
M A N N I N G

Neil Madden

API Security
in Action

NEIL MADDEN

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Toni Arritola
Technical development editor: Joshua White

Manning Publications Co. Review editor: Ivan Martinović
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Katie Petito
Shelter Island, NY 11964 Proofreader: Keri Hales

Technical proofreader: Ubaldo Pescatore
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617296024
Printed in the United States of America

www.manning.com

Securing the Natter API
In the last chapter you learned how to develop the functionality of your API while
avoiding common security flaws. In this chapter you’ll go beyond basic functional-
ity and see how proactive security mechanisms can be added to your API to ensure
all requests are from genuine users and properly authorized. You’ll protect the Nat-
ter API that you developed in chapter 2, applying effective password authentication
using Scrypt, locking down communications with HTTPS, and preventing denial of
service attacks using the Guava rate-limiting library.

This chapter covers
 Authenticating users with HTTP Basic

authentication

 Authorizing requests with access control lists

 Ensuring accountability through audit logging

 Mitigating denial of service attacks with rate-
limiting
62

63Addressing threats with security controls
3.1 Addressing threats with security controls
You’ll protect the Natter API against common threats by applying some basic security
mechanisms (also known as security controls). Figure 3.1 shows the new mechanisms
that you’ll develop, and you can relate each of them to a STRIDE threat (chapter 1)
that they prevent:

 Rate-limiting is used to prevent users overwhelming your API with requests, limit-
ing denial of service threats.

 Encryption ensures that data is kept confidential when sent to or from the API
and when stored on disk, preventing information disclosure. Modern encryp-
tion also prevents data being tampered with.

 Authentication makes sure that users are who they say they are, preventing spoof-
ing. This is essential for accountability, but also a foundation for other security
controls.

 Audit logging is the basis for accountability, to prevent repudiation threats.
 Finally, you’ll apply access control to preserve confidentiality and integrity, pre-

venting information disclosure, tampering and elevation of privilege attacks.

NOTE An important detail, shown in figure 3.1, is that only rate-limiting and
access control directly reject requests. A failure in authentication does not

User

Clients

Web browser

Your API

A
u

d
it lo

g

A
u

th
e

n
tic

a
tio

n

Application

logic

A
c
c

e
s

s
 c

o
n

tro
l

R
a
te

-lim
itin

g

Mobile app

Security controls

Rate-limiting
rejects requests
when the API
is overloaded.

Authentication
ensures users
are who they say
they are.

An audit
log records
who did what
and when.

Access control decides
whether a request is
allowed or denied.

Encryption protects data
in transit and at rest.

H
T

T
P

S

Figure 3.1 Applying security controls to the Natter API. Encryption prevents information disclosure.
Rate-limiting protects availability. Authentication is used to ensure that users are who they say they
are. Audit logging records who did what, to support accountability. Access control is then applied to
enforce integrity and confidentiality.

64 CHAPTER 3 Securing the Natter API
immediately cause a request to fail, but a later access control decision may
reject a request if it is not authenticated. This is important because we want to
ensure that even failed requests are logged, which they would not be if the
authentication process immediately rejected unauthenticated requests.

Together these five basic security controls address the six basic STRIDE threats of
spoofing, tampering, repudiation, information disclosure, denial of service, and eleva-
tion of privilege that were discussed in chapter 1. Each security control is discussed
and implemented in the rest of this chapter.

3.2 Rate-limiting for availability
Threats against availability, such as denial of service (DoS) attacks, can be very difficult
to prevent entirely. Such attacks are often carried out using hijacked computing
resources, allowing an attacker to generate large amounts of traffic with little cost to
themselves. Defending against a DoS attack, on the other hand, can require signifi-
cant resources, costing time and money. But there are several basic steps you can take
to reduce the opportunity for DoS attacks.

DEFINITION A Denial of Service (DoS) attack aims to prevent legitimate users
from accessing your API. This can include physical attacks, such as unplug-
ging network cables, but more often involves generating large amounts of
traffic to overwhelm your servers. A distributed DoS (DDoS) attack uses many
machines across the internet to generate traffic, making it harder to block
than a single bad client.

Many DoS attacks are caused using unauthenticated requests. One simple way to limit
these kinds of attacks is to never let unauthenticated requests consume resources on
your servers. Authentication is covered in section 3.3 and should be applied immedi-
ately after rate-limiting before any other processing. However, authentication itself
can be expensive so this doesn’t eliminate DoS threats on its own.

NOTE Never allow unauthenticated requests to consume significant resources
on your server.

Many DDoS attacks rely on some form of amplification so that an unauthenticated
request to one API results in a much larger response that can be directed at the real tar-
get. A popular example are DNS amplification attacks, which take advantage of the unau-
thenticated Domain Name System (DNS) that maps host and domain names into IP
addresses. By spoofing the return address for a DNS query, an attacker can trick the
DNS server into flooding the victim with responses to DNS requests that they never sent.
If enough DNS servers can be recruited into the attack, then a very large amount of
traffic can be generated from a much smaller amount of request traffic, as shown in
figure 3.2. By sending requests from a network of compromised machines (known as a
botnet), the attacker can generate very large amounts of traffic to the victim at little cost
to themselves. DNS amplification is an example of a network-level DoS attack. These

65Rate-limiting for availability
attacks can be mitigated by filtering out harmful traffic entering your network using a
firewall. Very large attacks can often only be handled by specialist DoS protection ser-
vices provided by companies that have enough network capacity to handle the load.

TIP Amplification attacks usually exploit weaknesses in protocols based on
UDP (User Datagram Protocol), which are popular in the Internet of Things
(IoT). Securing IoT APIs is covered in chapters 12 and 13.

Network-level DoS attacks can be easy to spot because the traffic is unrelated to legiti-
mate requests to your API. Application-layer DoS attacks attempt to overwhelm an API by
sending valid requests, but at much higher rates than a normal client. A basic defense
against application-layer DoS attacks is to apply rate-limiting to all requests, ensuring
that you never attempt to process more requests than your server can handle. It is bet-
ter to reject some requests in this case, than to crash trying to process everything. Gen-
uine clients can retry their requests later when the system has returned to normal.

DEFINITION Application-layer DoS attacks (also known as layer-7 or L7 DoS) send
syntactically valid requests to your API but try to overwhelm it by sending a
very large volume of requests.

Rate-limiting should be the very first security decision made when a request reaches
your API. Because the goal of rate-limiting is ensuring that your API has enough
resources to be able to process accepted requests, you need to ensure that requests
that exceed your API’s capacities are rejected quickly and very early in processing.
Other security controls, such as authentication, can use significant resources, so rate-
limiting must be applied before those processes, as shown in figure 3.3.

Attacker Victim

DNS server DNS server DNS server

Attacker sends
small requests to
multiple DNS servers,
spoofing the return
IP address.

The DNS servers
reply with much
larger responses to
the victim’s machine.

Figure 3.2 In a DNS amplification attack, the attacker sends the same DNS query to many DNS
servers, spoofing their IP address to look like the request came from the victim. By carefully
choosing the DNS query, the server can be tricked into replying with much more data than was in
the original query, flooding the victim with traffic.

66 CHAPTER 3 Securing the Natter API
TIP You should implement rate-limiting as early as possible, ideally at a load
balancer or reverse proxy before requests even reach your API servers. Rate-
limiting configuration varies from product to product. See https://medium
.com/faun/understanding-rate-limiting-on-haproxy-b0cf500310b1 for an exam-
ple of configuring rate-limiting for the open source HAProxy load balancer.

3.2.1 Rate-limiting with Guava

Often rate-limiting is applied at a reverse proxy, API gateway, or load balancer before
the request reaches the API, so that it can be applied to all requests arriving at a clus-
ter of servers. By handling this at a proxy server, you also avoid excess load being gen-
erated on your application servers. In this example you’ll apply simple rate-limiting in
the API server itself using Google’s Guava library. Even if you enforce rate-limiting at a
proxy server, it is good security practice to also enforce rate limits in each server so
that if the proxy server misbehaves or is misconfigured, it is still difficult to bring down
the individual servers. This is an instance of the general security principle known as
defense in depth, which aims to ensure that no failure of a single mechanism is enough
to compromise your API.

DEFINITION The principle of defense in depth states that multiple layers of secu-
rity defenses should be used so that a failure in any one layer is not enough to
breach the security of the whole system.

As you’ll now discover, there are libraries available to make basic rate-limiting very easy
to add to your API, while more complex requirements can be met with off-the-shelf

Web

Natter API

A
u

d
it lo

g

A
u

th
e

n
tic

a
tio

n

Application

logic

A
c
c
e

s
s
 c

o
n

tro
l

R
a

te
-lim

itin
gMobile

When the rate limit is
exceeded, requests are
immediately rejected with
a 429 Too Many Requests
HTTP status code.

Request

Response

When the rate limit is
not exceeded, requests
proceed as normal.

Figure 3.3 Rate-limiting rejects requests when your API is under too much load. By rejecting
requests early before they have consumed too many resources, we can ensure that the
requests we do process have enough resources to complete without errors. Rate-limiting
should be the very first decision applied to incoming requests.

https://medium.com/faun/understanding-rate-limiting-on-haproxy-b0cf500310b1
https://medium.com/faun/understanding-rate-limiting-on-haproxy-b0cf500310b1
https://medium.com/faun/understanding-rate-limiting-on-haproxy-b0cf500310b1

67Rate-limiting for availability
proxy/gateway products. Open the pom.xml file in your editor and add the following
dependency to the dependencies section:

<dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>29.0-jre</version>
</dependency>

Guava makes it very simple to implement rate-limiting using the RateLimiter class
that allows us to define the rate of requests per second you want to allow.1 You can
then either block and wait until the rate reduces, or you can simply reject the request
as we do in the next listing. The standard HTTP 429 Too Many Requests status code2

can be used to indicate that rate-limiting has been applied and that the client should
try the request again later. You can also send a Retry-After header to indicate how
many seconds the client should wait before trying again. Set a low limit of 2 requests
per second to make it easy to see it in action. The rate limiter should be the very first
filter defined in your main method, because even authentication and audit logging
may consume resources.

TIP The rate limit for individual servers should be a fraction of the overall
rate limit you want your service to handle. If your service needs to handle a
thousand requests per second, and you have 10 servers, then the per-server
rate limit should be around 100 request per second. You should verify that
each server is able to handle this maximum rate.

Open the Main.java file in your editor and add an import for Guava to the top of
the file:

import com.google.common.util.concurrent.*;

Then, in the main method, after initializing the database and constructing the control-
ler objects, add the code in the listing 3.1 to create the RateLimiter object and add a
filter to reject any requests once the rate limit has been exceeded. We use the non-
blocking tryAcquire() method that returns false if the request should be rejected.

 var rateLimiter = RateLimiter.create(2.0d);

 before((request, response) -> {
 if (!rateLimiter.tryAcquire()) {

1 The RateLimiter class is marked as unstable in Guava, so it may change in future versions.
2 Some services return a 503 Service Unavailable status instead. Either is acceptable, but 429 is more accurate,

especially if you perform per-client rate-limiting.

Listing 3.1 Applying rate-limiting with Guava

Create the shared rate
limiter object and allow just
2 API requests per second.

Check if the rate has
been exceeded.

68 CHAPTER 3 Securing the Natter API

The
req
suc

whil
rate

i
excee
response.header("Retry-After", "2");
halt(429);

 }
 });

Guava’s rate limiter is quite basic, defining only a simple requests per second rate. It
has additional features, such as being able to consume more permits for more expen-
sive API operations. It lacks more advanced features, such as being able to cope with
occasional bursts of activity, but it’s perfectly fine as a basic defensive measure that can
be incorporated into an API in a few lines of code. You can try it out on the command
line to see it in action:

$ for i in {1..5}
> do
> curl -i -d "{\"owner\":\"test\",\"name\":\"space$i\"}"

➥ -H ‘Content-Type: application/json’

➥ http://localhost:4567/spaces;
> done
HTTP/1.1 201 Created
Date: Wed, 06 Feb 2019 21:07:21 GMT
Location: /spaces/1
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

HTTP/1.1 201 Created
Date: Wed, 06 Feb 2019 21:07:21 GMT
Location: /spaces/2
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

HTTP/1.1 201 Created
Date: Wed, 06 Feb 2019 21:07:22 GMT
Location: /spaces/3
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

If so, add a Retry-After
header indicating when
the client should retry.

Return a 429 Too
Many Requests
status.

 first
uests
ceed
e the
 limit
s not
ded.

69Rate-limiting for availability
HTTP/1.1 429 Too Many Requests
Date: Wed, 06 Feb 2019 21:07:22 GMT
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

HTTP/1.1 429 Too Many Requests
Date: Wed, 06 Feb 2019 21:07:22 GMT
Content-Type: application/json;charset=utf-8
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 0
Cache-Control: no-store
Content-Security-Policy: default-src ‘none’; frame-ancestors ‘none’; sandbox
Server:
Transfer-Encoding: chunked

By returning a 429 response immediately, you can limit the amount of work that your
API is performing to the bare minimum, allowing it to use those resources for serving
the requests that it can handle. The rate limit should always be set below what you
think your servers can handle, to give some wiggle room.

Pop quiz
1 Which one of the following statements is true about rate-limiting?

a Rate-limiting should occur after access control.
b Rate-limiting stops all denial of service attacks.
c Rate-limiting should be enforced as early as possible.
d Rate-limiting is only needed for APIs that have a lot of clients.

2 Which HTTP response header can be used to indicate how long a client should
wait before sending any more requests?

a Expires
b Retry-After
c Last-Modified
d Content-Security-Policy
e Access-Control-Max-Age

The answers are at the end of the chapter.

Once the rate limit is exceeded, requests
are rejected with a 429 status code.

70 CHAPTER 3 Securing the Natter API
3.3 Authentication to prevent spoofing
Almost all operations in our API need to know who is performing them. When you talk
to a friend in real life, you recognize them based on their appearance and physical fea-
tures. In the online world, such instant identification is not usually possible. Instead, we
rely on people to tell us who they are. But what if they are not honest? For a social app,
users may be able to impersonate each other to spread rumors and cause friends to fall
out. For a banking API, it would be catastrophic if users can easily pretend to be some-
body else and spend their money. Almost all security starts with authentication, which is
the process of verifying that a user is who they say they are.

 Figure 3.4 shows how authentication fits within the security controls that you’ll add
to the API in this chapter. Apart from rate-limiting (which is applied to all requests
regardless of who they come from), authentication is the first process we perform.
Downstream security controls, such as audit logging and access control, will almost
always need to know who the user is. It is important to realize that the authentication
phase itself shouldn’t reject a request even if authentication fails. Deciding whether
any particular request requires the user to be authenticated is the job of access control
(covered later in this chapter), and your API may allow some requests to be carried
out anonymously. Instead, the authentication process will populate the request with
attributes indicating whether the user was correctly authenticated that can be used by
these downstream processes.

Web browser

Natter API

A
u
d
it lo

g

A
u

th
e
n

tic
a

tio
n

Application

logic

All requests proceed,
even if authentication
was not successful,
to ensure they are logged.

Response

A
c
c
e
s
s
 c

o
n
tro

l

User

DB

R
a
te

-lim
itin

gMobile app

Requests will be rejected
later during access control
if authentication is required.

Request

Figure 3.4 Authentication occurs after rate-limiting but before audit logging or access
control. All requests proceed, even if authentication fails, to ensure that they are always
logged. Unauthenticated requests will be rejected during access control, which occurs after
audit logging.

71Authentication to prevent spoofing
In the Natter API, a user makes a claim of identity in two places:

1 In the Create Space operation, the request includes an “owner” field that iden-
tifies the user creating the space.

2 In the Post Message operation, the user identifies themselves in the “author”
field.

The operations to read messages currently don’t identify who is asking for those mes-
sages at all, meaning that we can’t tell if they should have access. You’ll correct both
problems by introducing authentication.

3.3.1 HTTP Basic authentication

There are many ways of authenticating a user, but one of the most widespread is sim-
ple username and password authentication. In a web application with a user interface,
we might implement this by presenting the user with a form to enter their username
and password. An API is not responsible for rendering a UI, so you can instead use the
standard HTTP Basic authentication mechanism to prompt for a password in a way
that doesn’t depend on any UI. This is a simple standard scheme, specified in RFC
7617 (https://tools.ietf.org/html/rfc7617), in which the username and password are
encoded (using Base64 encoding; https://en.wikipedia.org/wiki/Base64) and sent in
a header. An example of a Basic authentication header for the username demo and
password changeit is as follows:

Authorization: Basic ZGVtbzpjaGFuZ2VpdA==

The Authorization header is a standard HTTP header for sending credentials to the
server. It’s extensible, allowing different authentication schemes,3 but in this case
you’re using the Basic scheme. The credentials follow the authentication scheme
identifier. For Basic authentication, these consist of a string of the username followed
by a colon4 and then the password. The string is then converted into bytes (usually in
UTF-8, but the standard does not specify) and Base64-encoded, which you can see if
you decode it in jshell:

jshell> new String(
java.util.Base64.getDecoder().decode("ZGVtbzpjaGFuZ2VpdA=="), "UTF-8")
$3 ==> "demo:changeit"

WARNING HTTP Basic credentials are easy to decode for anybody able to
read network messages between the client and the server. You should only
ever send passwords over an encrypted connection. You’ll add encryption to
the API communications in section 3.4.

3 The HTTP specifications unfortunately confuse the terms authentication and authorization. As you’ll see in
chapter 9, there are authorization schemes that do not involve authentication.

4 The username is not allowed to contain a colon.

https://tools.ietf.org/html/rfc7617
https://en.wikipedia.org/wiki/Base64

72 CHAPTER 3 Securing the Natter API
3.3.2 Secure password storage with Scrypt

Web browsers have built-in support for HTTP Basic authentication (albeit with some
quirks that you’ll see later), as does curl and many other command-line tools. This
allows us to easily send a username and password to the API, but you need to securely
store and validate that password. A password hashing algorithm converts each password
into a fixed-length random-looking string. When the user tries to login, the password
they present is hashed using the same algorithm and compared to the hash stored in
the database. This allows the password to be checked without storing it directly. Mod-
ern password hashing algorithms, such as Argon2, Scrypt, Bcrypt, or PBKDF2, are
designed to resist a variety of attacks in case the hashed passwords are ever stolen. In
particular, they are designed to take a lot of time or memory to process to prevent
brute-force attacks to recover the passwords. You’ll use Scrypt in this chapter as it is
secure and widely implemented.

DEFINITION A password hashing algorithm converts passwords into random-
looking fixed-size values known as a hash. A secure password hash uses a lot of
time and memory to slow down brute-force attacks such as dictionary attacks,
in which an attacker tries a list of common passwords to see if any match
the hash.

Locate the pom.xml file in the project and open it with your favorite editor. Add the
following Scrypt dependency to the dependencies section and then save the file:

<dependency>
 <groupId>com.lambdaworks</groupId>
 <artifactId>scrypt</artifactId>
 <version>1.4.0</version>
</dependency>

TIP You may be able to avoid implementing password storage yourself by
using an LDAP (Lightweight Directory Access Protocol) directory. LDAP serv-
ers often implement a range of secure password storage options. You can also
outsource authentication to another organization using a federation protocol
like SAML or OpenID Connect. OpenID Connect is discussed in chapter 7.

3.3.3 Creating the password database

Before you can authenticate any users, you need some way to register them. For now,
you’ll just allow any user to register by making a POST request to the /users end-
point, specifying their username and chosen password. You’ll add this endpoint in sec-
tion 3.3.4, but first let’s see how to store user passwords securely in the database.

TIP In a real project, you could confirm the user’s identity during registra-
tion (by sending them an email or validating their credit card, for exam-
ple), or you might use an existing user repository and not allow users to
self-register.

73Authentication to prevent spoofing
You’ll store users in a new dedicated database table, which you need to add to the
database schema. Open the schema.sql file under src/main/resources in your text
editor, and add the following table definition at the top of the file and save it:

CREATE TABLE users(
 user_id VARCHAR(30) PRIMARY KEY,
 pw_hash VARCHAR(255) NOT NULL
);

You also need to grant the natter_api_user permissions to read and insert into this
table, so add the following line to the end of the schema.sql file and save it again:

GRANT SELECT, INSERT ON users TO natter_api_user;

The table just contains the user id and their password hash. To store a new user, you
calculate the hash of their password and store that in the pw_hash column. In this
example, you’ll use the Scrypt library to hash the password and then use Dalesbred to
insert the hashed value into the database.

 Scrypt takes several parameters to tune the amount of time and memory that it
will use. You do not need to understand these numbers, just know that larger num-
bers will use more CPU time and memory. You can use the recommended parame-
ters as of 2019 (see https://blog.filippo.io/the-scrypt-parameters/ for a discussion of
Scrypt parameters), which should take around 100ms on a single CPU and 32MiB
of memory:

 String hash = SCryptUtil.scrypt(password, 32768, 8, 1);

This may seem an excessive amount of time and memory, but these parameters have
been carefully chosen based on the speed at which attackers can guess passwords.
Dedicated password cracking machines, which can be built for relatively modest
amounts of money, can try many millions or even billions of passwords per second.
The expensive time and memory requirements of secure password hashing algorithms
such as Scrypt reduce this to a few thousand passwords per second, hugely increasing
the cost for the attacker and giving users valuable time to change their passwords after
a breach is discovered. The latest NIST guidance on secure password storage (“memo-
rized secret verifiers” in the tortured language of NIST) recommends using strong
memory-hard hash functions such as Scrypt (https://pages.nist.gov/800-63-3/sp800-
63b.html#memsecret).

 If you have particularly strict requirements on the performance of authentica-
tion to your system, then you can adjust the Scrypt parameters to reduce the time
and memory requirements to fit your needs. But you should aim to use the recom-
mended secure defaults until you know that they are causing an adverse impact on
performance. You should consider using other authentication methods if secure
password processing is too expensive for your application. Although there are pro-
tocols that allow offloading the cost of password hashing to the client, such as

https://blog.filippo.io/the-scrypt-parameters/
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret

74 CHAPTER 3 Securing the Natter API
SCRAM5 or OPAQUE,6 this is hard to do securely so you should consult an expert
before implementing such a solution.

PRINCIPLE Establish secure defaults for all security-sensitive algorithms and
parameters used in your API. Only relax the values if there is no other way to
achieve your non-security requirements.

3.3.4 Registering users in the Natter API

Listing 3.2 shows a new UserController class with a method for registering a user:

 First, you read the username and password from the input, making sure to vali-
date them both as you learned in chapter 2.

 Then you calculate a fresh Scrypt hash of the password.
 Finally, store the username and hash together in the database, using a prepared

statement to avoid SQL injection attacks.

Navigate to the folder src/main/java/com/manning/apisecurityinaction/controller
in your editor and create a new file UserController.java. Copy the contents of the list-
ing into the editor and save the new file.

package com.manning.apisecurityinaction.controller;

import com.lambdaworks.crypto.*;
import org.dalesbred.*;
import org.json.*;
import spark.*;

import java.nio.charset.*;
import java.util.*;

import static spark.Spark.*;

public class UserController {
 private static final String USERNAME_PATTERN =

"[a-zA-Z][a-zA-Z0-9]{1,29}";

 private final Database database;

 public UserController(Database database) {
 this.database = database;
 }

 public JSONObject registerUser(Request request,
Response response) throws Exception {

 var json = new JSONObject(request.body());

5 https://tools.ietf.org/html/rfc5802
6 https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

Listing 3.2 Registering a new user

https://tools.ietf.org/html/rfc5802
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

75Authentication to prevent spoofing

 var username = json.getString("username");
 var password = json.getString("password");

 if (!username.matches(USERNAME_PATTERN)) {
throw new IllegalArgumentException("invalid username");

 }
 if (password.length() < 8) {

throw new IllegalArgumentException(
 "password must be at least 8 characters");

 }

 var hash = SCryptUtil.scrypt(password, 32768, 8, 1);
 database.updateUnique(

"INSERT INTO users(user_id, pw_hash)" +
" VALUES(?, ?)", username, hash);

 response.status(201);
 response.header("Location", "/users/" + username);
 return new JSONObject().put("username", username);
 }
}

The Scrypt library generates a unique random salt value for each password hash. The
hash string that gets stored in the database includes the parameters that were used
when the hash was generated, as well as this random salt value. This ensures that you
can always recreate the same hash in future, even if you change the parameters. The
Scrypt library will be able to read this value and decode the parameters when it veri-
fies the hash.

DEFINITION A salt is a random value that is mixed into the password when it is
hashed. Salts ensure that the hash is always different even if two users have the
same password. Without salts, an attacker can build a compressed database of
common password hashes, known as a rainbow table, which allows passwords to
be recovered very quickly.

You can then add a new route for registering a new user to your Main class. Locate the
Main.java file in your editor and add the following lines just below where you previ-
ously created the SpaceController object:

var userController = new UserController(database);
post("/users", userController::registerUser);

3.3.5 Authenticating users

To authenticate a user, you’ll extract the username and password from the HTTP
Basic authentication header, look up the corresponding user in the database, and
finally verify the password matches the hash stored for that user. Behind the scenes,
the Scrypt library will extract the salt from the stored password hash, then hash the sup-
plied password with the same salt and parameters, and then finally compare the hashed

Apply the same
username validation
that you used before.

Use the Scrypt library
to hash the password.
Use the recommended
parameters for 2019.

Use a prepared statement
to insert the username
and hash.

76 CHAPTER 3 Securing the Natter API

ere

.

s

password with the stored hash. If they match, then the user must have presented the
same password and so authentication succeeds, otherwise it fails.

 Listing 3.3 implements this check as a filter that is called before every API call. First
you check if there is an Authorization header in the request, with the Basic authenti-
cation scheme. Then, if it is present, you can extract and decode the Base64-encoded
credentials. Validate the username as always and look up the user from the database.
Finally, use the Scrypt library to check whether the supplied password matches the
hash stored for the user in the database. If authentication succeeds, then you should
store the username in an attribute on the request so that other handlers can see it;
otherwise, leave it as null to indicate an unauthenticated user. Open the UserController
.java file that you previously created and add the authenticate method as given in the
listing.

public void authenticate(Request request, Response response) {
 var authHeader = request.headers("Authorization");
 if (authHeader == null || !authHeader.startsWith("Basic ")) {
 return;
 }

 var offset = "Basic ".length();
 var credentials = new String(Base64.getDecoder().decode(

authHeader.substring(offset)), StandardCharsets.UTF_8);

 var components = credentials.split(":", 2);
 if (components.length != 2) {
 throw new IllegalArgumentException("invalid auth header");
 }

 var username = components[0];
 var password = components[1];

 if (!username.matches(USERNAME_PATTERN)) {
 throw new IllegalArgumentException("invalid username");
 }

 var hash = database.findOptional(String.class,
"SELECT pw_hash FROM users WHERE user_id = ?", username);

 if (hash.isPresent() &&
SCryptUtil.check(password, hash.get())) {

 request.attribute("subject", username);
 }
}

You can wire this into the Main class as a filter in front of all API calls. Open the
Main.java file in your text editor again, and add the following line to the main method
underneath where you created the userController object:

 before(userController::authenticate);

Listing 3.3 Authenticating a request

Check to see if th
is an HTTP Basic
Authorization
header.

Decode the
credentials using
Base64 and UTF-8

Split the credential
into username and
password.

If the user exists,
then use the Scrypt
library to check
the password.

77Authentication to prevent spoofing
You can now update your API methods to check that the authenticated user matches
any claimed identity in the request. For example, you can update the Create Space
operation to check that the owner field matches the currently authenticated user. This
also allows you to skip validating the username, because you can rely on the authenti-
cation service to have done that already. Open the SpaceController.java file in your
editor and change the createSpace method to check that the owner of the space
matches the authenticated subject, as in the following snippet:

 public JSONObject createSpace(Request request, Response response) {
 ..
 var owner = json.getString("owner");
 var subject = request.attribute("subject");
 if (!owner.equals(subject)) {

throw new IllegalArgumentException(
 "owner must match authenticated user");

 }
 ..
 }

You could in fact remove the owner field from the request and always use the authen-
ticated user subject, but for now you’ll leave it as-is. You can do the same in the Post
Message operation in the same file:

 var user = json.getString("author");
 if (!user.equals(request.attribute("subject"))) {

throw new IllegalArgumentException(
 "author must match authenticated user");

 }

You’ve now enabled authentication for your API—every time a user makes a claim
about their identity, they are required to authenticate to provide proof of that claim.
You’re not yet enforcing authentication on all API calls, so you can still read messages
without being authenticated. You’ll tackle that shortly when you look at access control.
The checks we have added so far are part of the application logic. Now let’s try out
how the API works. First, let’s try creating a space without authenticating:

$ curl -d '{"name":"test space","owner":"demo"}'

➥ -H 'Content-Type: application/json' http://localhost:4567/spaces

{"error":"owner must match authenticated user"}

Good, that was prevented. Let’s use curl now to register a demo user:

$ curl -d '{"username":"demo","password":"password"}’'

➥ -H 'Content-Type: application/json' http://localhost:4567/users

{"username":"demo"}

78 CHAPTER 3 Securing the Natter API
Finally, you can repeat your Create Space request with correct authentication
credentials:

$ curl -u demo:password -d '{"name":"test space","owner":"demo"}'

➥ -H 'Content-Type: application/json' http://localhost:4567/spaces

{"name":"test space","uri":"/spaces/1"}

3.4 Using encryption to keep data private
Introducing authentication into your API protects against spoofing threats. However,
requests to the API, and responses from it, are not protected in any way, leading to
tampering and information disclosure threats. Imagine that you were trying to check
the latest gossip from your work party while connected to a public wifi hotspot in your
local coffee shop. Without encryption, the messages you send to and from the API will
be readable by anybody else connected to the same hotspot.

 Your simple password authentication scheme is also vulnerable to this snooping, as
an attacker with access to the network can simply read your Base64-encoded pass-
words as they go by. They can then impersonate any user whose password they have
stolen. It’s often the case that threats are linked together in this way. An attacker can
take advantage of one threat, in this case information disclosure from unencrypted
communications, and exploit that to pretend to be somebody else, undermining your
API’s authentication. Many successful real-world attacks result from chaining together
multiple vulnerabilities rather than exploiting just one mistake.

Pop quiz
3 Which of the following are desirable properties of a secure password hashing

algorithm? (There may be several correct answers.)

a It should be easy to parallelize.
b It should use a lot of storage on disk.
c It should use a lot of network bandwidth.
d It should use a lot of memory (several MB).
e It should use a random salt for each password.
f It should use a lot of CPU power to try lots of passwords.

4 What is the main reason why HTTP Basic authentication should only be used over an
encrypted communication channel such as HTTPS? (Choose one answer.)

a The password can be exposed in the Referer header.
b HTTPS slows down attackers trying to guess passwords.
c The password might be tampered with during transmission.
d Google penalizes websites in search rankings if they do not use HTTPS.
e The password can easily be decoded by anybody snooping on network traffic.

The answers are at the end of the chapter.

79Using encryption to keep data private
 In this case, sending passwords in clear text is a pretty big vulnerability, so let’s fix
that by enabling HTTPS. HTTPS is normal HTTP, but the connection occurs over
Transport Layer Security (TLS), which provides encryption and integrity protection.
Once correctly configured, TLS is largely transparent to the API because it occurs at a
lower level in the protocol stack and the API still sees normal requests and responses.
Figure 3.5 shows how HTTPS fits into the picture, protecting the connections between
your users and the API.

In addition to protecting data in transit (on the way to and from our application), you
should also consider protecting any sensitive data at rest, when it is stored in your
application’s database. Many different people may have access to the database, as a
legitimate part of their job, or due to gaining illegitimate access to it through some
other vulnerability. For this reason, you should also consider encrypting private data
in the database, as shown in figure 3.5. In this chapter, we will focus on protecting
data in transit with HTTPS and discuss encrypting data in the database in chapter 5.

TLS or SSL?
Transport Layer Security (TLS) is a protocol that sits on top of TCP/IP and provides
several basic security functions to allow secure communication between a client and
a server. Early versions of TLS were known as the Secure Socket Layer, or SSL, and
you’ll often still hear TLS referred to as SSL. Application protocols that use TLS
often have an S appended to their name, for example HTTPS or LDAPS, to stand for
“secure.”

Web browser

Natter API

A
u
d
it lo

g

A
u
th

e
n
tic

a
tio

n

Request

Response

A
c
c
e
s
s
 c

o
n
tro

l

R
a
te

-lim
itin

gMobile app

Application

database

HTTPS is used to
encrypt and protect
data being transmitted
(in transit) to and from
your API.

Encryption should also
be used to protect sensitive
data at rest in your
application database.

Inside your API,
requests and responses
are unencrypted.

Application

logic

Figure 3.5 Encryption is used to protect data in transit between a client and our API, and at
rest when stored in the database.

80 CHAPTER 3 Securing the Natter API
3.4.1 Enabling HTTPS

Enabling HTTPS support in Spark is straightforward. First, you need to generate a
certificate that the API will use to authenticate itself to its clients. TLS certificates are
covered in depth in chapter 7. When a client connects to your API it will use a URI
that includes the hostname of the server the API is running on, for example api
.example.com. The server must present a certificate, signed by a trusted certificate
authority (CA), that says that it really is the server for api.example.com. If an invalid
certificate is presented, or it doesn’t match the host that the client wanted to connect
to, then the client will abort the connection. Without this step, the client might be
tricked into connecting to the wrong server and then send its password or other confi-
dential data to the imposter.

 Because you’re enabling HTTPS for development purposes only, you could use a
self-signed certificate. In later chapters you will connect to the API directly in a web
browser, so it is much easier to use a certificate signed by a local CA. Most web brows-
ers do not like self-signed certificates. A tool called mkcert (https://mkcert.dev) sim-
plifies the process considerably. Follow the instructions on the mkcert homepage to
install it, and then run

mkcert -install

to generate the CA certificate and install it. The CA cert will automatically be marked
as trusted by web browsers installed on your operating system.

DEFINITION A self-signed certificate is a certificate that has been signed using the
private key associated with that same certificate, rather than by a trusted cer-
tificate authority. Self-signed certificates should be used only when you have a
direct trust relationship with the certificate owner, such as when you gener-
ated the certificate yourself.

You can now generate a certificate for your Spark server running on localhost. By
default, mkcert generates certificates in Privacy Enhanced Mail (PEM) format. For
Java, you need the certificate in PKCS#12 format, so run the following command in
the root folder of the Natter project to generate a certificate for localhost:

mkcert -pkcs12 localhost

(continued)

TLS ensures confidentiality and integrity of data transmitted between the client and
server. It does this by encrypting and authenticating all data flowing between the two
parties. The first time a client connects to a server, a TLS handshake is performed
in which the server authenticates to the client, to guarantee that the client connected
to the server it wanted to connect to (and not to a server under an attacker’s control).
Then fresh cryptographic keys are negotiated for this session and used to encrypt and
authenticate every request and response from then on. You’ll look in depth at TLS
and HTTPS in chapter 7.

https://github.com/FiloSottile/mkcert

81Using encryption to keep data private
The certificate and private key will be generated in a file called localhost.p12. By
default, the password for this file is changeit. You can now enable HTTPS support in
Spark by adding a call to the secure() static method, as shown in listing 3.4. The first
two arguments to the method give the name of the keystore file containing the server
certificate and private key. Leave the remaining arguments as null; these are only
needed if you want to support client certificate authentication (which is covered in
chapter 11).

WARNING The CA certificate and private key that mkcert generates can be
used to generate certificates for any website that will be trusted by your browser.
Do not share these files or send them to anybody. When you have finished
development, consider running mkcert -uninstall to remove the CA from
your system trust stores.

import static spark.Spark.secure;

public class Main {
 public static void main(String... args) throws Exception {
 secure("localhost.p12", "changeit", null, null);
 ..
 }
}

Restart the server for the changes to take effect. If you started the server from the
command line, then you can use Ctrl-C to interrupt the process and then simply run it
again. If you started the server from your IDE, then there should be a button to restart
the process.

 Finally, you can call your API (after restarting the server). If curl refuses to con-
nect, you can use the --cacert option to curl to tell it to trust the mkcert certificate:

$ curl --cacert "$(mkcert -CAROOT)/rootCA.pem"

➥ -d ‘{"username":"demo","password":"password"}’

➥ -H ‘Content-Type: application/json’ https://localhost:4567/users

{"username":"demo"}

WARNING Don’t be tempted to disable TLS certificate validation by passing
the -k or --insecure options to curl (or similar options in an HTTPS
library). Although this may be OK in a development environment, disabling
certificate validation in a production environment undermines the security
guarantees of TLS. Get into the habit of generating and using correct certifi-
cates. It’s not much harder, and you’re less likely to make mistakes later.

Listing 3.4 Enabling HTTPS

Import the secure method.

Enable HTTPS support
at the start of the main
method.

82 CHAPTER 3 Securing the Natter API
3.4.2 Strict transport security

When a user visits a website in a browser, the browser will first attempt to connect to
the non-secure HTTP version of a page as many websites still do not support HTTPS.
A secure site will redirect the browser to the HTTPS version of the page. For an API,
you should only expose the API over HTTPS because users will not be directly con-
necting to the API endpoints using a web browser and so you do not need to support
this legacy behavior. API clients also often send sensitive data such as passwords on the
first request so it is better to completely reject non-HTTPS requests. If for some rea-
son you do need to support web browsers directly connecting to your API endpoints,
then best practice is to immediately redirect them to the HTTPS version of the API
and to set the HTTP Strict-Transport-Security (HSTS) header to instruct the browser
to always use the HTTPS version in future. If you add the following line to the after-
After filter in your main method, it will add an HSTS header to all responses:

 response.header("Strict-Transport-Security", "max-age=31536000");

TIP Adding a HSTS header for localhost is not a good idea as it will prevent
you from running development servers over plain HTTP until the max-age
attribute expires. If you want to try it out, set a short max-age value.

3.5 Audit logging for accountability
Accountability relies on being able to determine who did what and when. The sim-
plest way to do this is to keep a log of actions that people perform using your API,
known as an audit log. Figure 3.6 repeats the mental model that you should have for
the mechanisms discussed in this chapter. Audit logging should occur after authenti-
cation, so that you know who is performing an action, but before you make authoriza-
tion decisions that may deny access. The reason for this is that you want to record all
attempted operations, not just the successful ones. Unsuccessful attempts to perform
actions may be indications of an attempted attack. It’s difficult to overstate the impor-
tance of good audit logging to the security of an API. Audit logs should be written to
durable storage, such as the file system or a database, so that the audit logs will survive
if the process crashes for any reason.

Pop quiz
5 Recalling the CIA triad from chapter 1, which one of the following security goals is

not provided by TLS?

a Confidentiality
b Integrity
c Availability

The answer is at the end of the chapter.

83Audit logging for accountability
Thankfully, given the importance of audit logging, it’s easy to add some basic logging
capability to your API. In this case, you’ll log into a database table so that you can eas-
ily view and search the logs from the API itself.

TIP In a production environment you typically will want to send audit logs
to a centralized log collection and analysis tool, known as a SIEM (Security
Information and Event Management) system, so they can be correlated with
logs from other systems and analyzed for potential threats and unusual
behavior.

As for previous new functionality, you’ll add a new database table to store the audit
logs. Each entry will have an identifier (used to correlate the request and response
logs), along with some details of the request and the response. Add the following table
definition to schema.sql.

NOTE The audit table should not have any reference constraints to any other
tables. Audit logs should be recorded based on the request, even if the details
are inconsistent with other data.

CREATE TABLE audit_log(
 audit_id INT NULL,
 method VARCHAR(10) NOT NULL,
 path VARCHAR(100) NOT NULL,
 user_id VARCHAR(30) NULL,
 status INT NULL,

Web browser

Natter API

A
u

d
it lo

g

A
u

th
e

n
tic

a
tio

n

Application

logic

Request

Response
A

c
c
e

s
s
 c

o
n
tro

l

Audit

DB

R
a

te
-lim

itin
gMobile app

Audit logging occurs
after authentication so
we know who is sending
the request.

Responses should be logged
as well as requests, especially
if access is denied.

Audit logs should be
written to durable
storage.

Figure 3.6 Audit logging should occur both before a request is processed and after it completes.
When implemented as a filter, it should be placed after authentication, so that you know who is
performing each action, but before access control checks so that you record operations that were
attempted but denied.

84 CHAPTER 3 Securing the Natter API
 audit_time TIMESTAMP NOT NULL
);
CREATE SEQUENCE audit_id_seq;

As before, you also need to grant appropriate permissions to the natter_api_user, so
in the same file add the following line to the bottom of the file and save:

GRANT SELECT, INSERT ON audit_log TO natter_api_user;

A new controller can now be added to handle the audit logging. You split the logging
into two filters, one that occurs before the request is processed (after authentication),
and one that occurs after the response has been produced. You’ll also allow access to the
logs to anyone for illustration purposes. You should normally lock down audit logs to
only a small number of trusted users, as they are often sensitive in themselves. Often the
users that can access audit logs (auditors) are different from the normal system adminis-
trators, as administrator accounts are the most privileged and so most in need of moni-
toring. This is an important security principle known as separation of duties.

DEFINITION The principle of separation of duties requires that different aspects
of privileged actions should be controlled by different people, so that no one
person is solely responsible for the action. For example, a system administra-
tor should not also be responsible for managing the audit logs for that system.
In financial systems, separation of duties is often used to ensure that the per-
son who requests a payment is not also the same person who approves the
payment, providing a check against fraud.

In your editor, navigate to src/main/java/com/manning/apisecurityinaction/controller
and create a new file called AuditController.java. Listing 3.5 shows the content of this
new controller that you should copy into the file and save. As mentioned, the logging
is split into two filters: one of which runs before each operation, and one which runs
afterward. This ensures that if the process crashes while processing a request you can
still see what requests were being processed at the time. If you only logged responses,
then you’d lose any trace of a request if the process crashes, which would be a prob-
lem if an attacker found a request that caused the crash. To allow somebody reviewing
the logs to correlate requests with responses, generate a unique audit log ID in the
auditRequestStart method and add it as an attribute to the request. In the audit-
RequestEnd method, you can then retrieve the same audit log ID so that the two log
events can be tied together.

package com.manning.apisecurityinaction.controller;

import org.dalesbred.*;
import org.json.*;
import spark.*;

Listing 3.5 The audit log controller

85Audit logging for accountability
import java.sql.*;
import java.time.*;
import java.time.temporal.*;

public class AuditController {

 private final Database database;

 public AuditController(Database database) {
 this.database = database;
 }

 public void auditRequestStart(Request request, Response response) {
 database.withVoidTransaction(tx -> {

var auditId = database.findUniqueLong(
 "SELECT NEXT VALUE FOR audit_id_seq");

request.attribute("audit_id", auditId);
database.updateUnique(
 "INSERT INTO audit_log(audit_id, method, path, " +

"user_id, audit_time) " +
 "VALUES(?, ?, ?, ?, current_timestamp)",
 auditId,
 request.requestMethod(),
 request.pathInfo(),
 request.attribute("subject"));

 });
 }

 public void auditRequestEnd(Request request, Response response) {
 database.updateUnique(

"INSERT INTO audit_log(audit_id, method, path, status, " +
 "user_id, audit_time) " +
 "VALUES(?, ?, ?, ?, ?, current_timestamp)",
request.attribute("audit_id"),
request.requestMethod(),
request.pathInfo(),
response.status(),
request.attribute("subject"));

 }
}

Listing 3.6 shows the code for reading entries from the audit log for the last hour. The
entries are queried from the database and converted into JSON objects using a cus-
tom RowMapper method. The list of records is then returned as a JSON array. A simple
limit is added to the query to prevent too many results from being returned.

public JSONArray readAuditLog(Request request, Response response) {
 var since = Instant.now().minus(1, ChronoUnit.HOURS);
 var logs = database.findAll(AuditController::recordToJson,

 "SELECT * FROM audit_log " +
"WHERE audit_time >= ? LIMIT 20", since);

Listing 3.6 Reading audit log entries

Generate a new audit id before
the request is processed and
save it as an attribute on the
request.

When processing the
response, look up
the audit id from the
request attributes.

Read log
entries for
the last hour.

86 CHAPTER 3 Securing the Natter API

er

e

 return new JSONArray(logs);
}

private static JSONObject recordToJson(ResultSet row)
throws SQLException {

 return new JSONObject()
 .put("id", row.getLong("audit_id"))
 .put("method", row.getString("method"))
 .put("path", row.getString("path"))
 .put("status", row.getInt("status"))
 .put("user", row.getString("user_id"))
 .put("time", row.getTimestamp("audit_time").toInstant());

}

We can then wire this new controller into your main method, taking care to insert the
filter between your authentication filter and the access control filters for individual
operations. Because Spark filters must either run before or after (and not around) an
API call, you define separate filters to run before and after each request.

 Open the Main.java file in your editor and locate the lines that install the filters
for authentication. Audit logging should come straight after authentication, so you
should add the audit filters in between the authentication filter and the first route
definition, as highlighted in bold in this next snippet. Add the indicated lines and
then save the file.

 before(userController::authenticate);

 var auditController = new AuditController(database);
 before(auditController::auditRequestStart);
 afterAfter(auditController::auditRequestEnd);

 post("/spaces",
spaceController::createSpace);

Finally, you can register a new (unsecured) endpoint for reading the logs. Again, in a
production environment this should be disabled or locked down:

 get("/logs", auditController::readAuditLog);

Once installed and the server has been restarted, make some sample requests, and
then view the audit log. You can use the jq utility (https://stedolan.github.io/jq/) to
pretty-print the output:

$ curl pem https://localhost:4567/logs | jq
 [
 {
 "path": "/users",
 "method": "POST",
 "id": 1,
 "time": "2019-02-06T17:22:44.123Z"
 },

Convert each entry into a JSON
object and collect as a JSON array.

Use a help
method to
convert th
records to
JSON.

Add these lines to
create and register
the audit controller.

https://stedolan.github.io/jq/

87Access control
 {
 "path": "/users",
 "method": "POST",
 "id": 1,
 "time": "2019-02-06T17:22:44.237Z",
 "status": 201
 },
 {
 "path": "/spaces/1/messages/1",
 "method": "DELETE",
 "id": 2,
 "time": "2019-02-06T17:22:55.266Z",
 "user": "demo"
 },...
]

This style of log is a basic access log, that logs the raw HTTP requests and responses to
your API. Another way to create an audit log is to capture events in the business logic
layer of your application, such as User Created or Message Posted events. These events
describe the essential details of what happened without reference to the specific pro-
tocol used to access the API. Yet another approach is to capture audit events directly
in the database using triggers to detect when data is changed. The advantage of these
alternative approaches is that they ensure that events are logged no matter how the
API is accessed, for example, if the same API is available over HTTP or using a binary
RPC protocol. The disadvantage is that some details are lost, and some potential
attacks may be missed due to this missing detail.

3.6 Access control
You now have a reasonably secure password-based authentication mechanism in place,
along with HTTPS to secure data and passwords in transmission between the API cli-
ent and server. However, you’re still letting any user perform any action. Any user can
post a message to any social space and read all the messages in that space. Any user
can also decide to be a moderator and delete messages from other users. To fix this,
you’ll now implement basic access control checks.

Pop quiz
6 Which secure design principle would indicate that audit logs should be managed

by different users than the normal system administrators?

a The Peter principle
b The principle of least privilege
c The principle of defense in depth
d The principle of separation of duties
e The principle of security through obscurity

The answer is at the end of the chapter.

88 CHAPTER 3 Securing the Natter API
 Access control should happen after authentication, so that you know who is trying
to perform the action, as shown in figure 3.7. If the request is granted, then it can pro-
ceed through to the application logic. However, if it is denied by the access control
rules, then it should be failed immediately, and an error response returned to the
user. The two main HTTP status codes for indicating that access has been denied are
401 Unauthorized and 403 Forbidden. See the sidebar for details on what these two
codes mean and when to use one or the other.

HTTP 401 and 403 status codes
HTTP includes two standard status codes for indicating that the client failed security
checks, and it can be confusing to know which status to use in which situations.

The 401 Unauthorized status code, despite the name, indicates that the server
required authentication for this request but the client either failed to provide any cre-
dentials, or they were incorrect, or they were of the wrong type. The server doesn’t know
if the user is authorized or not because they don’t know who they are. The client (or
user) may be able fix the situation by trying different credentials. A standard WWW-
Authenticate header can be returned to tell the client what credentials it needs, which
it will then return in the Authorization header. Confused yet? Unfortunately, the HTTP
specifications use the words authorization and authentication as if they were identical.

The 403 Forbidden status code, on the other hand, tells the client that its creden-
tials were fine for authentication, but that it’s not allowed to perform the operation it
requested. This is a failure of authorization, not authentication. The client cannot typ-
ically do anything about this other than ask the administrator for access.

Web browser

Natter API

A
u
d
it lo

g

A
u
th

e
n
tic

a
tio

n

Application

logic

A
c
c
e
s
s
 c

o
n

tro
l

R
a
te

-lim
itin

gMobile app

When access is
granted, the request
proceeds to the
main API logic.

When access is
denied, the request
is immediately returned
with a 403 Forbidden.

Request

Response Forbidden
requests
are always
logged.

Figure 3.7 Access control occurs after authentication and the request has been logged for audit.
If access is denied, then a forbidden response is immediately returned without running any of the
application logic. If access is granted, then the request proceeds as normal.

89Access control

 if
3.6.1 Enforcing authentication

The most basic access control check is simply to require that all users are authenti-
cated. This ensures that only genuine users of the API can gain access, while not
enforcing any further requirements. You can enforce this with a simple filter that runs
after authentication and verifies that a genuine subject has been recorded in the request
attributes. If no subject attribute is found, then it rejects the request with a 401 status
code and adds a standard WWW-Authenticate header to inform the client that the user
should authenticate with Basic authentication. Open the UserController.java file in
your editor, and add the following method, which can be used as a Spark before filter
to enforce that users are authenticated:

public void requireAuthentication(Request request,
 Response response) {
 if (request.attribute("subject") == null) {
 response.header("WWW-Authenticate",

"Basic realm=\"/\", charset=\"UTF-8\"");
 halt(401);
 }
}

You can then open the Main.java file and require that all calls to the Spaces API are
authenticated, by adding the following filter definition. As shown in figure 3.7 and
throughout this chapter, access control checks like this should be added after authen-
tication and audit logging. Locate the line where you added the authentication filter
earlier and add a filter to enforce authentication on all requests to the API that start
with the /spaces URL path, so that the code looks like the following:

before(userController::authenticate);

before(auditController::auditRequestStart);
afterAfter(auditController::auditRequestEnd);
before("/spaces", userController::requireAuthentication);
post("/spaces", spaceController::createSpace); ..

If you save the file and restart the server, you can now see unauthenticated requests to
create a space be rejected with a 401 error asking for authentication, as in the follow-
ing example:

$ curl -i -d ‘{"name":"test space","owner":"demo"}’

➥ -H ‘Content-Type: application/json’ https://localhost:4567/spaces
HTTP/1.1 401 Unauthorized
Date: Mon, 18 Mar 2019 14:51:40 GMT
WWW-Authenticate: Basic realm="/", charset="UTF-8"
...

Retrying the request with authentication credentials allows it to succeed:

First, try to authenticate the user.

Then perform
audit logging.

Finally, add the check
authentication was
successful.

90 CHAPTER 3 Securing the Natter API
$ curl -i -d ‘{"name":"test space","owner":"demo"}’

➥ -H ‘Content-Type: application/json’ -u demo:changeit

➥ https://localhost:4567/spaces
HTTP/1.1 201 Created
...
{"name":"test space","uri":"/spaces/1"}

3.6.2 Access control lists

Beyond simply requiring that users are authenticated, you may also want to impose
additional restrictions on who can perform certain operations. In this section, you’ll
implement a very simple access control method based upon whether a user is a mem-
ber of the social space they are trying to access. You’ll accomplish this by keeping track
of which users are members of which social spaces in a structure known as an access
control list (ACL).

 Each entry for a space will list a user that may access that space, along with a set of
permissions that define what they can do. The Natter API has three permissions: read
messages in a space, post messages to that space, and a delete permission granted to
moderators.

DEFINITION An access control list is a list of users that can access a given object,
together with a set of permissions that define what each user can do.

Why not simply let all authenticated users perform any operation? In some APIs this
may be an appropriate security model, but for most APIs some operations are more
sensitive than others. For example, you might let anyone in your company see their
own salary information in your payroll API, but the ability to change somebody’s sal-
ary is not normally something you would allow any employee to do! Recall the princi-
ple of least authority (POLA) from chapter 1, which says that any user (or process)
should be given exactly the right amount of authority to do the jobs they need to do.
Too many permissions and they may cause damage to the system. Too few permissions
and they may try to work around the security of the system to get their job done.

 Permissions will be granted to users in a new permissions table, which links a
user to a set of permissions in a given social space. For simplicity, you’ll represent
permissions as a string of the characters r (read), w (write), and d (delete). Add the
following table definition to the bottom of schema.sql in your text editor and save
the new definition. It must come after the spaces and users table definitions as it
references them to ensure that permissions can only be granted for spaces that exist
and real users.

CREATE TABLE permissions(
 space_id INT NOT NULL REFERENCES spaces(space_id),
 user_id VARCHAR(30) NOT NULL REFERENCES users(user_id),
 perms VARCHAR(3) NOT NULL,
 PRIMARY KEY (space_id, user_id)
);
GRANT SELECT, INSERT ON permissions TO natter_api_user;

91Access control

sp
You then need to make sure that the initial owner of a space gets given all permissions.
You can update the createSpace method to grant all permissions to the owner in the
same transaction that we create the space. Open SpaceController.java in your text editor
and locate the createSpace method. Add the lines highlighted in the following listing:

return database.withTransaction(tx -> {
var spaceId = database.findUniqueLong(
 "SELECT NEXT VALUE FOR space_id_seq;");

database.updateUnique(
 "INSERT INTO spaces(space_id, name, owner) " +

 "VALUES(?, ?, ?);", spaceId, spaceName, owner);

 database.updateUnique(
 "INSERT INTO permissions(space_id, user_id, perms) " +
 "VALUES(?, ?, ?)", spaceId, owner, "rwd");

response.status(201);
response.header("Location", "/spaces/" + spaceId);

return new JSONObject()
 .put("name", spaceName)
 .put("uri", "/spaces/" + spaceId);

 });

You now need to add checks to enforce that the user has appropriate permissions for
the actions that they are trying to perform. You could hard-code these checks into
each individual method, but it’s much more maintainable to enforce access control
decisions using filters that run before the controller is even called. This separation of
concerns ensures that the controller can concentrate on the core logic of the opera-
tion, without having to worry about access control details. This also ensures that if you
ever want to change how access control is performed, you can do this in the common
filter rather than changing every single controller method.

NOTE Access control checks are often included directly in business logic,
because who has access to what is ultimately a business decision. This also
ensures that access control rules are consistently applied no matter how that
functionality is accessed. On the other hand, separating out the access con-
trol checks makes it easier to centralize policy management, as you’ll see in
chapter 8.

To enforce your access control rules, you need a filter that can determine whether the
authenticated user has the appropriate permissions to perform a given operation on a
given space. Rather than have one filter that tries to determine what operation is
being performed by examining the request, you’ll instead write a factory method that
returns a new filter given details about the operation. You can then use this to create
specific filters for each operation. Listing 3.7 shows how to implement this filter in
your UserController class.

Ensure the
ace owner has

all permissions
on the newly

created space.

92 CHAPTER 3 Securing the Natter API

n
f

ex

he

i
aut
 Open UserController.java and add the method in listing 3.7 to the class under-
neath the other existing methods. The method takes as input the name of the HTTP
method being performed and the permission required. If the HTTP method does not
match, then you skip validation for this operation, and let other filters handle it.
Before you can enforce any access control rules, you must first ensure that the user is
authenticated, so add a call to the existing requireAuthentication filter. Then you
can look up the authenticated user in the user database and determine if they have
the required permissions to perform this action, in this case by a simple string match-
ing against the permission letters. For more complex cases, you might want to convert
the permissions into a Set object and explicitly check that all required permissions
are contained in the set of permissions of the user.

TIP The Java EnumSet class can be used to efficiently represent a set of per-
missions as a bit vector, providing a compact and fast way to quickly check if a
user has a set of required permissions.

If the user does not have the required permissions, then you should fail the request
with a 403 Forbidden status code. This tells the user that they are not allowed to per-
form the operation that they are requesting.

 public Filter requirePermission(String method, String permission) {
 return (request, response) -> {

if (!method.equalsIgnoreCase(request.requestMethod())) {
return;

}

requireAuthentication(request, response);

var spaceId = Long.parseLong(request.params(":spaceId"));
var username = (String) request.attribute("subject");

var perms = database.findOptional(String.class,
 "SELECT perms FROM permissions " +

"WHERE space_id = ? AND user_id = ?",
 spaceId, username).orElse("");

if (!perms.contains(permission)) {
halt(403);

}
 };
 }

3.6.3 Enforcing access control in Natter

You can now add filters to each operation in your main method, as shown in listing 3.8.
Before each Spark route you add a new before() filter that enforces correct permis-
sions. Each filter path has to have a :spaceId path parameter so that the filter can

Listing 3.7 Checking permissions in a filter

Return a
ew Spark
ilter as a

lambda
pression.

Ignore requests
that don’t match t
request method.

First check
f the user is
henticated.

Look up permissions for
the current user in the
given space, defaulting
to no permissions.

If the user doesn’t have
permission, then halt with
a 403 Forbidden status.

93Access control
determine which space is being operated on. Open the Main.java class in your editor
and ensure that your main() method matches the contents of listing 3.8. New filters
enforcing permission checks are highlighted in bold.

NOTE The implementations of all API operations can be found in the GitHub
repository accompanying the book at https://github.com/NeilMadden/
apisecurityinaction.

public static void main(String... args) throws Exception {
 …
 before(userController::authenticate);

 before(auditController::auditRequestStart);
 afterAfter(auditController::auditRequestEnd);

 before("/spaces",
userController::requireAuthentication);

 post("/spaces",
spaceController::createSpace);

 before("/spaces/:spaceId/messages",
userController.requirePermission("POST", "w"));

 post("/spaces/:spaceId/messages",
spaceController::postMessage);

 before("/spaces/:spaceId/messages/*",
userController.requirePermission("GET", "r"));

 get("/spaces/:spaceId/messages/:msgId",
spaceController::readMessage);

 before("/spaces/:spaceId/messages",
userController.requirePermission("GET", "r"));

 get("/spaces/:spaceId/messages",
spaceController::findMessages);

 var moderatorController =
new ModeratorController(database);

 before("/spaces/:spaceId/messages/*",
userController.requirePermission("DELETE", "d"));

 delete("/spaces/:spaceId/messages/:msgId",
moderatorController::deletePost);

 post("/users", userController::registerUser);

 …
}

Listing 3.8 Adding authorization filters

Before anything else,
you should try to
authenticate the user.

Anybody may create a space,
so you just enforce that the
user is logged in.

For each operation, you
add a before() filter that
ensures the user has
correct permissions.

Anybody can register an
account, and they won’t
be authenticated first.

https://github.com/NeilMadden/apisecurityinaction
https://github.com/NeilMadden/apisecurityinaction
https://github.com/NeilMadden/apisecurityinaction

94 CHAPTER 3 Securing the Natter API
With this in place, if you create a second user “demo2” and try to read a message cre-
ated by the existing demo user in their space, then you get a 403 Forbidden response:

$ curl -i -u demo2:password

➥ https://localhost:4567/spaces/1/messages/1
HTTP/1.1 403 Forbidden
...

3.6.4 Adding new members to a Natter space

So far, there is no way for any user other than the space owner to post or read mes-
sages from a space. It’s going to be a pretty antisocial social network unless you can
add other users! You can add a new operation that allows another user to be added to
a space by any existing user that has read permission on that space. The next listing
adds an operation to the SpaceController to allow this.

 Open SpaceController.java in your editor and add the addMember method from
listing 3.9 to the class. First, validate that the permissions given match the rwd form
that you’ve been using. You can do this using a regular expression. If so, then insert
the permissions for that user into the permissions ACL table in the database.

public JSONObject addMember(Request request, Response response) {
 var json = new JSONObject(request.body());
 var spaceId = Long.parseLong(request.params(":spaceId"));
 var userToAdd = json.getString("username");
 var perms = json.getString("permissions");

 if (!perms.matches("r?w?d?")) {
throw new IllegalArgumentException("invalid permissions");

 }

 database.updateUnique(
"INSERT INTO permissions(space_id, user_id, perms) " +
 "VALUES(?, ?, ?);", spaceId, userToAdd, perms);

 response.status(200);
 return new JSONObject()

.put("username", userToAdd)

.put("permissions", perms);
 }

You can then add a new route to your main method to allow adding a new member by
POSTing to /spaces/:spaceId/members. Open Main.java in your editor again and
add the following new route and access control filter to the main method underneath
the existing routes:

 before("/spaces/:spaceId/members",
userController.requirePermission("POST", "r"));

 post("/spaces/:spaceId/members", spaceController::addMember);

Listing 3.9 Adding users to a space

Ensure the permissions
granted are valid.

Update the permissions for the
user in the access control list.

95Access control
You can test this by adding the demo2 user to the space and letting them read messages:

$ curl -u demo:password

➥ -H ‘Content-Type: application/json’

➥ -d ‘{"username":"demo2","permissions":"r"}’

➥ https://localhost:4567/spaces/1/members

{"permissions":"r","username":"demo2"}
$ curl -u demo2:password

➥ https://localhost:4567/spaces/1/messages/1

{"author":"demo","time":"2019-02-06T15:15:03.138Z","message":"Hello,
World!","uri":"/spaces/1/messages/1"}

3.6.5 Avoiding privilege escalation attacks

It turns out that the demo2 user you just added can do a bit more than just read mes-
sages. The permissions on the addMember method allow any user with read access to
add new users to the space and they can choose the permissions for the new user. So
demo2 can simply create a new account for themselves and grant it more permissions
than you originally gave them, as shown in the following example.

 First, they create the new user:

$ curl -H ‘Content-Type: application/json’

➥ -d ‘{"username":"evildemo2","password":"password"}’

➥ https://localhost:4567/users

➥ {"username":"evildemo2"}

They then add that user to the space with full permissions:

$ curl -u demo2:password

➥ -H ‘Content-Type: application/json’

➥ -d ‘{"username":"evildemo2","permissions":"rwd"}’

➥ https://localhost:4567/spaces/1/members
{"permissions":"rwd","username":"evildemo2"}

They can now do whatever they like, including deleting your messages:

$ curl -i -X DELETE -u evildemo2:password

➥ https://localhost:4567/spaces/1/messages/1
HTTP/1.1 200 OK
...

What happened here is that although the demo2 user was only granted read permis-
sion on the space, they could then use that read permission to add a new user that has
full permissions on the space. This is known as a privilege escalation, where a user with
lower privileges can exploit a bug to give themselves higher privileges.

DEFINITION A privilege escalation (or elevation of privilege) occurs when a user
with limited permissions can exploit a bug in the system to grant themselves
or somebody else more permissions than they have been granted.

96 CHAPTER 3 Securing the Natter API
You can fix this in two general ways:

1 You can require that the permissions granted to the new user are no more than
the permissions that are granted to the existing user. That is, you should ensure
that evildemo2 is only granted the same access as the demo2 user.

2 You can require that only users with all permissions can add other users.

For simplicity you’ll implement the second option and change the authorization filter
on the addMember operation to require all permissions. Effectively, this means that
only the owner or other moderators can add new members to a social space.

 Open the Main.java file and locate the before filter that grants access to add users
to a social space. Change the permissions required from r to rwd as follows:

 before("/spaces/:spaceId/members",
userController.requirePermission("POST", "rwd"));

If you retry the attack with demo2 again you’ll find that they are no longer able to cre-
ate any users, let alone one with elevated privileges.

Answers to pop quiz questions
1 c. Rate-limiting should be enforced as early as possible to minimize the resources

used in processing requests.
2 b. The Retry-After header tells the client how long to wait before retrying

requests.
3 d, e, and f. A secure password hashing algorithm should use a lot of CPU and

memory to make it harder for an attacker to carry out brute-force and dictio-
nary attacks. It should use a random salt for each password to prevent an
attacker pre-computing tables of common password hashes.

4 e. HTTP Basic credentials are only Base64-encoded, which as you’ll recall from
section 3.3.1, are easy to decode to reveal the password.

5 c. TLS provides no availability protections on its own.

Pop quiz
7 Which HTTP status code indicates that the user doesn’t have permission to

access a resource (rather than not being authenticated)?

a 403 Forbidden
b 404 Not Found
c 401 Unauthorized
d 418 I’m a Teapot
e 405 Method Not Allowed

The answer is at the end of the chapter.

97Summary
6 d. The principle of separation of duties.
7 a. 403 Forbidden. As you’ll recall from the start of section 3.6, despite the

name, 401 Unauthorized means only that the user is not authenticated.

Summary
 Use threat-modelling with STRIDE to identify threats to your API. Select appro-

priate security controls for each type of threat.
 Apply rate-limiting to mitigate DoS attacks. Rate limits are best enforced in a

load balancer or reverse proxy but can also be applied per-server for defense
in depth.

 Enable HTTPS for all API communications to ensure confidentiality and integ-
rity of requests and responses. Add HSTS headers to tell web browser clients to
always use HTTPS.

 Use authentication to identify users and prevent spoofing attacks. Use a secure
password-hashing scheme like Scrypt to store user passwords.

 All significant operations on the system should be recorded in an audit log,
including details of who performed the action, when, and whether it was
successful.

 Enforce access control after authentication. ACLs are a simple approach to
enforcing permissions.

 Avoid privilege escalation attacks by considering carefully which users can grant
permissions to other users.

	API Security in Action
	Part 1—Foundations
	3 Securing the Natter API
	3.1 Addressing threats with security controls
	3.2 Rate-limiting for availability
	3.2.1 Rate-limiting with Guava

	3.3 Authentication to prevent spoofing
	3.3.1 HTTP Basic authentication
	3.3.2 Secure password storage with Scrypt
	3.3.3 Creating the password database
	3.3.4 Registering users in the Natter API
	3.3.5 Authenticating users

	3.4 Using encryption to keep data private
	3.4.1 Enabling HTTPS
	3.4.2 Strict transport security

	3.5 Audit logging for accountability
	3.6 Access control
	3.6.1 Enforcing authentication
	3.6.2 Access control lists
	3.6.3 Enforcing access control in Natter
	3.6.4 Adding new members to a Natter space
	3.6.5 Avoiding privilege escalation attacks

	Answers to pop quiz questions
	Summary

