Deep Learning for Predictive
Maintenance

Predictive maintenance is one of the most sought after machine learning solutions for IoT. It
is also one of the most elusive machine learning solutions for IoT. Other areas of machine
learning can easily be solved, implementing Computer Vision, for example, can be done in
hours using tools such as OpenCV or Keras. To be successful with predictive maintenance
you first need the right sensors. The Data collection design recipe in chapter 2, Handling
Data, can be used to help determine proper sensor placement. The Exploratory factor analysts
recipe in Chapter 2, Handling Data can help determine the cadence with which the data
needs to be stored. One of the biggest hurdles to implementing predictive maintenance is
that there needs to be a sufficient amount of device failures. For rugged industrial devices,
this can take a long time. Linking repair records with device telemetry is also a critical step.

Even though the challenge is daunting the rewards are great. A properly implemented
predictive maintenance solution can save lives by helping to ensure critical devices are
ready when needed. They can also increase customer loyalty because they help companies
have less downtime than similar products on the market. Finally, they can reduce costs and
improve efficiency by giving service technicians the information they need before servicing
the device. This can help them diagnose the device and ensure that they have the right
parts with them when they are servicing the device.

In this chapter, we will continue to use the NASA Turbofan dataset for predictive
maintenance and cover the following recipes:

¢ Enhancing data using feature engineering
¢ Using Keras for fall detection
e Implementing LSTM to predict device failure

Deploying models to web services

Deep Learning for Predictive Maintenance Chapter 4

Enhancing data using feature engineering

One of the best use of time in improving models is feature engineering. The ecosystem of
IoT has many tools that can make it easier. Devices can be geographically connected or
hierarchically connected with digital twins, graph frames, and GraphX. This can add
features such as showing the degree of contentedness to other failing devices. Windowing
can show how the current reading differs over a period of time. Streaming tools such as
Kafka can combine different data streams allowing you to combine data from other sources.
Machines that are outdoor may be negatively affected by high temperatures or moisture as
opposed to machines that are in a climate-controlled building.

In this recipe, we are going to look at enhancing our data by looking at time-series data
such as deltas, seasonality, and windowing. One of the most valuable uses of time for a
data scientist is feature engineering. Being able to slice the data into meaningful features
can greatly increase the accuracy of our models.

Getting ready

In the Predictive maintenance with XGBoost recipe in the previous chapter, we used XGBoost
to predict whether or not a machine needed maintenance. We have imported the NASA
Turbofan engine degradation simulation dataset which can be found at https://data.nasa.
gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks—gjie. In the rest
of this chapter, we will continue to use that dataset. To get ready you will need the dataset.

Then if you have not already imported numpy, pandas, matplotlib, and seaborn into
Databricks do so now.

How to do it...

The following steps need to be observed to follow this recipe:

1. Firstly, import the required libraries. We will be using pyspark. sql, numpy, and
pandas for data manipulation and matplotlib and seaborn for visualization:

from pyspark.sql import functions as F
from pyspark.sqgl.window import Window

import pandas as pd
import numpy as np
np.random.seed (1385)

[74]

https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
https://data.nasa.gov/dataset/Turbofan-engine-degradation-simulation-data-set/vrks-gjie

Deep Learning for Predictive Maintenance

Chapter 4

import matplotlib as mpl

import matplotlib.pyplot as plt

import seaborn as sns

2. Next, we're going to import the data and apply a schema to it so that the data
types can be correctly used. To do this we import the data file through the wizard

and then apply our schema to it:

file location = "/FileStore/tables/train_FDOO01l.txt"

file_type = "csv"

from pyspark.sgl.types import *

schema StructType ([
StructField("engine_id",
StructField("cycle",
StructField("settingl",
StructField("setting2",
StructField("setting3",
StructField("sl1",

IntegerType())

IntegerType()),

DoubleType (
DoubleType (
DoubleType (

)) .
)) .
)) .

DoubleType()),

(

(

(

(

(
StructField("s2", DoubleType()),
StructField("s3", DoubleType()),
StructField("s4", DoubleType()),
StructField("s5", DoubleType()),
StructField("s6", DoubleType()),
StructField("s7", DoubleType()),
StructField("s8", DoubleType()),
StructField("s9", DoubleType()),
StructField("s10", DoubleType()),
StructField("s11l", DoubleType()),
StructField("s12", DoubleType()),
StructField("s13", DoubleType()),
StructField("s14", DoubleType()),
StructField("s15", DoubleType()),
StructField("sl16", DoubleType()),
StructField("sl17", IntegerTypel()),
StructField("s18", IntegerTypel()),
StructField("s19", DoubleType()),
StructField("s20", DoubleType()),
StructField("s21", DoubleType())

1

3. Finally, we put it into a Spark DataFrame:

daf

spark.read.option("delimiter","

[75]

").csv(file_location,
schema=schema,
header=False)

Deep Learning for Predictive Maintenance Chapter 4

4. We then create a temporary view so that we can run a Spark SQL job on it:

df.createOrReplaceTempView ("raw_engine")

5. Next, we calculate remaining useful life (RUL). Using the SQL magics,
we create a table named engine from the raw_engine temp view we just
created. We then use SQL to calculate the RUL:

%sqgl
drop table if exists engine;

create table engine as

(select e.*

,mc — e.cycle as rul

, CASE WHEN mc - e.cycle < 14 THEN 1 ELSE 0 END as
needs_maintenance

from raw_engine e

join (select max(cycle) mc, engine_id from raw_engine group by
engine_id) m

on e.engine_id = m.engine_id)

6. We then import the data into a Spark DataFrame:

df = spark.sqgl("select * from engine")

7. Now we calculate the rate of change (ROC). In the ROC calculation, we are
looking at the ROC based on the current record compared to the previous
record. The ROC calculation gets the percent of change between the current
cycle and the previous one:

my_window = Window.partitionBy ('engine_id') .orderBy ("cycle")
df df .withColumn ("roc_s9",
((F.lag(df.s9) .over (my_window) /df.s9) -1)*100)
df = df.withColumn ("roc_s20",
((F.lag(df.s20) .over (my_window) /df.s20) -1)*100)
df = df.withColumn ("roc_s2",
((F.lag(df.s2) .over (my_window) /df.s2) -1)*100)
df = df.withColumn ("roc_s14",
((F.lag(df.sl4) .over (my_window) /df.sl14) -1)*100)

8. Next, we review static columns. In order to do that, we're going to convert the
Spark DataFrame to Pandas so that we can view summary statistics on the data
such as mean quartiles and standard deviation:

pdf = df.toPandas ()
pdf.describe () .transpose ()

[76]

Deep Learning for Predictive Maintenance Chapter 4

This will get the following output:

count mean std min 25% 50% T5% max

engine_id 20631.0 51.506568 2.922763e+01 1.000000 26.000000 52.000000 77.000000 100.000000
cycle 20631.0 10B.807862 6.88809%e+01 1.000000 52.000000 104.000000 156.000000 362.000000
settingl 20631.0 -0.000009 2.187313e-03 -0.008700 -0.001500 0.000000 0.001500 0.008700
setting2 20631.0 0.000002 2.930621e-04 -0.000600 -0.000200 -0.000000 0.000300 0.000600
setting3 20631.0 100.000000 0.000000e+00 100.000000 100.000000 100.000000 100.000000 100.000000
sl 20631.0 51B.670000 0.000000e+00 518670000 51B.670000 518.670000 51B.670000 518.670000
52 20631.0 642.680934 5.000533e-01 641.210000 642.325000 642.640000 643.000000 644.530000
53 20631.0 1590523119 6.131150e+00 1571.040000 1586.260000 15890.100000 1594.380000 1616.910000
s4 20631.0 1408.933782 9.000605e+00 1382.250000 1402.360000 1408.040000 1414.555000 1441.490000
55 20631.0 14.620000 1.776400e-15 14.620000 14.620000 14.620000 14.620000 14.620000
s6 20631.0 21.609803 1.388985e-03 21.600000 21.610000 21.610000 21.610000 21.610000
s7 20631.0 553.367711 8.850923e-01 549.850000 552.810000 553.440000 554.010000 556.060000

9. Now we drop the columns that are not valuable to us in this exercise. For
example, we are going to drop settings3 and s1 columns because the values
never change:

columns_to_drop = ['sl', 's5', 'sl10', 'sl6', 'sl18', 'sl19',
'op_setting3', 'setting3']
df = df.drop(*columns_to_drop)

10. Next, we are going to review the correlation between values. We are looking for
columns that are exactly the same. First, we perform a correlation function on the
DataFrame. Then we use np. zeros_like to mask the upper triangle. We are
then going to set the figure size. Next, we are going to use diverging_palette
to define a custom color map, then we are going to use the heatmap function do

draw the heat map:
corr = pdf.corr().round (1)
mask = np.zeros_like(corr, dtype=np.bool)
mask [np.triu_indices_from(mask)] = True

f, ax = plt.subplots(figsize=(20, 20))
cmap = sns.diverging_palette (220, 10, as_cmap=True)

sns.heatmap (corr, mask=mask, cmap=cmap, vmin=-1, vmax=1l, center=0,

[77]

Deep Learning for Predictive Maintenance Chapter 4

square=True, linewidths=.5, cbar_kws={"shrink": .5},
annot=True)

display (plt.tight_layout ())

The following heat map shows values with a high degree of correlation. The
values that are 1 show that they are perfectly correlated and therefore can be
dropped from the analysis:

engine_id -

cycle -

a1l -

2 -

13-

314 -

15 -

a7 -

=20~

21 -

a1

engine_id -

1]

o
e

] L] a1 a1 LH

o4

1)

04

08

&
&

L] o o

o o o 0

o o ° < Ll o o o o L < o < o L] L L L o

o a £ £] o L] 0 0.1 £ a L} a2 o] L] [} L] or o o

- - - - AHEEEEEEEEEE - OEE - -
-1 o o &
& L] Cl -]

-+ - - HASE5H - H8H - BE

satting
setting? -
oS
o
L]
ror_s14

[781]

Deep Learning for Predictive Maintenance Chapter 4

11. Remove similar columns. We found that S14 is exactly the same as S9 so we are
removing that column:

col
df

umns_to_drop = ['sl4']
= df.drop (*columns_to_drop)

12. Now we take the DataFrame and express it visually. A histogram or distribution
table is used to show potential issues with our data such as outliers, skew data,
random data and data that would not affect the model:

pdf

plt.

plt

plt.
plt.
plt.
plt.

pdf
dis

= df.toPandas ()

figure(figsize = (16, 8))

.title ('Example temperature sensor', fontsize=16)
xlabel ('# Cycles', fontsize=16)

ylabel ('Degrees', fontsize=16)

xticks (fontsize=16)

yticks (fontsize=16)

.hist (bins=50, figsize=(18,16))

play (plt.show())

[79]

Deep Learning for Predictive Maintenance

Chapter 4

The following histogram screenshots are the results:

cycle

engine_id

roc_sld

roc_s20

g

roc_s9

B EY 888

-]
g2

sE888s8

>

513

8 &8 ¢ &

o

100

200
515

300

a0 415

517

280

522 o

o 0.2
520

&
i
£

e
>

.3888¢%

=
3

>

-

+2.300e3

| 250
AN
5100 8150 BI00 BIS0 8300 84 85 390 95 200 647 843 644 m5 3.0
521 s3 =4 56 s7
1200 20000 1200
] | 1200 ey
1000
1000 00 15000
800 800
£00
P 10000 600
I 200 %00
400 500
200 00 200
o - 0 [a L - v
30 132 134 14 1580 1800 1380 1400 1420 1440 00000 0.002% 0.0050 0.007% 0.0100 550 52 s84 58
. Z +2.1681 -
58 59 sattingl settingz 010 satting3
1500 20000
2000 2000
1250
2500 1500 15000
T 2000 e
1500 750 1000 10000
1000 500
500 5000
500 50
o o (] gl-a L1 b o
o0 02 04 9050 9100 9150 5200 5250 =0.005 0000 0005 =0.0005 0.0000 00005 93.50 99.75 100.00 100.25 100.50

13. We then review the noise of our model to make sure that it is not unduly affected
by fluctuation:
values = pdf[pdf.engine_id==1].values
groups = [5, 6, 7, 8, 9, 10, 11,12,13]
i=1
plt.figure(figsize=(10,20))
for group in groups:
plt.subplot (len(groups), 1, 1i)

plt.plot (values|[:,

group])

plt.title (pdf.columns[group],

i4=1

display (plt.show())

y=0.5,

loc='right")

[80]

Deep Learning for Predictive Maintenance Chapter 4

The following is the output:

1605

1600 4

1595 4

s3

1590 4

1585 A

1580 4

T T T T T
0 25 50 75 100 125 150 175 200

1430 -
1425 4
1420 4
1415 sd|
1410
1405 A
1400 A

1395 A

T T T T
0 25 50 75 100 125 150 175 200

+2.388e3

0.30

0.25 1

0.20

s8

0.15 +

0.10 4

0.05 1

0.00 A

T T T
0 25 50 75 100 125 150 175 200

[81]

Deep Learning for Predictive Maintenance

Chapter 4

14. Based on the previous step, it is clear that the data is noisy. This can lead to false
readings. A rolling average can help smooth the data. Using a 7 cycle rolling

average we denoise the data as shown:

w = (Window.partitionBy ('engine_id') .orderBy ("cycle")\
.rangeBetween (-7,0))

df = df.withColumn ('rolling_average_s2', F.avg("s2") .over (w))

df = df.withColumn ('rolling_average_s3', F.avg("s3") .over (w))

df = df.withColumn ('rolling_average_s4', F.avg("s4") .over (w))

df = df.withColumn ('rolling_average_s7', F.avg("s7") .over (w))

df = df.withColumn('rolling_average_s8', F.avg("s8") .over (w))

pdf = df.toPandas ()

values = pdf[pdf.engine_id==1].values

groups = [5, 25, 6, 26, 8, 27]

i=1

plt.figure(figsize=(10,20))

for group in groups:

plt.subplot (len(groups), 1, 1i)

plt.plot (values[:, group])
plt.title(pdf.columns[group], y=0.5, loc='right')
i 4= 1

display (plt.show())

The following screenshot is a chart of rol1ling_average_s4 versus s4:

1425 4

1420 4

1415 4

1410 4

1405 4

1400 4

rolling average s4

0 25 50 75 100 125 150 175 200
1430 4
1420 4
sS4
1410 4
1400 4
T T T T T T T T T
0 25 50 75 100 125 150 175 200

[82]

Deep Learning for Predictive Maintenance Chapter 4

15. Since we want this data to be accessible to other notebooks, we're going to save it
as an ML ready table:

df .write.mode ("overwrite") .saveAsTable ("engine_ml_ready")

How it works...

In this recipe, we have performed feature engineering so that we could make our data
more usable by our ML algorithms. We removed the columns with no variation, high
correlation, and we denoised the dataset. In step § we removed the columns with no
variation. The method describes the data in several ways. Reviewing the chart showed that
many variables do not change at all. Next, we used a heat map to find sensors that had the
same data. Finally, we used a rolling average to smooth the data from our original dataset
into a new one.

There's more...

So far we have just looked at training data. But we will also need to look at testing the data.
There is a test dataset and a RUL dataset. These datasets will help us test our models. To
import them you would run 2 additional import steps:

1. Importing test data: Relying on the schema from the training set the test set is
imported and put in a table called engine_test:

File location and type

file_location = "/FileStore/tables/test_FDO0O01.txt"

df = spark.read.option("delimiter"," ").csv(file_location,
schema=schema,
header=False)

df .write.mode ("overwrite") .saveAsTable ("engine_test")

2. Importing the RUL Dataset: The next step is to import the remaining useful life
dataset and save that to a table as well:

file location = "/FileStore/tables/RUL_FDO0OO01.txt"
RULschema = StructType ([StructField("RUL", IntegerType())])
df = spark.read.option("delimiter"," ").csv(file_location,

schema=RULschema,
header=False)
df .write.mode ("overwrite") .saveAsTable ("engine_RUL")

[83]

Deep Learning for Predictive Maintenance Chapter 4

Using keras for fall detection

One strategy for predictive maintenance is to look at patterns of device failures for a given
record. In this recipe, we will classify the data that exhibits a pattern that happens before
the device fails.

We will be using keras, which is a fairly powerful machine learning library. Keras strips
away some of the complexity of TensorFlow and PyTorch. Keras is a great framework for
beginners in machine learning as it is easy to get started on and the concepts learned in
Keras transfer to more expressive machine learning libraries such as TensorFlow and
PyTorch.

Getting ready

This recipe expands on the predictive maintenance dataset we feature engineered in the
previous recipe. If you have not already done so you will need to import the keras,
tensorflow, sklearn, pandas, and numpy libraries into your Databricks cluster.

How to do it...

Please observe the following steps:

1. Firstly, import the required libraries. We import pandas, pyspark.sql, and
numpy for data manipulation, keras for machine learning, and sklearn for
evaluating the model. After evaluating the model we use io, pickle, and
mlflow to save the model and results so that it can be evaluated against other
models:

from pyspark.sqgl.functions import *
from pyspark.sqgl.window import Window

import pandas as pd

import numpy as np

import io

import keras

from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_score

from sklearn.preprocessing import MinMaxScaler

from keras.models import Sequential
from keras.layers import Dense, Activation, LeakyReLU, Dropout

[84]

Deep Learning for Predictive Maintenance Chapter 4

import pickle
import mlflow

2. Next, we import training and testing data. Out training data will be used to train
our models and our testing data will be used to evaluate the models:

X_train = spark.sgl("select rolling_average_s2, rolling_average_s3,
rolling_average_s4, rolling_average_s7,
rolling_average_s8 from \
engine_ml_ready") .toPandas ()

y_train = spark.sqgl ("select needs_maintenance from \
engine_ml_ready") .toPandas ()

X_test = spark.sgl("select rolling_average_s2, rolling_average_s3,
rolling_average_s4, rolling_average_s7,
rolling_average_s8 from \
engine_test_ml_ready") .toPandas ()

y_test = spark.sql ("select needs_maintenance from \
engine_test_ml_ready") .toPandas ()

3. Now we scale the data. Each sensor of the dataset has a different scale. For
example, the maximum value of s1 is 518 while the maximum value of S16 is
0.03. For that reason, we convert all of the values to a range between 0 and 1.
Allowing each metric affect the model in a similar way. We will make use of the
MinMaxScaler function from the sklearn library to adjust the scale:

scaler = MinMaxScaler (feature_range=(0, 1))

X_train.iloc[:,1:6] = scaler.fit_transform(X_train.iloc[:,1:6])
X_test.iloc[:,1:6] = scaler.fit_transform(X_test.iloc[:,1:6])
dim = X_train.shape[l]

4. The first layer, the input layer, has 32 nodes. The activation function, LeakyReLU,
defines the output node when given the input. To prevent overfitting, 25% of the
layers both hidden and visible are dropped when training:

model = Sequential ()

model.add (Dense (32, input_dim = dim))
model.add (LeakyReLU())

model.add (Dropout (0.25))

[85]

Deep Learning for Predictive Maintenance Chapter 4

5. Similar to the input layer, the hidden layer, uses 32 nodes as the input layer and
LeakyReLU as its output layer. It also uses a 25% drop out to prevent overfitting:

model.add (Dense (32))
model.add (LeakyReLU())
model.add (Dropout (0.25))

6. Finally, we add an output layer. We give it one layer so that we can have an
output between 0 and 1. sigmoid, our activation function, helps predict the
probability of the output. Our optimizer, rmsprop, along with the loss function
helps optimize the data pattern and reduce the error rate:

model.add (Dense (1))

model.add (Activation ('sigmoid'))

model.compile (optimizer ='rmsprop', loss ='binary_crossentropy',
metrics = ['accuracy'])

7. Now we train the Model. We use the model . fit function to specify our training
and test data. The batch size is used to set the number of training records used in
1 iteration of the algorithm. The epoch of 5 means that it will pass through the
data set 5 times:

model.fit (X_train, y_train, batch_size = 32, epochs = 5,
verbose = 1, validation_data = (X_test, y_test))

8. The next step is to evaluate the results. We use the trained model and
our X_test dataset to get the predictions (y_pred). We then compare the
predictions with the real results and review how accurate it is:

y_pred = model.predict (X_test)
pre_score = precision_score(y_test,y_pred, average='micro')
print ("Neural Network:",pre_score)

9. Next, we save the results to m1 f1ow. The results will be compared against the
other ML algorithms for predictive maintenance we are using in this book:

with mlflow.start_run() :
mlflow.set_experiment ("/Shared/experiments/Predictive_Maintenance")

mlflow.log_param("model", 'Neural Network')
mlflow.log_param("Inputactivation", 'Leaky ReLU')
mlflow.log_param("Hiddenactivation", 'Leaky ReLU')
mlflow.log_param("optimizer", 'rmsprop')

(

mlflow.log_param("loss", 'binary_crossentropy')

[86]

Deep Learning for Predictive Maintenance Chapter 4

mlflow.log_metric ("precision_score", pre_score)
filename = 'NeuralNet.pickel'

pickle.dump (model, open(filename, 'wb'))
mlflow.log_artifact (filename)

How it works...

There are typically three tasks that neural networks does:

e Import data
¢ Recognize the patterns of the data by training
¢ Predicting the outcomes of new data

Neural networks take in data, trains themselves to recognize the patterns of the data, and
then are used to predict the outcomes of new data. This recipe uses the cleaned and feature
engineered dataset saved in the previous recipe. The X_train dataset is pulled in from the
spark data table into a Panda DataFrame. The training DataFrames, X_train, and
y_train are used for training. X_test gives us a list of devices that have failed

and y_test gives us the real-time failure of those machines. Those datasets are used to
train models and test the results.

First, we have the input layer. The data is fed to each of our 32 input neurons. The neurons
are connected through channels. The channel is assigned a numerical value known as
weight. The inputs are multiplied by the corresponding weight and their sum is sent as
input to the neurons in the hidden layer. Each of these neurons is associated with a
numerical value called the bias, which is added to the input sum. This value is then passed
to a threshold function called the activation function. The activation function determines if
a neuron will get activated or not. We used Leaky ReLU as our activation function for our
first 2 layers. ReLU or Rectified Linear Unit is a popular activation function because it
solves the vanishing gradient problem. In this recipe, we used the Leaky ReLU. Leaky
ReLU solves a problem that ReLU has where big gradients can cause the neuron to

never fire. The activated neuron passes its data to the next layer over the channels. This
method allows the data to be propagated through the network. This is called forward
propagation. In the output layer, the neuron with the highest layer fires and determines the
output.

[871]

Deep Learning for Predictive Maintenance Chapter 4

When we first start running data through our network, the data usually has a high degree

of error. Our error and optimizer functions use backpropagation to update the weights. The
cycle of forward propagation and backpropagation is repeated to achieve a lower error rate.
The following diagram shows how the input, hidden, and output layers are linked together:

Hidden
Input
Output

There's more...

In this recipe, we used LeakyReLU as our activation function, rmsprop as our optimizer,
and binary_crossentropy as our loss function. We then saved the results to m1flow. We
can tune parameters in this experiment by trying different combinations such as the
number of neurons or the number of layers. We could also change the activation function to
use ReLU or TanH. We could also use Adam as our optimizer. Saving those results to
mlflow allows us to improve our model.

Implementing LSTM to predict device failure

Recurrent neural networks predict sequences of data. In the previous recipe, we looked at 1
point in time and determined to determine if maintenance was needed. As we saw in the
first recipe when we did the data analysis the turbofan run to failure dataset is highly
variable. The data reading at any point in time might indicate a need for maintenance while
the next indicates that there is no need for maintenance. When determining whether or not
to send a technician out having an oscillating signal can be problematic. Long Short Term
Memory (LSTM) is often used with time-series data such as the turbofan run to failure
dataset.

[881]

Deep Learning for Predictive Maintenance Chapter 4

With the LSTM, we look at a series of data, similar to windowing. LSTM uses an ordered
sequence to help determine, in our case, if a turbofan engine is about to fail based on the
previous sequence of data.

Getting ready

For this recipe we will use the NASA Turbofan run to failure dataset. For this recipe we will
be using a Databricks notebook. This recipe requires a few libraries to be installed. For data
processing we need to install numpy and pandas, keras for creating a LSTM model, and
sklearn and mlflow for evaluating and saving the results of our model.

Even though in previous recipes we added windowing and preprocessed the data, in this
recipe we will use the raw data. LSTMs window the data and also have a good deal of
extraction and transformation that is unique to this type of ML Algorithm.

How to do it...

We will execute the following steps for this recipe:

1. First, we will import all of the libraries which we will need later. We will import
pandas and numpy for data processing, keras for the ML models, sklearn for
evaluations, and pickel and m1£flow for storing the results:

import pandas as pd
import numpy as np

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM, Activation

from sklearn import preprocessing

from sklearn.metrics import confusion_matrix, recall_score,
precision_score

import pickle

import mlflow

[891]

Deep Learning for Predictive Maintenance Chapter 4

2. Next we will set the variables. We will set 2 cycles periods. In addition we use a
sequence length variable. The sequence length allows the LSTM to look back over
5 cycles. This is similar to windowing that was discussed in chapter 1, Setting
Up the IoT and Al Environment. We are also going to get a list of data columns:

weekl = 7

week2 = 14

sequence_length = 100

sensor_cols = ['s' + str(i) for i in range(l,22)]

sequence_cols = ['settingl', 'setting2', 'setting3', 'cycle_norm']

sequence_cols.extend (sensor_cols)

3. Next we import data from the spark data tables we created in the Simple
predictive maintenance with XGBoost recipe in Chapter 3, Machine Learning for IoT.
We also drop the 1abel column because we are going to recalculate the labels.
We are going to import three DataFrames. The t rain DataFrame is used to train
the model. The test DataFrame is used to test the accuracy of the model and the
truth DataFrame is the actual failures for the test DataFrame:

train = spark.sqgl("select * from engine") .toPandas ()
train.drop (columns="1label" , inplace=True)

test = spark.sgl("select * from engine_test2").toPandas ()
truth = spark.sqgl ("select * from engine_rul").toPandas ()

4. Then, we generate labels that show if a device needs maintenance. 1abell shows
when a device will fail in 14 cycles and 1abel2 shows when a device will fail in 7
cycles. First we create a DataFrame that shows the RUL based on the maximum
cycle number for each engine. Next we use that the RUL DataFrame create a RUL
column in our train DataFrame. We do this by subtracting the maximum life
from the current cycle. We then drop our max column. Next we create a new
column labell. labell hasa 1 value if the RUL is less than the 14 cycles. Then
copy that over to 1abel2 and add a 2 value if the RUL is less than 1 week:

rul = pd.DataFrame (train.groupby ('engine_id"') ['cycle']\
.max ()) .reset_index ()

rul.columns = ['engine_id', 'max']

train = train.merge (rul, on=['engine_id'], how='left')

train['RUL'] = train['max'] - train['cycle']

train.drop('max', axis=1, inplace=True)

train['labell'] = np.where(train['RUL'] <= week2, 1, 0)

train['label2'] = train['labell']

train.loc[train['RUL'] <= weekl, 'label2']l] = 2

[90]

Deep Learning for Predictive Maintenance Chapter 4

5. In addition to generating labels for training data we also need to do so for test
data. The training and test data are slightly different. The training data had an
end date that signified when the machine broke. The training set does not.
Instead we have a t ruth DataFrame that shows when the machine actually
failed. To add the label columns we need to combine the test and truth dataset
before we can calculate the labels:

rul = pd.DataFrame (test.groupby ('engine_id') ['cycle'].max ())\
.reset_index ()

rul.columns = ['engine_id', 'max']

truth.columns = ['more']

truth['engine_id'] = truth.index + 1

truth['max'] = rul['max'] + truth['more']

truth.drop ('more', axis=1, inplace=True)

test = test.merge (truth, on=['engine_id'], how='left')
test['RUL'] = test['max'] - test['cycle']
test.drop('max', axis=1, inplace=True)

test['labell'] = np.where(test['RUL'] <= week2, 1, 0)
test['label2'] = test['labell']
test.loc[test['RUL'] <= weekl, 'label2'] = 2

6. Next, because the columns have different mins and maxes, we will normalize the
data so that one variable does not overshadow the rest. To do this we are going
to use the sklearn library's MinMaxScaler function. This function transforms
the values between 0 and 1. It is a great scalier to use when, as in our case, there
is not a lot of outlier values. We are going to do the same normalization step for
both the training and test set:

train['cycle_norm'] = train['cycle']
cols_normalize =
train.columns.difference(['engine_id', 'cycle', 'RUL",

'labell', 'label2'])
min_max_scaler = preprocessing.MinMaxScaler ()
norm_train = \

pd.DataFrame (min_max_scaler.fit_transform(train[cols_normalize]),
columns=cols_normalize,
index=train.index)

join = \
train[train.columns.difference(cols_normalize)].join(norm_train)
train = join.reindex (columns = train.columns)

test['cycle_norm'] = test['cycle']

norm_test = \

pd.DataFrame (min_max_scaler.transform(test[cols_normalize]),

[91]

Deep Learning for Predictive Maintenance

Chapter 4

columns=cols_normalize,

index=test.index)
test_join = \

test[test.columns.difference(cols_normalize)].join (norm_test)

test = test_join.reindex (columns test.columns)

test = test.reset_index (drop=True)

7. The LSTM algorithm in Keras requires the data to be in a sequence. In our
variables section, we chose to have sequence_length equal to 100. This is one
of the hyperparameters that can be tuned during experimentation. As this is a
look at data over a sequential period of time the sequence length is the length of
the sequence of data we are training the model on. There is no real rule of thumb
on what is the optimal length for a sequence. But from experimentation, it
became clear that small sequences were less accurate. To aid in generating our
sequence we use the function to return the sequential data in a way that the

LSTM algorithm expects:
def gen_sequence (id_df, seqg_length, seqg_cols):
data_array = id_df[seg_cols].values
num_elements = data_array.shape[0]

for start, stop in zip(range (0, num_elements-seqg_length),
range (seq_length, num_elements)):

yield data_array[start:stop, :]

seq_gen = (list(gen_sequence (train[train['engine_id']==engine_id],
sequence_length, sequence_cols))

for engine_id in train['engine_id'].unique())

seq_array = np.concatenate(list (seg_gen)) .astype(np.float32)

8. The next step is to build a neural network. We build the first layer of our LSTM.
We start off with a sequential model. Then give it the input shape and length of
the sequence. The units tell us the dimensionality of the output shape which it
will pass to the next layer. Next, it returns either t rue or false. We then add
Dropout to add the randomness to our training that prevents overfitting:

nb_features = seq_array.shape[2]
nb_out = label_array.shape[l]

model = Sequential ()

model.add (LSTM (input_shape=(sequence_length, nb_features),

units=100, return_sequences=True))
model.add (Dropout (0.25))

[92]

Deep Learning for Predictive Maintenance Chapter 4

9.

10.

11.

12.

13.

We then build the network's hidden layer. Similar to the first layer the hidden
layer is an LSTM layer. If, however, instead of passing the entire sequence state
to the output just passes the last nodes' values:

model.add (LSTM (units=50, return_sequences=False))
model.add (Dropout (0.25))

Then, we build the network's output layer. The output layer specifies the output
dimensions and the activation function. With this we have built the shape of
our neural network:

model.add (Dense (units=nb_out, activation='sigmoid'))

Next, we run the compile method which configures the model for training. In it
we put the metric we are evaluating against. In this case, we are

measuring against accuracy. We then define our measure of error or loss. In this
example, we are using binary_crossentropy as our measure. Finally, we
specify the optimizer that will reduce error every iteration:

model.compile (loss="'binary_crossentropy', optimizer='adam',
metrics=["'accuracy'])
print (model.summary ())

We then use our fit function to train the model. Our epochs parameters means
that the data will be run through 10 times. Because of the random dropout, the
extra runs will increase accuracy. We are using batch_size of 200. This means
that model will train through 200 samples before it updates the gradients. Next,
we use validation_split to put 95% of the data to training the model and 5%
to validating the model. Finally, we use an EarlyStopping callback to stop the
model from training when it stops improving accuracy:

model.fit (seq_array, label_array, epochs=10, batch_size=200,
validation_split=0.05, verbose=1,
callbacks = \
[keras.callbacks.EarlyStopping (monitor="'val_loss',
min_delta=0, patience=0,
verbose=0, mode='auto')])

Next, we evaluate our model based on the 95%/5% split we performed on the
training data. The results show our model is evaluating the 5% data that we held
back at an 87% accuracy:

scores = model.evaluate(seq_array, label_array, verbose=l,
batch_size=200)
print ('Accuracy: {}'.format (scores[1]))

[93]

Deep Learning for Predictive Maintenance Chapter 4

14. Next, we look at the confusion matrix which shows us a matrix of correct or
wrong assessments of whether the engine needed maintenance or not:
y_pred = model.predict_classes (seq_array,verbose=1, batch_size=200)
y_true = label_array
print ('Confusion matrix\n- x-axis is true labels.\n- y-axis is
predicted labels')
cm = confusion_matrix(y_true, y_pred)
cm
Our confusion matrix looks like the following grid:
Actually Did not need maintenance Predicted Needed Maintenance
Actually Did not need maintenance 13911 220
Actually Needed Maintenance 201 1299
15. We then compute the precision and recall. Because the dataset is unbalanced,
meaning there are far more values that do not need maintenance than they do,
precision and recall are the most appropriate measures for evaluating this
algorithm:
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
print ('precision = ', precision, '\n', 'recall ="', recall)
16. Next, we need to transform the data so that the testing data is the same type of

sequential data that the training data is. To do this we perform a data
transformation step similar to the one we did for the training data:

seq_array_test_last = [test[test['engine_id']==engine_id]\
[sequence_cols] .values[-sequence_length:] for engine_id in \
test['engine_id'].unique () if \
len(test[test['engine_id']==engine_id]) >= sequence_length]
seq_array_test_last = \

np.asarray (seq_array_test_last) .astype (np.float32)

y_mask = [len(test[test['engine_id']==engine_id]) >= \
sequence_length for engine_id in \
test['engine_1id'] .unique ()]

label_array_test_last = \

test.groupby ('engine_id"') ['labell'].nth(-1) [y_mask].values

label_array_test_last = label_array_test_last.reshape
label_array_test_last.shape[0],1) .astype(np.float32)

[94]

Deep Learning for Predictive Maintenance Chapter 4

17. Next, we evaluate the model generated with the training dataset against the test
dataset to see how accurately the model predicts when an engine needs
maintenance:

scores_test = model.evaluate(seq_array_test_last,
label_array_test_last, verbose=2)

print ('Accuracy: {}'.format (scores_test[1l]))

y_pred_test = model.predict_classes(seg_array_test_last)

y_true_test = label_array_test_last

print ('Confusion matrix\n—- x—-axis 1is true labels.\n- y-axis is

predicted labels')

cm = confusion_matrix(y_true_test, y_pred_test)

print (cm)

pre_score = precision_score(y_true_test, y_pred_test)

recall_test = recall_score(y_true_test, y_pred_test)

fl_test = 2 * (pre_score * recall_test) / (pre_score + recall_test)

print ('Precision: ', pre_score, '\n', 'Recall: ', recall_test,
'\n', 'Fl-score:', fl_test)

18. Now that we have our results we store those along with the model in our
MLflow database:

with mlflow.start_run() :
mlflow.set_experiment ("/Shared/experiments/Predictive_Maintenance")
mlflow.log_param("type", 'LSTM')
mlflow.log_metric ("precision_score", pre_score)
filename = 'model.sav'
pickle.dump (model, open(filename, 'wb'))
mlflow.log_artifact (filename)

How it works...

A LSTM is a special type of recurrent neural network (RNN). A RNN is a neural network
architecture that deal with sequenced data by keeping the sequence in memory.
Conversely, a typical feed-forward neural does not keep the information about the
sequences and do not allow for flexible inputs and outputs. A recursive neural network
uses recursion to call from one output back to its input thereby generating a sequence. It
passes a copy of the state of the network at any given time. In our case we are using two
layers for our RNN. This additional layer helps with accuracy.

[95]

Deep Learning for Predictive Maintenance Chapter 4

LSTMs solve a problem of vanilla RNNs by dropping out data to solve the vanishing
gradient problem. The vanishing gradient problem is when the neural network stops
training early but is inaccurate. By using dropout data we can help solve that problem. The
LSTM does this by using gating functions.

Deploying models to web services

Deployment of the model can be different depending on the capabilities of the device. Some
devices with extra compute can handle having the machine learning models run directly on
the device. While others require assistance. In this chapter, we are going to deploy the
model to a simple web service. With modern cloud web apps or Kubernetes these web
services can scale to meet the needs of the fleet of devices. In the next chapter, we will show
how to run the model on the device.

Getting ready

So far in this book, we have looked at three different machine learning algorithms to solve
the predictive maintenance problem with the NASA Turbofan run to failure dataset. We
recorded the results to MLflow. We can see that our XGBoost notebook outperformed the
more complex neural networks. The following screenshot shows the MLflow result set
showing the parameters and their associated scores.

Source Versi... Tags Parameters Metrics

[® Predic... type: XGBoost wprecision_score: 0.972082202404...
[® Deep ... type: LSTM wprecision_score: 0.868888888888...
[Deep ... type: LSTM wprecision_score: 0.888888888888...
[% Deep ... type: LSTM wprecision_score: 0.875

From here we can download our model and put it in our web service. To do this we are
going to use a Python Flask web service and Docker to make the service portable. Before we
start, pip install the python Flask package. Also install Docker onto your local
computer. Docker is a tool that allows you to build out complex deployments.

[961]

Deep Learning for Predictive Maintenance Chapter 4

How to do it...

In this project, you will need to create three files for testing the predictor web service and
one file to scale it to production. First create app . py for our web server,
requirements.txt for the dependencies, and the XGBoost model you downloaded from
m1flow. These files will allow you to test the web service. Next, to put it into production
you will need to dockerize the application. Dockerizing the file allow you to deploy it to
services such as cloud-based web application or Kubernetes services. These services scale
easily making onboarding new IoT devices seamless. Then execute the following steps:

1. The app.py file is the Flask application. Import Flask for the web service,
os and pickle for reading the model into memory, pandas for data
manipulation, and xgboost to run our model:

from flask import Flask, request, jsonify
import os

import pickle

import pandas as pd

import xgboost as xgb

2. Next is to initialize our variables. By loading the Flask application and XGBoost
model into memory outside a function we ensure that it only loads once rather
than on every web service call. By doing this we greatly increase the speed and
efficiency of the web service. We use pickle to re-hydrate our model. pickle
can take almost any Python object and write it to disk. It can also, as in our case,
read if from disk and put it back into memory:

application = Flask(__name__)
model_filename = os.path.join(os.getcwd(), 'bst.sav')
loaded_model = pickle.load (open(model_filename, "rb"))

3. We then create Gapplication.route to give us an http endpoint. The POST
methods section specifies that it will only accept post web request. We also
specify that the URL will route to /predict. For example, when we run this
locally we could use the http://localhost:8000/precict URL to post our
JSON string. We then convert it into a pandas DataFrame and then an XGBoost
data matrix becomes calling predict. We then determine if it is above .5 or
below and return the results:

@application.route ('/predict', methods=['POST'])
def predict () :

x_test = pd.DataFrame (request.json)
y_pred = loaded_model.predict (xgb.DMatrix (x_test))
y_pred[y_pred > 0.5] =1

[971]

Deep Learning for Predictive Maintenance Chapter 4

y_pred[y_pred <= 0.5] =0
return int (y_pred[0])

4. Finally, the last thing to do in any Flask app is to call the application.run
method. This method allows us to specify a host. In this case, we are specifying a
special host of 0.0.0.0 which tells flask to accept requests from other
computers. Next, we specify a port. The port can be any number. It does however
need to match the port in the Dockerfile:

if name == '__main__':

application.run (host='0.0.0.0"', port=8000)

5. We then create a requirements file. The requirements. txt file will install all of
the python dependencies for the project. The docker will use this to install the
dependencies:

flask

pandas
xgboost
pickle-mixin
gunicorn

6. Then, we create the Dockerfile. The docker file allows the deployment of the
predictor to a web endpoint. The first line of the docker file will pull in the
official python 3.7.5 image from Docker Hub. Next, we copy the local folder to a
new folder in the docker container in a folder named app. Next, we set the
working directory to the app folder. Then we use pip install to install the
requirements from the file we created in step 5. Then we expose port 8000.
Finally, we run the gunicorn command that starts the Gunicorn server:

FROM python:3.7.5

ADD . /app

WORKDIR /app

RUN pip install -r requirements.txt

EXPOSE 8000
CMD ["gunicorn", "-b", "0.0.0.0:8000", "app"l]

How it works...

Flask is a lightweight web server. We pull in the model that we saved to disk using pickle
to rehydrate the model. We then create an http endpoint to call into.

[981]

Deep Learning for Predictive Maintenance Chapter 4

There's more...

Modern cloud-based web applications such as Azure Web Apps can automatically pull
new Docker images into production. There is also a great deal of DevOps tools that can pull
images and run them through various tests before deploying them with Docker container
instances or docker orchestration tools such as Kubernetes. But for them to do this one must
first put them into a container registry such as Azure Container Registry or Docker Hub.
To do this we will need to do a few steps. First, we will build our container. Next, we can
run our container to ensure that it works. Then we log into our container registry service
and push the container to it. The detailed steps are as follows:

1. First, we build the container. To do it we navigate to the folder with the docker
file and run docker build. We are going to tag it with the -t command to ch4.
We then specify that the docker file is in the local folder with the period .:

docker build -t ch4d .

2. Now that we have a docker image built, we are going to run the container based
on the image with the docker run command. We are going to use the -it
interactive command so we can see any output from the server. We are also
going to use the —p or port command to specify that we are mapping the docker
containers internal port 8000 to the external port 8000:

docker run -it -p 8000:8000 ch4

3. We then need to put the container into something that can be accessible by our
compute resource. To do this, first register for a Docker Registry service such as
Docker Hub or Azure Container Registry. Then create a new repository. The
repository provider will give you a path for that repository.

4. Next is to log in to your container registry service, tag the container, and push
the container. Remember to replace [Your container path] with the registry
name or path provided by the registry service:

docker login

docker tag ch4 [Your container path]:vl
docker push [Your container path]:vl

You can then use docker enabled cloud technology to push that predictor service into
production. Your device can then send its sensor reading to the web service and receive
through a cloud to device message whether the device needs maintenance or not.

[991]

