USt

Evan Gilman & Doug Barth

3 N /, K
FeAR TS %MW/@\)
PR %%WW
7 A DS 4 S
& B s Pl «w%/\\
\\ \‘\ .ul \. \ \0 /«»\
\

\%»
O ¢ /

_, Y.

)
E
=
D
=

(Y2
>z
o
o
—
o
L
=
(@)
L
-
Y2}
>
o
o
=
)
=
)
=
Ll
-
(%2
>
(Ya)
L
o
-]
)
L
(Ya)
O
=
()
—
)
o

O'REILLY"

CHAPTER 2
Managing Trust

Trust management is perhaps the most important component of a zero trust network.
We are all familiar with trust to some degree—you probably trust members of your
family, but not a stranger on the street, and certainly not a stranger who looks threat-
ening or menacing. Why is that?

For starters, you actually know your family members. You know what they look like,
where they live; perhaps you've even known them your whole life. There is no ques-
tion of who they are, and you are more likely to trust them with important matters
than others.

A stranger, on the other hand, is someone completely unknown. You might see their
face, and be able to tell some basic things about them, but you don’t know where they
live, and you don’t know their history. They might appear perfectly cromulent, but
you likely wouldn’t rely on one for important matters. Watch your stuff for you while
you run to the bathroom? Sure. Make a quick run to the ATM for you? Definitely not.

At the end, you are simply taking in all the information you can tell about the situa-
tion, a person, and all you may know about them, and deciding how trustworthy they
are. The ATM errand requires a very high level of trust, where watching your stuff
needs much less, but not zero.

You may not even trust yourself completely, but you can definitely trust that actions
taken by you were taken by you. In this way, trust in a zero trust network always orig-
inates with the operator. Trust in a zero trust network seems contradictory, though it
is important to understand that when you have no inherent trust, you must source it
from somewhere and manage it carefully.

There’s a small wrinkle though: the operator won't always be available to authorize
and grant trust! Plus, the operator just doesn't scale :). Luckily, we know how to solve
that problem—we delegate trust as shown in Figure 2-1.

21

Operator O

Explicit trust

1 0S images Pronst}cmng Appl}catmn
| service artifacts
?

:x Implicit trust

L ZEERTRRRRY

3 Application &

Servers

i

L

L

Figure 2-1. An operator declares trust in a particular system, which can in turn trust
another, forming a trust chain

Trust delegation is important because it allows us to build automated systems that can
grow to large scale and to operate in a secure and trusted way with minimal human
intervention. The trusted operator must assign some level of trust to a system, ena-
bling it to take actions on behalf of the operator. A simple example of this is auto-
scaling. You want your servers to provision themselves as needed, but how do you
know a new server is one of yours and not some other random server? The operator
must delegate the responsibility to a provisioning system, granting it the ability to
assign trust to, and create, new hosts. In this way, we can say that we trust the new
server is indeed our own, because the provisioning system has validated that it has
taken the action to create it, and the provisioning system can prove that the operator
has granted it the ability to do so. This flow of trust back to the operator is often
referred to as a trust chain, and the operator can be referred to as a trust anchor.

22 | Chapter2: Managing Trust

Threat Models

Defining threat models is an important first step when designing a security architec-
ture. A threat model enumerates the potential attackers, their capabilities and resour-
ces, and their intended targets. Threat models will normally define which attackers
are in scope, rationally choosing to mitigate attacks from weaker adversaries before
moving onto more difficult adversaries.

A well-defined threat model can be a useful tool to focus security mitigation efforts.
When building security systems, like most engineering exercises, there is a tendency
to focus on the fancier aspects of the engineering problem to the detriment of the
more boring but still important parts. This tendency is especially worrisome in a
security system, since the weakest link in the system is where attackers will quickly
focus their attention. Therefore, the threat model serves as a mechanism for focusing
our attention on a single threat and fully mitigating their attacks.

Threat models can also be useful when prioritizing security initiatives. Fighting state-
level actors is pointless if a system’s security measures are insufficient to defend
against a simple brute force attack on a user’s poor password. As such, it is important
to start first with simpler personas when building a threat model.

Common Threat Models

There are many different techniques for threat modeling in the security field. Here
are some of the more popular ones:

« STRIDE
« DREAD
« PASTA
o Trike

« VAST

The varying threat modeling techniques provide different frameworks for exploring
the threat space. Each of them is after the same goal: to enumerate threats to the sys-
tem and further enumerate the mitigating systems and processes for those threats.

Different threat models approach the problem from different angles. Some modeling
systems might focus on the assets that an attacker would be targeting. Others might
look at each software component in isolation and enumerate all the attacks that could
be applied to that system. Finally, some models might look at the system as a whole
from the attacker’s perspective: as an attacker, how might I approach penetrating this
system. Each of these approaches has pros and cons. For a well-diversified mitigating
strategy, a blend of the three approaches is ideal.

Threat Models | 23

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://www.owasp.org/index.php/Threat_Risk_Modeling#DREAD
http://bit.ly/2rQGNoa
http://octotrike.org/
http://threatmodeler.com/threat-modeling-methodology/

If we were to look at the attacker-based threat modeling methodology, we are able to
categorize attackers into a list of increasing capabilities (ordered from least to most
threatening):

1. Opportunistic attackers
So-called script kiddies, who are unsophisticated attackers taking advantage of
well-known vulnerabilities with no predetermined target.

2. Targeted attackers
Attackers who craft specialized attacks against a particular target. Spear phishing
and corporate espionage might fall under this bucket.

3. Insider threats
A credentialed but everyday user of a system. Contractors and unprivileged
employees generally fall into this bucket.

4. Trusted insider
A highly trusted administrator of a system.

5. State-level actor
Attackers backed by foreign or domestic governments and assumed to have vast
resources and positioning capabilities to attack a target.

Categorizing threats like this is a useful exercise to focus discussion around a particu-
lar level to mitigate against. We will discuss which level zero trust targets in the next
section.

Zero Trust’s Threat Model

In RFC 3552, the Internet Threat Model is described. Zero trust networks generally
follow the Internet Threat Model to plan their security stance. While reading the
entire RFC is recommended, here is a relevant excerpt:

The Internet environment has a fairly well understood threat model. In general, we
assume that the end-systems engaging in a protocol exchange have not themselves
been compromised. Protecting against an attack when one of the end-systems has been
compromised is extraordinarily difficult. It is, however, possible to design protocols
which minimize the extent of the damage done under these circumstances.

By contrast, we assume that the attacker has nearly complete control of the communi-
cations channel over which the end-systems communicate. This means that the
attacker can read any PDU (Protocol Data Unit) on the network and undetectably
remove, change, or inject forged packets onto the wire. This includes being able to gen-
erate packets that appear to be from a trusted machine. Thus, even if the end-system
with which you wish to communicate is itself secure, the Internet environment pro-
vides no assurance that packets which claim to be from that system in fact are.

Zero trust networks, as a result of their control over endpoints in the network,
expand upon the Internet Threat Model to consider compromises at the endpoints.

24 | Chapter2: Managing Trust

https://tools.ietf.org/html/rfc3552#section-3

The response to these threats is generally to first harden the systems proactively
against compromised peers, and then facilitate detection of those compromises.
Detection is aided by scanning of devices and behavioral analysis of the activity from
each device. Additionally, mitigation of endpoint compromise is achieved by frequent
upgrades to software on devices, frequent and automated credential rotation, and in
some cases frequent rotation of the devices themselves.

An attacker with unlimited resources is essentially impossible to defend against, and
zero trust networks recognize that. The goal of a zero trust network isn't to defend
against all adversaries, but rather the types of adversaries that are commonly seen in a
hostile network.

From our earlier discussion of attacker capabilities, a zero trust network is generally
attempting to mitigate attacks up to and including attacks originating from a “trusted
insider” level of access. Most organizations do not experience attacks that exceed this
level of sophistication. Developing mitigations against these attackers will defend
against the vast majority of compromises and would be a dramatic improvement for
the industry’s security stance.

Zero trust networks generally do not try to mitigate all state-level actors, though they
do attempt to mitigate those attempting to compromise their systems remotely. State-
level actors are assumed to have vast amounts of money, so many attacks that would
be infeasible for lesser organizations are available to them. Additionally, local govern-
ments have physical and legal access to many of the systems that organizations
depend upon for securing their networks.

Defending against these localized threats is exceedingly expensive, requiring dedica-
ted physical hardware, and most zero trust networks consider the more extreme
forms of attacks (say a vulnerability being inserted into a hypervisor which copies
memory pages out of a VM) out of scope in their threat models. We should be clear
that while security best practices are still very much encouraged, the zero trust model
only requires the safety of information used to authenticate and authorize actions,
such as on-disk credentials. Further requirements on endpoints, say full disk encryp-
tion, can be applied via additional policy.

Strong Authentication

Knowing how much to trust someone is useless without being able to associate a real-
life person with that identity you know to trust. Humans have many senses to deter-
mine if the person in front of them is who they think they are. Turns out,
combinations of senses are hard to fool.

Computer systems, however, are not so lucky. It's more like talking to someone on the
phone. You can listen to their voice, read their caller ID, ask them questions...but you
can’t see them. Thus we are left with a challenge: how can one be reasonably assured

Strong Authentication | 25

that the person (or system) on the other end of the line is in fact who they say they
are?

Typically, operators examine the IP address of the remote system and ask for a pass-
word. Unfortunately, these methods alone are insufficient for a zero trust network,
where attackers can communicate from any IP they please and insert themselves
between yourself and trusted remote host. Therefore, it is very important to employ
strong authentication on every flow in a zero trust network.

The most widely accepted method to accomplish this is a standard named X.509,
which most engineers are familiar with. It defines a certificate standard that allows
identity to be verified through a chain of trust. It’s popularly deployed as the primary
mechanism for authenticating TLS (formerly SSL) connections.

SSLis Anonymous

The most widely consumed TLS configuration validates that the
client is speaking to a trusted resource, but not that the resource is
speaking to a trusted client. This poses an obvious problem for zero
trust networks.

TLS additionally supports mutual authentication, in which the
resource also validates the client. This is an important step in
securing private resources; otherwise, the client device will go
unauthenticated. More on zero trust TLS configuration in “Mutu-
ally Authenticated TLS” on page 155.

Certificates utilize two cryptographic keys: a public key and a private key. The public
key is distributed, and the private key is held as a secret. The public key can encrypt
data that the private key can decrypt, and vice versa, as shown in Figure 2-2. This
allows one to prove they are in the presence of the private key by correctly decrypting
a piece of data that was encrypted by the well-known (and verifiable) public key. In
this way, identity can be validated without ever exposing the secret.

Certificate-based authentication lets us be certain that the person on the other end of
the line has the private key, and also lets us be certain that someone listening in can’t
steal the key and reuse it in the future. It does, however, still rely on a secret, some-
thing that can be stolen. Not necessarily by listening in, but perhaps by a malware
infection or physical theft.

So while we can validate that credentials are legitimate, we might not trust that they
have been kept a secret. For this reason, it is desirable to use multiple secrets, stored
in different places, which in combination grant access. With this approach, a poten-
tial attacker must steal multiple components.

26 | Chapter2: Managing Trust

Bob

. Hello .
| el | Encrypt -4————7@m

Alice's public key

6EB69570
08EO3CE4

Alice

. Hello i
| Alice! “—“‘“h*[Decrypt 4W,@m

Alice's private key

Figure 2-2. Bob can use Alice’s well-known public key to encrypt a message that only
Alice is able to decrypt

While having multiple components goes a long way in preventing unauthorized
access, it is still conceivable that all these components can be stolen. Therefore, it is
critical that all authentication credentials be time-boxed. Setting an expiration on cre-
dentials helps to minimize the blast radius of leaked or stolen keys and gives the oper-
ator an opportunity to reassert trust. The act of changing, or renewing, keys/
passwords is known as credential rotation.

Credential rotation is essential for validating that no secrets have been stolen, and
revoking them when required. Systems utilizing keys/passwords that are hard or
impossible to rotate should be avoided at all cost, and when building new systems this
fact should be taken into account early on in the design process. The rotation fre-
quency of a particular credential is often inversely proportional to the cost of
rotation.

Examples of Secrets Expensive to Rotate

o Certificates requiring external coordination

 Hand-configured service accounts

o Database passwords requiring downtime to reset

o A site-specific salt that cannot be changed without invalidating
all stored hashes

Strong Authentication | 27

Authenticating Trust

We spoke a little bit about certificates and public key cryptography. However, certifi-
cates alone don’t solve the authentication issue. For instance, you can be assured that
a remote entity is in possession of a private key by making an assertion using its pub-
lic key. But how do you obtain the public key to begin with? Sure, public keys don’t
need to be secret, but you must still have a way to know that you have the right public
key. Public key infrastructure, or PKI, defines a set of roles and responsibilities that are
used to securely distribute and validate public keys in untrusted networks.

The goal of a PKI is to allow unprivileged participants to validate the authenticity of
their peers through an existing trust relationship with a mutual third party. A PKI
leverages what is known as a registration authority (RA) in order to bind an identity
to a public key. This binding is embedded in the certificate, which is cryptographi-
cally signed by the trusted third party. The signed certificate can then be presented in
order to “prove” identity, so long as the recipient trusts the same third party.

There are many types of PKI providers. The most popular two are certificate authori-
ties (CAs) and webs of trust (WoTs). The former relies on a signature chain that is
ultimately rooted in the mutually trusted party. The latter allows systems to assert val-
idity of their peers, forming a web of endorsements rather than a chain. Trust is then
asserted by traversing the web until a trusted certificate is found. While this approach
is in relatively wide use with Pretty Good Privacy (PGP) encryption, this book will
focus on PKIs that employ a CA, the popularity of which overshadows the WoT
provider.

What Is a Certificate Authority?

Certificate authorities act as the trust anchor of a certificate chain. They sign and
publish public keys and their bound identities, allowing unprivileged entities to assert
the validity of the binding through the signature.

CA certificates are used to represent the identity of the CA itself, and it is the private
key of the CA certificate that is used to sign client certificates. The CA certificate is
well known, and is used by the authenticating entity to validate the signature of the
presented client certificate. It is here that the trusted third-party relationship exists,
issuing and asserting the validity of digital certificates on behalf of the clients.

The trusted third-party position is very privileged. The CA must be protected at all
costs, since its subversion would be catastrophic. Digital certificate standards like
X.509 allow for chaining of certificates, which enables the root CA to be kept offline.
This is considered standard practice in CA-based PKI security. We'll talk more about
X.509 security in Chapter 5.

28 | Chapter2: Managing Trust

Importance of PKl in Zero Trust

All zero trust networks rely on PKI to prove identity throughout the network. As
such, it acts as the bedrock of identity authentication for the majority of operations.
Entities that might be authenticated with a digital certificate include:

¢ Devices
o Users
« Applications

Binding Keys to Entites

PKI can bind an identity to a public key, but what about a private
key to the entity it is meant to identify? After all, it is the private
key which we are really authenticating. It is important to keep the
private key as close to the entity it was meant to represent as possi-
ble. The method by which this is done varies by the type of entity.
For instance, a user might store a private key on a smart card in
their pocket, where a device might store a private key in an on-
board security chip. We'll discuss which methods best fit which
entities in Chapters 5, 6, and 7.

Given the sheer number of certificates that a zero trust network will issue, it is impor-
tant to recognize the need for automation. If humans are required in order to process
certificate signing requests, the procedure will be applied sparingly, weakening the
overall system. That being said, certificates deemed highly sensitive will likely wish to
retain a human-based approval process.

Private Versus Public PKI

PKI is perhaps most popularly deployed as a public trust system, backing X.509 cer-
tificates in use on the public internet. In this mode, the trusted third party is publicly
trusted, allowing clients to authenticate resources that belong to other organizations.
While public PKI is trusted by the internet at large, it is not recommended for use in
a zero trust network.

Some might wonder why this is. After all, public PKI has some defensible strengths.
Factors like existing utilities/tooling, peer-reviewed security practices, and the
promise of a better time to market are all attractive. There are, however, several draw-
backs to public PKI that work against it. The first is cost.

The public PKI system relies on publicly trusted authorities to validate digital certifi-
cates. These authorities are businesses of their own, and usually charge a fee for sign-
ing certificates. Since a zero trust network has many certificates, the signing costs

Authenticating Trust | 29

associated with public authorities can be prohibitive, especially when considering
rotation policies.

Another significant drawback to public PKI is the fact that it’s hard to fully trust the
public authorities. There are lots of publicly trusted CAs, operating in many coun-
tries. In a zero trust network leveraging public PKI, any one of these CAs can cut cer-
tificates that your network trusts. Do you trust the laws and the governments
associated with all of those CAs too? Probably not. While there are some mitigation
methods here, like certificate pinning or installing trust in a single public CA, it
remains challenging to retain trust in a disjoint organization.

Finally, flexibility and programmability can suffer when leveraging public CAs. Pub-
lic CAs are generally interested in retaining the public’s trust, so they do employ good
security measures. This might include policies about how certificates are formed, and
what information can be placed where. This can adversely affect zero trust authenti-
cation in that it is often desirable to store site-specific metadata in the certificate, like
a role or a user ID. Additionally, not all public CAs provide programmable interfaces,
making automation a challenge.

Public PKI Strictly Better Than None

While the drawbacks associated with public PKI are significant, and the authors heav-
ily discourage its use within a zero trust network, it remains superior to no PKI at all.
A well-automated PKI is the first step, and work will be required in this area no mat-
ter which PKI approach you choose. The good news is that if you choose to leverage
public PKI initially, there is a clear path to switch to private PKI once the risk
becomes too great. It begs the question, however, if it is even worth the effort, since
automation of those resources will still be required.

Least Privilege

The principle of least privilege is the idea that an entity should be granted only the
privileges it needs to get its work done. By granting only the permissions that are
always required, as opposed to sometimes desired, the potential for abuse or misuse
by a user or application is greatly reduced.

In the case of an application, that usually means running it under a service account,
in a container or jail, etc. In the case of a human, it commonly manifests itself as poli-
cies like “only engineers are allowed access to the source code” Devices must also be
considered in this regard, though they often assume the same policies as the user or
application they were originally assigned to.

30 | Chapter2: Managing Trust

Privacy as Least Privilege

The application of encryption in the name of privacy is an often-
overlooked application of least privilege. Who really needs access to
the packet payload?

Another effect of this principle is that if you do need elevated access, that you retain
those access privileges for only as long as you need them. It is important to under-
stand what actions require which privileges so that they may be granted only when
appropriate. This goes one step beyond simple access control reviews.

This means that human users should spend most of their time executing actions
using a nonprivileged user account. When elevated privileges are needed, the user
needs to execute those actions under a separate account with higher privileges.

On a single machine, elevating one’s privileges is usually accomplished by taking an
action that requires the user to authenticate themselves. For example, on a Unix sys-
tem, invoking a command using the sudo command will prompt the user to enter
their password before running that command as a different role. In GUI environ-
ments, a dialog box might appear requiring the user’s password before performing the
risky operation. By requiring interaction with the user, the potential for malicious
software to take action on behalf of the user is (potentially) mitigated.

In a zero trust network, users should similarly operate in a reduced privilege mode on
the network most of the time, only elevating their permissions when needed to per-
form some sensitive operation. For example, an authenticated user might freely access
the company’s directory or interact with project planning software. Accessing a criti-
cal production system, however, should require additional confirmation that the user
or the user’s system is not compromised. For relatively low-risk actions, this privilege
elevation could be as simple as reprompting for the user’s password, requesting a sec-
ond factor token, or sending a push notification to the user’s phone. For high-risk
access, one might choose to require active confirmation from a peer via an out-of-
band request.

Human-Driven Authentication

For particularly sensitive operations, an operator may rely on the
coordination of multiple humans, requiring a number of people to
be actively engaged in order to authenticate a particular action.
Forcing authentication actions into the real world is a good way to
ensure a compromised system can’t interfere with them. Be careful,
however—these methods are expensive and will become ineffective
if employed too frequently.

Least Privilege | 31

Like users, applications should also be configured to have the fewest privileges neces-
sary to operate on the network. Sadly, applications deployed in a corporate setting are
often given fairly wide access on the network. Either due to the difficulty of defining
policies to rein in applications, or the assumption that compromised users are the
more likely target, it's now become commonplace for the first step in setting up a
machine to be disabling the application security frameworks that are meant to secure
the infrastructure.

Beyond the traditional consideration of privilege for users and applications, zero trust
networks also consider the privilege of the device on the network. It is the combina-
tion of user or application and the device being used that determines the privilege
level granted. By joining the privilege of a user to the device being used to access a
resource, zero trust networks are able to mitigate the effects of lost or compromised
credentials. Chapter 3 will explore how this marriage of devices and users works in
practice.

Privilege in a zero trust network is more dynamic than in traditional networks. Tradi-
tional networks eventually converge on policies that stay relatively static. If new use
cases appear that require greater privilege, either the requestor must lobby for a
change in policy; or, perhaps more frequently, they ask someone with greater privi-
lege (a sysadmin, for example) to perform the operation for them. This static defini-
tion of policy presents two problems. First, in more permissive organizations,
privilege will grow over time, lessening the benefit of least privilege. Second, in both
permissive and restrictive organizations, admins are given greater access, which has
resulted in malicious actors purposefully targeting sysadmins for phishing attacks.

A zero trust network, by contrast, will use many attributes of activity on the network
to determine a riskiness factor for the access being requested currently. These
attributes could be temporal (access outside of the normal window activity for that
user is more suspicious), geographical (access from a different location than the user
was last seen), or even behavioral (access to resources the user does not normally
access). By considering all the details of an access attempt, the determination of
whether the action is authorized or not can be more granular than a simple binary
answer. For example, access to a database by a given user from their normal location
during typical working hours would be granted, but access from a new location at
different working hours might require the user to authenticate using an additional
factor.

The ability to actively adjust access based on the riskiness of activity on a network is
one of the several features that make zero trust networks more secure. By dynamically
adjusting policies and access, these networks are able to respond autonomously to
known and unknown attacks by malicious actors.

32 | Chapter2: Managing Trust

Variable Trust

Managing trust is perhaps the most difficult aspect of running a secure network.
Choosing which privileges people and devices are allowed on the network is time
consuming, constantly changing, and directly affects the security posture the network
presents. Given the importance of trust management, it's surprising how under-
deployed network trust management systems are today.

Defining trust policies is typically left as a manual effort for security engineers. Cloud
systems might have managed policies, but those policies provide only basic isolation
(e.g., super user, admin, regular user) which advanced users typically outgrow. Per-
haps in part due to the difficulty of defining and maintaining them, requests to
change existing policies can be met with resistance. Determining the impact of a pol-
icy change can be difficult, so prudence pushes the administrators toward the status
quo, which can frustrate end users and overwhelm system administrators with
change requests.

Policy assignment is also typically a manual effort. Users are granted policies based on
their responsibilities in the organization. This role-based policy system tends to pro-
duce large pools of trust in the administrators of the network, weakening the overall
security posture of the network. These pools of trust have created a market for hack-
ers to “hunt sys admins”, seeking out and compromising system administrators. Per-
haps the gold standard for a secure network is one without highly privileged system
administrators.

These pools of trust underscore the fundamental issue with how trust is managed in
traditional networks: policies are not nearly dynamic enough to respond to the
threats being leveled against the network. Mature organizations will have some sort of
auditing process in place for activity on their network, but audits can be done too
infrequently, and are frankly so tedious that doing them well is difficult for humans.
How much damage could a rogue sysadmin do on a network before an audit discov-
ered their behavior and mitigated it? A more fruitful path might be to rethink the
actor/trust relationship, recognizing that trust in a network is ever evolving and based
on the previous and current actions of an actor within the network.

This model of trust, considering all the actions of an actor and determining their
trustworthiness, is not novel. Credit agencies have been performing this service for
many years. Instead of requiring organizations like retailers, financial institutions, or
even an employer to independently define and determine one’s trustworthiness, a
credit agency can use actions in the real world to score and gauge the trustworthiness
of an individual. The consuming organizations can then use their credit score to
decide how much trust to grant that person. In the case of a mortgage application, an
individual with a higher credit score will receive a better interest rate, which mitigates
the risk to the lender. In the case of an employer, one’s credit score might be used as a

Variable Trust | 33

http://bit.ly/2sYnfNQ

signal for a hiring decision. On a case-by-case basis, these factors can feel arbitrary
and opaque, but they serve a useful purpose; providing a mechanism for defending a
system against arbitrary threats by defining policy based not only on specifics, but
also on an ever-changing and evolving score.

A zero trust network utilizes this insight to define trust within the network, as shown
in Figure 2-3. Instead of defining binary policy decisions assigned to specific actors in
the network, a zero trust network will continuously monitor the actions of an actor
on the network to update their trust score. This score can then be used to define pol-
icy in the network based on the severity of breach of that trust (Figure 2-4). A user
viewing their calendar from an untrusted network might require a relatively low trust
score. However, if that same user attempted to change system settings, they would
require a much higher score and would be denied or flagged for immediate review.
Even in this simple example, one can see the benefit of a score: we can make fine-
grained determinations on the checks and balances needed to ensure trust is main-
tained.

Explicit policy
X
Action v Policy
i
— b 4
Variable trust
Action
|
L
v Policy

Figure 2-3. Using a trust score allows fewer policies to provide the same amount of access

34 | Chapter2: Managing Trust

\
<4

Agent i
i Username: alice H
Tru S‘t Role: Developer H | X .
"—'—_" . -—'—’Device: Corporate Laptop :——-—-’ Au‘thorlzat io0on
engine Network: Coffee Shop i
| Trust Score (@-1): 0.9 :

4

Activity

data

Figure 2-4. The trust engine calculates a score and forms an agent, which is then com-
pared against policy in order to authorize a request. We'll talk more about agents in
Chapter 3.

Monitoring Encrypted Traffic

Since practically all flows in a zero trust network are encrypted,
traditional traffic inspection methods don’t work as well as
intended. Instead, we are limited to inspecting what we can see,
which in most cases is the IP header and perhaps the next protocol
header (like TCP in the case of TLS). If a load balancer or proxy is
in the request path, however, there is an opportunity for deeper
inspection and authorization, since the application data will be
exposed for examination.

Clients begin sessions as untrusted. They must accumulate trust through various
mechanisms, eventually accruing enough to gain access to the service they’re request-
ing. Strong authentication proving that a device is company-owned, for instance,
might accumulate a good bit of trust, but not enough to allow access to the billing
system. Providing the correct RSA token might give you a good bit more trust,
enough to access the billing system when combined with the trust inferred from suc-
cessful device authentication.

Variable Trust | 35

Strong Policy as a Trust Booster

Things like score-based policies, which can affect the outcome of
an authorization request based on a number of variables like his-
torical activity, drastically improve a network’s security stance
when compared to static policy. Sessions that have been approved
by these mechanisms can be trusted more than those that haven't.
In turn, we can rely (a little bit) less on user-based authentication
methods to accrue the trust necessary to access a resource, improv-
ing the overall user experience.

Switching to a trust score model for policies isn’t without its downsides. The first hur-
dle is whether a single score is sufficient for securing all sensitive resources. In a sys-
tem where a trust score can decrease based on user activity, a user’s score can also
increase based on a history of trustworthy activity. Could it be possible for a persis-
tent attacker to slowly build their credibility in a system to gain more access?

Perhaps slowing an attacker’s progress by requiring an extended period of “normal”
behavior would be sufficient to mitigate that concern, given that an external audit
would have more opportunity to discover the intruder. Another way to mitigate that
concern is to expose multiple pieces of information to the control plane so that sensi-
tive operations can require access from trusted locations and persons. Binding a trust
score to device and application metadata allows for flexible policies that can declare
absolute requirements yet still capture the unknown unknowns through the compu-
ted trust score.

Loosening the coupling between security policy and a user’s organizational role can
cause confusion and frustration for end users. How can the system communicate to
users that they are denied access to some sensitive resource from a coffee shop, but
not from their home network? Perhaps we present them with increasingly rigorous
authentication requirements? Should new members be required to live with lower
access for a time before their score indicates that they can be trusted with higher
access? Maybe we can accrue additional trust by having the user visit a technical sup-
port office with the device in question. All of these are important points to con-
sider. The route one takes will vary from deployment to deployment.

Control Plane Versus Data Plane

The distinction between the control plane versus the data plane is a concept that is
commonly referenced in network systems. The basic idea is that a network device has
two logical domains with a clear interface between those domains. The data plane is
the relatively dumb layer that manages traffic on the network. Since that layer is han-
dling high rates of traffic, its logic is kept simple and often pushed to specialized
hardware. The control plane, conversely, could be considered the brains of the

36 | Chapter2: Managing Trust

network device. It is the layer that system administrators apply configuration to, and
as a result is more frequently changed as policy evolves.

Since the control plane is so malleable, it is unable to handle the high rate of traffic on
the network. Therefore, the interface between the control plane and the data plane
needs to be defined in such a way that nearly any policy behavior can be implemented
at the data layer with infrequent requests being made to the control plane (relative to
the rate of traffic).

A zero trust network also defines a clear separation between the control plane and
data plane. The data plane in such a network is made up of the applications, firewalls,
proxies, and routers that directly process all traffic on the network. These systems,
being in the path of all connections, need to quickly make a determination of whether
traftic should be allowed. When viewing the data plane as a whole, it has broad access
and exposure throughout the system, so it is important that the services on the data
plane cannot be used to gain privilege in the control plane and thereby move laterally
within the network. We'll discuss control plane security in Chapter 4.

The control plane in a zero trust network is made up of components that receive and
process requests from data plane devices that wish to access (or grant access to) net-
work resources, as shown in Figure 2-5. These components will inspect data about
the requesting system to make a determination on how risky the action is, and exam-
ine relevant policy to determine how much trust is required. Once a determination is
made, the data plane systems are signaled or reconfigured to grant the requested
access.

The mechanism by which the control plane affects change in the data plane is of criti-
cal importance. Since the data plane systems are often the entry point for attackers
into a network, the interface between it and the control plane must be clear, helping
to ensure that it cannot be subverted to move laterally within the network. Requests
between the data plane and control plane systems must be encrypted and authentica-
ted using a non-public PKI system to ensure that the receiving system is trustworthy.
The control/data plane interface should resemble the user/kernel space interface,
where interactions between those two systems are heavily isolated to prevent privilege
escalation.

This concern with the interface between the control plane and the data plane belies
another fundamental property of the control plane: the control plane is the trust
grantor for the entire network. Due to its far-reaching control of the network’s behav-
ior, the control plane’s trustworthiness is critical. This need to have an actor on the
network with a highly privileged role presents a number of interesting design require-
ments.

Control Plane Versus Data Plane | 37

Control plane

¥,

1. Client requests access to
service

4

2. Service reconfigured
to allow client
access

3. Client granted ephemeral access
configuration

... » Service

4. Client can contact service
directly using access
configuration E

Figure 2-5. A zero trust client interacting with the control plane in order to access a
resource

The first requirement is that the trust granted by the control plane to another actor in
the data plane should have limited real-time value. Trust should be temporary, requir-
ing regular check-ins between the truster and trustee to ensure that the continued
trust is reasonable. When implementing this tenet, leased access tokens or short life-
time certificates are the most appropriate solution. These leased access tokens should
be validated not just within the data plane (e.g., when the control plane grants a token
to an agent to move through the data plane), but also between the interaction
between the data plane and the control plane. By limiting the window during which
the data plane and control plane can interact with a particular set of credentials, the
possibility for physical attacks against the network is mitigated.

Summary

This chapter discussed the critical systems and concepts that are needed to manage
trust in a zero trust network. Many of these ideas are common in traditional network
security architectures, but it is important to lay the foundation of how trust is man-
aged in a network without any.

Trust originates from humans and flows into other systems via trust mechanisms that
a computer can operate against. This approach makes logical sense: a system can't be
considered trusted unless the humans who use it feel confident that it is faithfully
executing their wishes.

38 | Chapter2: Managing Trust

Security has frequently been viewed as a set of best practices, which are passed down
from one generation of engineers to the next. Breaking out of this cycle is important,
since each system is unique, and so we discussed the idea of threat models. Threat
models attempt to define the security posture of a system by enumerating the threats
against the system and then defining the mitigating systems and processes which
anticipate those threats. While a zero trust network assumes a hostile environment, it
is still fundamentally grounded in the threat model, which makes sense for the sys-
tem. We enumerated several present-day threat-modeling techniques so that readers
can dig deeper. We also discussed how the zero trust model is based on the internet
threat model and expands its scope to the endpoints that are under the control of zero
trust system administrators.

Having trust in a system requires the use of strong authentication throughout the sys-
tem. We discussed the importance of this type of authentication in a zero trust net-
work. We also briefly talked a bit about how strong authentication can be achieved in
today’s technology. We will discuss these concepts more in later chapters.

In order to effectively manage trust in a network, you must be able to positively iden-
tify trusted information, particularly in the case of authentication and identity. Public
key infrastructure (or PKI) provides the best methods we have today for asserting val-
idity and trust in a presented identity. We discussed why PKI is important in a zero
trust network, the role of a certificate authority, and why private PKI is preferred over
public PKI.

Least privilege is one of the key ideas in these types of networks. Instead of construct-
ing a supposedly safe network over which applications can freely communicate, the
zero trust model assumes that the network is untrustworthy, and as a result, compo-
nents on the network should have minimal privileges when communicating. We
explained what the concept of least privilege is and how it is similar and different
than least privilege in standalone systems.

One of the most exciting ideas of zero trust networks is the idea of variable trust. Net-
work policy has traditionally focused on which systems are allowed to communicate
in what manner. This binary policy framework results in policy that is either too rig-
idly defined (creating human toil to continually adjust) or too loosely defined (result-
ing in security systems that assert very little). Additionally, policy that is defined
based on concrete details of interactions will invariably be stuck in a cat-and-mouse
game of adjusting policy based on past threats. The zero trust model leans on the idea
of variable trust, a numeric value representing the level of trust in a component. Pol-
icy can then be written against this number, effectively capturing a number of condi-
tions without complicating the policy with edge cases. By defining policy in less
concrete details, and considering the trust score while making an authorization deci-
sion, the authorization systems are able to adjust to novel threats.

Summary | 39

Zero trust networks make a clear distinction between the control plane systems and
the data plane systems. We discussed at a high level how these two systems interact
with each other to allow expected communication to flow through the network. In
later chapters we will flesh out more of the control and data plane systems that man-
age communication in the network.

The next chapter digs into a fundamental entity in zero trust networks that is used to
authorize actions on the network.

40 | Chapter2: Managing Trust

	Chapter 2. Managing Trust
	Threat Models
	Common Threat Models
	Zero Trust’s Threat Model

	Strong Authentication
	Authenticating Trust
	What Is a Certificate Authority?
	Importance of PKI in Zero Trust
	Private Versus Public PKI
	Public PKI Strictly Better Than None

	Least Privilege
	Variable Trust
	Control Plane Versus Data Plane
	Summary

