, 182
Workspace Service VA, 116
Workspace Setup Wizard, 122
Workspace vApp, 116
deploying, 118-120
 initial configuration, 120-122
 security exception, 123-133
 Workspace Setup Wizard, 122
WRED (Weighted Random Early Detection), 51
Write Ahead Log (WAL), 67

X-Y-Z

Xangati Flow Summarizer (XFS), 369
Xangati GUI login, 366
Xangati VDI dashboard, 362-369
XenApp, 134
X-Forwarded-For, Workspace gateway, 132
XFS (Xangati Flow Summarizer), 369