
M A N N I N G

JJ Geewax
Foreword by Jon Skeet

API Design
Patterns

JJ GEEWAX

FOREWORD BY JON SKEET

MANN I NG
SHELTER ISLAND

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Christina Taylor
Technical development editor: Al Krinker

Manning Publications Co. Review editor: Ivan Martinović
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Michele Mitchell
Shelter Island, NY 11964 Proofreader: Keri Hales

Technical proofreader: Karsten Strøbæk
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617295850
Printed in the United States of America

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

www.manning.com

33

Naming

Whether we like it or not, names follow us everywhere. In every software system we
build, and every API we design or use, there are names hiding around each corner
that will live far longer than we ever intend them to. Because of this, it should seem
obvious that it’s important to choose great names (even if we don’t always give our
naming choices as much thought as we should). In this chapter, we’ll explore the
different components of an API that we’ll have to name, some strategies we can
employ to choose good names, the high-level attributes that distinguish good
names from bad ones, and finally some general principles to help guide us when
making tough naming decisions that we’ll inevitably run into.

This chapter covers
 Why we should bother caring about names

 What makes some better than others

 How to make choices about language, grammar,
and syntax

 How context influences the meaning of a name

 A case study of what can happen with poor name
choices

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

34 CHAPTER 3 Naming

3.1 Why do names matter?
In the world of software engineering generally, it’s practically impossible to avoid
choosing names for things. If that were possible, we’d need to be able to write chunks
of code that used only language keywords (e.g., class, for, or if), which would be
unreadable at best. With that in mind, compiled software is a special case. This is
because with traditional compiled code, the names of our functions and variables are
only important to those who have access to the source code, as the name itself gener-
ally disappears during compilation (or minification) and deployment.

 On the other hand, when designing and building an API, the names we choose are
much more important, as they’re what all the users of the API will see and interact
with. In other words, these names won’t simply get compiled away and hidden from
the world. This means we need to put an extraordinary amount of thought and con-
sideration into the names we choose for an API.

 The obvious question here becomes, “Can’t we just change the names if they turn
out to be bad choices?” As we’ll learn in chapter 24, changing names in an API can be
quite challenging. Imagine changing the name of a frequently used function in your
source code and then realizing you need to do a big find-and-replace to make sure
you updated all references to that function name. While inconvenient (and even
easy in some IDEs), this is certainly possible. However, consider if this source code
was available to the public to build into their own projects. Even if you could some-
how update all references for all public source code available, there is always going
to be private source code that you don’t have access to and therefore cannot possi-
bly update.

 Put a bit differently, changing public-facing names in an API is a bit like changing
your address or phone number. To successfully change this number everywhere, you’d
have to contact everyone who ever had your phone number, including your grand-
mother (who might use a paper address book) and every marketing company that
ever had access to it. Even if you have a way to get in touch with everyone who has your
number, you’d still need them to do the work of updating the contact information,
which they might be too busy to do.

 Now that we’ve seen the importance of choosing good names (and avoiding
changing them), this leads us to an important question: What makes a name “good”?

3.2 What makes a name “good”?
As we learned in chapter 1, APIs are “good” when they are operational, expressive,
simple, and predictable. Names, on the other hand, are quite similar except for the
fact that they aren’t necessarily operational (in other words, a name doesn’t actually
do anything). Let’s look at this subset of attributes and a few examples of naming
choices, starting with being expressive.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

35What makes a name “good”?

3.2.1 Expressive

More important than anything else, it’s critical that a name clearly convey the thing
that it’s naming. This thing might be a function or RPC (e.g., CreateAccount), a
resource or message (e.g., WeatherReading), a field or property (e.g., postal_address),
or something else entirely, such as an enumeration value (e.g., Color.BLUE), but it
should be clear to the reader exactly what the thing represents. This might sound
easy, but it’s often very difficult to see a name with fresh eyes, forgetting all the context
that we’ve built by working in a particular area over time. This context is a huge asset
generally, but in this case it’s more of a liability: it makes us bad at naming things.

 For example, the term topic is often used in the context of asynchronous messaging
(e.g., Apache Kafka or RabbitMQ); however, it’s also used in a specific area of
machine learning and natural language processing called topic modeling. If you were to
use the term topic in your machine learning API, it wouldn’t be all that surprising that
users might be confused about which type of topic you’re referring to. If that’s a real
possibility (perhaps your API uses both asynchronous messaging and topic modeling),
you might want to choose a more expressive name than topic, such as model_topic
or messaging_topic to prevent user confusion.

3.2.2 Simple

While an expressive name is certainly important, it can also become burdensome if
the name is excessively long without adding additional clarity. Using the example
from before (topic, referring to multiple different areas of computer science), if an
API only ever refers to asynchronous messaging (e.g., an Apache Kafka–like API) and
has nothing to do with machine learning, then topic is sufficiently clear and simple,
while messaging_topic wouldn’t add much value. In short, names should be expres-
sive but only to the extent that each additional part of a name adds value to justify
its presence.

 On the other hand, names shouldn’t be oversimplified either. For example, imag-
ine we have an API that needs to store some user-specified preferences. The resource
might be called UserSpecifiedPreferences; however, the Specified isn’t adding very
much to the name. On the other hand, if we simply called the resource Preferences,
it’s unclear whose preferences they are and could cause confusion down the line when
there are system- or administrator-level preferences that need to be stored and man-
aged. In this case, UserPreferences seems to be the sweet spot between an expressive
name and a simple name, summarized in table 3.1.

Table 3.1 Choosing between simple and expressive names

Name Notes

UserSpecifiedPreferences Expressive, but not simple enough

UserPreferences Simple enough and expressive enough

Preferences Too simple

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

36 CHAPTER 3 Naming

3.2.3 Predictable

Now that we’ve gone through the balance between expressive and simple, there’s one
final and very important aspect of choosing a good name: predictability. Imagine an
API that uses the name topic to group together similar asynchronous messages (simi-
lar to Apache Kafka). Then imagine that the API uses the name messaging_topic in
other places, without much reason for choosing one or the other. This leads to some
pretty frustrating and unusual circumstances.

function handleMessage(message: Message) {
 if (message.topic == "budget.purge") {
 client.PurgeTopic({
 messagingTopic: "budget.update"
 });
 }
}

In the odd case that this doesn’t seem frustrating, consider an important principle
we’re violating here. In general, we should use the same name to represent the same
thing and different names to represent different things. If we take that principle as
axiomatic, this leads to an important question: how is topic different from messaging-
Topic? After all, we used different names, so they must represent different concepts,
right?

 The basic underlying goal is to allow users of an API to learn one name and con-
tinue building on that knowledge to be able to predict what future names (e.g., if they
represent the same concept) would look like. By using topic consistently throughout
an API when we mean “the topic for a given message” (and something else when we
mean something different), we’re allowing users of an API to build on what they’ve
already learned rather than confusing them and forcing them to research every single
name to ensure it means what they would assume.

 Now that we have an idea of some of the characteristics of good names, let’s
explore some general guidelines that can act as guard rails when naming things in an
API, starting with the fundamental aspects of language, grammar, and syntax.

3.3 Language, grammar, and syntax
While code is all about ones and zeros, fundamentally stored as numbers, naming is a
primarily subjective construct we express using language. Unlike programming lan-
guages, which have very firm rules about what’s valid and what’s not, language has
evolved to serve people more than computers, making the rules much less firm. This
allows our naming choices to be a bit more flexible and ambiguous, which can be
both a good and bad thing.

 On the one hand, ambiguity allows us to name things to be general enough to
support future work. For example, naming a field image_uri rather than jpeg_uri

Listing 3.1 Example frustrating code due to inconsistent naming

Here we use the name topic to
read the topic of a given message.

Here we use the name messagingTopic
to represent the same concept.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

37Language, grammar, and syntax

prevents us from limiting ourselves to a single image format (JPEG). On the other
hand, when there are multiple ways to express the same thing, we often tend to use
them interchangeably, which ultimately makes our naming choices unpredictable (see
section 3.2.3) and results in a frustrating and cumbersome API. To avoid some of this,
even though “language” has quite a bit of flexibility, by imposing some rules of our
own, we can avoid losing the predictability we value so highly in a good API. In this
section, we’ll explore some of the simple rules related to language that can help mini-
mize some of the arbitrary choices we’ll have to make when naming things.

3.3.1 Language

While there are many languages spoken in the world, if we had to choose a single lan-
guage that was used the most in software engineering, currently American English is
the leading contender. This isn’t to say that American English is any better or worse
than other languages; however, if our goal is maximum interoperability across the
world, using anything other than American English is likely to be a hindrance rather
than a benefit.

 This means that English language concepts should be used (e.g., BookStore rather
than Librería) and common American-style spellings should generally be preferred
(e.g., color rather than colour). This also has the added benefit of almost always fitting
comfortably into the ASCII character set, with a few exceptions where American
English has borrowed from other languages (e.g., café).

 This doesn’t mean that API comments must be in American English. If the audi-
ence of an API is based exclusively in France, it might make sense to provide docu-
mentation (which may or may not be automatically generated from API specification
comments) in French. However, the team of software engineers consuming the API is
likely to use other APIs, which are unlikely to be exclusively targeted toward customers
in France. As a result, it still holds that even if the audience of an API doesn’t use
American English as their primary language, the API itself should still rely on Ameri-
can English as a shared common language across all parties using lots of different
APIs together.

3.3.2 Grammar

Given that an API will use American English as the standard language, this opens
quite a few complicated cans of worms as English is not exactly the simplest of lan-
guages with many different tenses and moods. Luckily, pronunciation won’t be an
issue as source code is a written rather than spoken language, but this doesn’t neces-
sarily alleviate all the potential problems.

 Rather than attempt to dictate every single aspect of American English grammar as it
applies to naming things in an API, this section will touch on a few of the most common
issues. Let’s start by looking at actions (e.g., RPC methods or RESTful verbs).

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

38 CHAPTER 3 Naming

IMPERATIVE ACTIONS

In any API, there will be something equivalent to a programming language’s “func-
tions,” which do the actual work expected of the API. This might be a purely RESTful
API, which relies only on a specific preset list of actions (Get, Create, Delete, etc.),
then you don’t have all that much to do here as all actions will take the form of
<StandardVerb><Noun> (e.g., CreateBook). In the case of non-RESTful or resource-
oriented APIs that permit nonstandard verbs, we have more choices for how we name
these actions.

 There is one important aspect that the REST standard verbs have in common: they
all use the imperative mood. In other words, they are all commands or orders of the
verb. If this isn’t making a lot of sense, imagine a drill sergeant in the Army shouting
at you to do something: “Create that book!” “Delete that weather reading!” “Archive
that log entry!” As ridiculous as these commands are for the Army, you know exactly
what you’re supposed to do.

 On the other hand, sometimes the names of the functions we write can take on the
indicative mood. One common example is when a function is investigating some-
thing, such as String.IsNullOrEmpty() in C#. In this case, the verb “to be” takes on
the indicative mood (asking a question about a resource) rather than the imperative
mood (commanding a service to do something).

 While there’s nothing fundamentally wrong with our functions taking on this
mood, when used in a web API it leaves a few important questions unanswered. First,
with something that looks like it can be handled without asking a remote service,
“Does isValid() actually result in a remote call or is it handled locally?” While we
hope that users assume all method calls are going over the network, it’s a bit mislead-
ing to have what appears to be a stateless call do so.

 Secondly, what should the response look like? Take the case of an RPC called
isValid(). Should it return a simple Boolean field stating whether the input was
valid? Should it return a list of errors if that input wasn’t valid? On the other hand,
GetValidationErrors() is more clear: either it returns an empty list if the input is
completely valid or a list of errors if it isn’t. There’s no real confusion about the shape
the response will take.

PREPOSITIONS

Another area of confusion when choosing names centers on prepositions, such as
“with,” “to,” or “for.” While these words are very useful in everyday conversation, when
used in the context of a web API, particularly in resource names, they can be indica-
tive of more complicated underlying problems with the API.

 For example, a Library API might have a way to list Book resources. If this API
needed a way to list Book resources and include the Author resources responsible for
that book, it may be tempting to create a new resource for this combination: Book-
WithAuthor (which would then be listed by calling ListBooksWithAuthors or some-
thing similar). This might seem fine at first glance, but what about when we need to
list Book resources with the Publisher resources embedded? Or both Author and

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

39Language, grammar, and syntax

Publisher resources? Before we know it, we’ll have 30 different RPCs to call depend-
ing on the different related resources we want.

 In this case, the preposition we want to use in the name (“with”) is indicative of a
more fundamental problem: we want a way to list resources and include different attri-
butes in the response. We might instead solve this using a field mask or a view (see
chapter 8) and avoid this oddly-named resource at the same time. In this case, the
preposition was an indication that sometimes wasn’t quite right. So even though prepo-
sitions probably shouldn’t be forbidden entirely (e.g., maybe a field would be called
bits_per_second), these tricky little words act a bit like a code smell, hinting at some-
thing being not quite right and worth further investigation.

PLURALIZATION

Most often, we’ll choose the names for things in our APIs to be the singular form,
such as Book, Publisher, and Author (rather than Books, Publishers, or Authors).
Further, these name choices tend to take on new meanings and purposes through the
API. For example, a Book resource might be referenced somewhere by a field called
Author.favoriteBook (see chapter 13). However, things can sometimes get messy
when we need to talk about multiples of these resources. To make things more com-
plicated, if an API uses RESTful URLs, the collection name of a bunch of resources is
almost always plural. For example, when we request a single Book resource, the collec-
tion name in the URL will almost certainly be something like /books/1234.

 In the case of the names we’ve used as examples (e.g., Book), this isn’t much of an
issue; after all, mentioning multiple Book resources just involves adding an “s” to plu-
ralize the name into Books. However, some names are not so simple. For example,
imagine we’re making an API for a podiatrist’s office (a foot doctor). When we have a
Foot resource, we’ll need to break this pattern of just adding an “s,” leading to a feet
collection.

 This example certainly breaks the pattern, but at least it’s clear and unambiguous.
What if our API deals with people and therefore has a Person resource. Is the collec-
tion persons? Or people? In other words, should Person(id=1234) be retrieved by
visiting a URL that looks like /persons/1234 or /people/1234? Luckily our guidelines
about using American-style English prescribes an answer: use people.

 Other cases are more frustrating still. For example, imagine we are working on an
API for the aquarium. What is the collection for an Octopus resource? As you can see,
our choice of American English sometimes comes back to bite us. What’s most import-
ant though is that we choose a pattern and stick to it, which often involves a quick
search for what the grammarians say is correct (in this case, “octopuses” is perfectly
fine). This also means that we should never assume the plural of a resource can be
created simply by adding an “s”—a common temptation for software engineers look-
ing for patterns.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

40 CHAPTER 3 Naming

3.3.3 Syntax

We’ve reached the more technical aspects of naming. As with the previous aspects we’ve
looked at, when it comes to syntax the same guidelines are in place. First, pick some-
thing and stick to it. Second, if there’s an existing standard (e.g., American English
spellings), use that. So what does this mean in a practical sense? Let’s start with case.

CASE

When we define an API, we need to name the various components, which are things
like resources, RPCs, and fields. For each of these, we tend to use a different case,
which is sort of like a format in which the name is rendered. Most often, this render-
ing is only apparent in how multiple words are strung together to make a single lexical
unit. For example, if we had a field that represents a person’s given name, we might
need to call that field “first name.” However, in almost all programming languages,
spaces are the lexical separation character, so we need to combine “first name” into a
single unit, which opens the door for lots of different options, such as “camel case,”
“snake case,” or “kebab case.”

 In camel case, the words are joined by capitalizing the letters of all words after the
first, so “first name” would render as firstName (which has capital letters as humps
like a camel). In snake case, words are joined using underscore characters, as in
first_name (which is meant to look a bit like a snake). In kebab case, words are
joined with hyphen characters, as in first-name (which looks a bit like a kebab skew-
ering the different words). Depending on the language used to represent an API spec-
ification, different components are rendered in different cases. For example, in
Google’s Protocol Buffer language, the standard is for messages (like TypeScript inter-
faces) to use upper camel case, as in UserSettings (note the uppercase “U”) and
snake case for field names, as in first_name. On the other hand, in open API specifi-
cation standards, field names take on camel case, as in firstName.

 As noted earlier, the specific choice isn’t all that important so long as the choices
are used consistently throughout. For example, if you were to use the name user_
settings for a protocol buffer (https://developers.google.com/protocol-buffers)
message, it would be very easy to think that this is actually a field name and not a mes-
sage. As a result, this is likely to cause confusion to anyone using the API. Speaking of
types, let’s take a brief moment to look at reserved words.

RESERVED KEYWORDS

In most API definition languages, there will be a way to specify the type of the data
being stored in a particular attribute. For example, we might say firstName: string
to express in TypeScript that the field called firstName contains a primitive string
value. This also implies that term string has some special meaning, even if used in a dif-
ferent position in code. As a result, it can be dangerous to use restricted keywords as
names in your API and should be avoided whenever possible.

 If this seems difficult, it can be worthwhile to spend some time thinking about what a
field or message truly represents and not what the easiest option is. For example, rather

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

https://developers.google.com/protocol-buffers

41Data types and units

than “to” and “from” (from being those special reserved keywords in languages like
Python), you might want to try using more specific terminology such as “sender” and
“recipient” (if the API is about messages) or maybe “payer” and “payee” (if the API is
about payments).

 It’s also important to consider the target audience of your API. For example, if the
API will only ever be used in JavaScript (perhaps it’s intended to be used exclusively in
a web browser), then keywords in other languages (e.g., Python or Ruby) may not be
worth worrying about. That said, if it’s not much work, it’s a good idea to avoid key-
words in other languages. After all, you never know when your API might end up
being used by one of these languages.

 Now that we’ve gone through some of these technical aspects, let’s jump up a level
and talk about how the context in which our API lives and operates might affect the
names we choose.

3.4 Context
While names on their own can sometimes convey all the information necessary to be
useful, more often than not we rely on the context in which a name is used to discern
its meaning and intended use. For example, when we use the term book in an API, we
might be referring to a resource that lives in a Library API; however, we might also be
referring to an action to be taken in a Flight Reservation API. As you can imagine, the
same words and terminology can mean completely different things depending on the
context in which they’re used. What this means is that we need to keep the context in
which our API lives in mind when choosing names for it.

 It’s important to remember that this goes both ways. On the one hand, context can
impart additional value to a name that might otherwise lack specific meaning. On the
other hand, context can lead us astray when we use names that have a very specific
meaning but don’t quite make sense in the given context. For example, the name
“record” might not be very useful without any context nearby, but in the context of an
audio recording API, this term absorbs the extra meaning imparted from the API’s
general context.

 In short, while there are no strict rules about how to name things in a given con-
text, the important thing to remember is that all the names we choose in an API are
inextricably linked to the context provided by that API. As a result, we should be cog-
nizant of that context and the meaning it might impart (for better or worse) when
choosing names.

 Let’s change direction a bit and talk about data types and units, specifically how
they should be involved in the names we choose.

3.5 Data types and units
While many field names are descriptive without units (e.g., firstName: string), oth-
ers can be extraordinarily confusing without units. For example, imagine a field called
“size.” Depending on the context (see section 3.4), this field could have entirely

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

42 CHAPTER 3 Naming

different meanings but also entirely different units. We can see the same field (size)
that would have entirely different and, in many cases, confusing meaning and units.

interface AudioClip {
 content: string;
 size: number;
}

interface Image {
 content: string;
 size: number;
}

In this example, the size field could mean multiple things, but those different mean-
ings also would lead to very different units (e.g., bytes, seconds, pixels, etc.). Luckily
this relationship goes both ways, meaning that if the units were present somewhere the
meaning would become more clear. In other words, sizeBytes and sizeMegapixels
are much more clear and obvious than just size.

interface AudioClip {
 content: string;
 sizeBytes: number;
}

interface Image {
 content: string;
 sizeMegapixels: number;
}

Does this mean that we should always simply include the unit or format for any given
field in all scenarios? After all, that would certainly minimize any confusion in cases
like those shown. For example, imagine that we wanted to store the dimensions of the
image in pixels resource along with the size in bytes. We might have two fields called
sizeBytes and dimensionsPixels. But the dimensions are actually more than one
number: we need both the length and the width. One option is to use a string field
and have the dimensions in some well-known format.

interface Image {
 content: string;
 sizeBytes: number;

 // The dimensions (in pixels). E.g., "1024x768".
 dimensionsPixels: string;
}

Listing 3.2 An audio clip and image using size fields

Listing 3.3 An audio clip and image using clearer size fields with units

Listing 3.4 An image storing the dimensions in pixels using a string field

This might
contain
Base64-
encoded

binary audio
content.

The units of this field are
confusing. Is it the size in bytes?
Or the duration in seconds of
the audio? Or dimensions of the
image? Or something else?

Now the meaning of
these size fields is much
more clear because the
units are provided.

The format of the field is
expressed in a leading

comment on the field itself. The units of the field
are clear (pixels), but
the primitive data type
can be confusing.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

43Case study: What happens when you choose bad names?

While this option is technically valid and is certainly clear, it displays a bit of an obses-
sion toward using primitive data types always, even when they might not make sense.
In other words, just like sometimes names become more clear and usable when a unit
is included in the name, other times a name can become more clear when using a
richer data type. In this case, rather than using a string type that combines two num-
bers, we can use a Dimensions interface that has length and width numeric values,
with the unit (pixels) included in the name.

interface Image {
 content: string;
 sizeBytes: number;
 dimensions: Dimensions;
}

interface Dimensions {
 lengthPixels: number;
 widthPixels: number;
}

In this case, the meaning of the dimensions field is clear and obvious. Further, we
don’t have to unpack some special structural details of the field itself because the
Dimensions interface has done this for us. Let’s wrap up this topic of naming by look-
ing at some case studies of what can go wrong when we don’t take the proper caution
when choosing names in an API.

3.6 Case study: What happens when you choose
bad names?
These guidelines about how to choose good names and the various aspects worth con-
sidering during that choosing process are all well and good, but it might be worth-
while to look at a couple of real-world examples using names that aren’t quite right.
Further, we can see the end consequences of these naming choices and the potential
issues they might cause. Let’s start by looking at a naming issue where a subtle but
important piece is left out.

SUBTLE MEANING

If you were to walk into a Krispy Kreme donut shop and ask for 10 donuts, you’d
expect 10 donuts, right? And you’d be surprised if you only got 8 donuts? Maybe if you
got 8 donuts you’d assume that the store must be completely out of donuts. It cer-
tainly wouldn’t seem right that you’d get 8 donuts right away, then have to ask for 2
more donuts to get your desired 10.

 What if, instead, you only had a way to ask for a maximum of N donuts. In other
words, you could only ask the cashier “Can I have up to 10 donuts?” You’d get back
any number of donuts, but never more than 10. (And keep in mind that this might

Listing 3.5 An image with dimensions relying on a richer data type

In this case, the dimensions field name
doesn’t need a unit in the name as the
richer data type conveys the meaning.

The units of the field are
clear (pixels) without any
special string formatting.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

44 CHAPTER 3 Naming

result in you getting zero donuts!) Suddenly the weird behavior in the first donut
shop example makes sense. It’s still inconvenient (I’ve not yet seen a donut shop with
this kind of ordering system), but at least it’s not baffling and surprising.

 In chapter 21, we’ll learn about a design pattern that demonstrates how to page
through a bunch of resources during a list standard method operation in a way that’s
safe, clear, and scales nicely to lots and lots of resources. And it turns out that this
exclusive ability to ask only for the maximum (and not an exact amount) is exactly
how the pagination pattern works (using a maxPageSize field).

 The folks over at Google (for historical reasons) follow the pagination pattern as
described except for one important difference: instead of specifying a maxPageSize to
say “give me a maximum of N items,” requests specify a pageSize. These three missing
characters lead to an extraordinarily large amount of confusion, just like the person
ordering donuts: they think they’re asking for an exact number, but they actually are
only able to ask for a maximum number.

 The most common scenario is when someone asks for 10 items, gets back 8, and
thinks that there must be no more items (just like we might assume the donut shop is
out of donuts). In fact, this isn’t the case: just because we got 8 back doesn’t mean the
shop is out of donuts; it just means that they have to go find more in the back. This
ultimately results in API users to miss out on lots of items because they stop paging
through the results before the actual end of the list.

 While this might be frustrating and lead to some inconvenience, let’s look at a
more serious mistake made by mixing up units for a field.

UNITS

Back in 1999, NASA planned to maneuver the Mars Climate Orbiter into an orbit
about 140 miles above the surface. They did a bunch of calculations to figure out
exactly what impulse forces to apply in order to get the orbiter into the right position
and then executed the maneuver. Unfortunately, soon after that the team noticed that
the orbiter was not quite where it was supposed to be. Instead of being at 140 miles
above the surface, it was far lower than that. In fact, calculations made later seemed to
show that the orbiter would’ve been within 35 miles of the surface. Sadly, the mini-
mum altitude the orbiter could survive was 50 miles. As you’d expect, going below that
floor means that the orbiter was likely destroyed in Mars’s atmosphere.

 In the investigation that followed, it was discovered that the Lockheed Martin team
produced output in US standard units (specifically, lbf-s or pound-force seconds)
whereas the NASA teams worked in SI units (specifically, N-s or Newton seconds). A
quick calculation shows that 1 lbf-s is equivalent to 4.45 N-s, which ultimately resulted
in the orbiter getting more than four times the amount of impulse force needed,
which ultimately sent it below its minimum altitude.

abstract class MarsClimateOrbiter {
 CalculateImpulse(CalculateImpulseRequest):

Listing 3.6 A (very simplified) example of the API for calculations on the MCO

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

45Exercises

 CalculateImpulseResponse;
 CalculateManeuver(CalculateManeuverRequest):
 CalculateManeuverResponse;
}

interface CalculateImpulseResponse {
 impulse: number;
}

interface CalculateManeuverRequest {
 impulse: number;
}

If, on the other hand, the integration point had included the units in the names of
the fields, the error would’ve been far more obvious.

interface CalculateImpulseResponse {
 impulsePoundForceSeconds: number;
}

interface CalculateManeuverRequest {
 impulseNewtonSeconds: number;
}

Obviously the Mars Climate Orbiter was a far more complicated piece of software and
machinery than portrayed here, and it’s unlikely that this exact scenario (https://en
.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure) could have been avoided
simply by using more descriptive names. That said, it’s a good illustration of why
descriptive names are valuable and can help highlight differences in assumptions, par-
ticularly when coordinating between different teams.

3.7 Exercises
1 Imagine you need to create an API for managing recurring schedules (“This

event happens once per month”). A senior engineer argues that storing a value
for seconds between events is sufficient for all the use cases. Another engineer
thinks that the API should provide different fields for various time units (e.g.,
seconds, minutes, hours, days, weeks, months, years). Which design covers the
correct meanings of the intended functionality and is the better choice?

2 In your company, storage systems use gigabytes as the unit of measurement (109

bytes). For example, when creating a shared folder, you can set the size to 10
gigabytes by setting sizeGB = 10. A new API is launching where networking
throughput is measured in Gibibits (230 bits) and wants to set bandwidth limits
in terms of Gibibits (e.g., bandwidthLimitGib = 1). Is this too subtle a differ-
ence and potentially confusing for users? Why or why not?

Listing 3.7 Alterations to the example interfaces to include units

The CalculateImpulseRequest and
CalculateManeuverResponse
interfaces are omitted for brevity.

Here we have the impulse
calculated, but there are no units!
This implies we can feed the
previous output as the next input.

Here it becomes obvious that you can’t
just take the output of one API method
and feed it into the next method due to
the different units.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

46 CHAPTER 3 Naming

Summary
 Good names, like good APIs, are simple, expressive, and predictable.
 When it comes to language, grammar, and syntax (and other arbitrary choices),

often the right answer is to pick something and stick to it.
 Prepositions in names are often API smells that hint at some larger underlying

design problem worth fixing.
 Remember that the context in which a name is used both imparts information

and can be potentially misleading. Be aware of the context in place when choos-
ing a name.

 Include the units for primitives and rely on richer data types to help convey
information not present in a name.

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>

	API Design Patterns
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	Live book discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1—Introduction
	1 Introduction to APIs
	1.1 What are web APIs?
	1.2 Why do APIs matter?
	1.3 What are resource-oriented APIs?
	1.4 What makes an API “good”?
	1.4.1 Operational
	1.4.2 Expressive
	1.4.3 Simple
	1.4.4 Predictable

	Summary

	2 Introduction to API design patterns
	2.1 What are API design patterns?
	2.2 Why are API design patterns important?
	2.3 Anatomy of an API design pattern
	2.3.1 Name and synopsis
	2.3.2 Motivation
	2.3.3 Overview
	2.3.4 Implementation
	2.3.5 Trade-offs

	2.4 Case study: Twapi, a Twitter-like API
	2.4.1 Overview
	2.4.2 Listing messages
	2.4.3 Exporting data

	Summary

	Part 2—Design principles
	3 Naming
	3.1 Why do names matter?
	3.2 What makes a name “good”?
	3.2.1 Expressive
	3.2.2 Simple
	3.2.3 Predictable

	3.3 Language, grammar, and syntax
	3.3.1 Language
	3.3.2 Grammar
	3.3.3 Syntax

	3.4 Context
	3.5 Data types and units
	3.6 Case study: What happens when you choose bad names?
	3.7 Exercises
	Summary

	4 Resource scope and hierarchy
	4.1 What is resource layout?
	4.1.1 Types of relationships
	4.1.2 Entity relationship diagrams

	4.2 Choosing the right relationship
	4.2.1 Do you need a relationship at all?
	4.2.2 References or in-line data
	4.2.3 Hierarchy

	4.3 Anti-patterns
	4.3.1 Resources for everything
	4.3.2 Deep hierarchies
	4.3.3 In-line everything

	4.4 Exercises
	Summary

	5 Data types and defaults
	5.1 Introduction to data types
	5.1.1 Missing vs. null

	5.2 Booleans
	5.3 Numbers
	5.3.1 Bounds
	5.3.2 Default values
	5.3.3 Serialization

	5.4 Strings
	5.4.1 Bounds
	5.4.2 Default values
	5.4.3 Serialization

	5.5 Enumerations
	5.6 Lists
	5.6.1 Atomicity
	5.6.2 Bounds
	5.6.3 Default values

	5.7 Maps
	5.7.1 Bounds
	5.7.2 Default values

	5.8 Exercises
	Summary

	Part 3—Fundamentals
	6 Resource identification
	6.1 What is an identifier?
	6.2 What makes a good identifier?
	6.2.1 Easy to use
	6.2.2 Unique
	6.2.3 Permanent
	6.2.4 Fast and easy to generate
	6.2.5 Unpredictable
	6.2.6 Readable, shareable, and verifiable
	6.2.7 Informationally dense

	6.3 What does a good identifier look like?
	6.3.1 Data type
	6.3.2 Character set
	6.3.3 Identifier format
	6.3.4 Checksums
	6.3.5 Resource type
	6.3.6 Hierarchy and uniqueness scope

	6.4 Implementation
	6.4.1 Size
	6.4.2 Generation
	6.4.3 Tomb-stoning
	6.4.4 Checksum
	6.4.5 Database storage

	6.5 What about UUIDs?
	6.6 Exercises
	Summary

	7 Standard methods
	7.1 Motivation
	7.2 Overview
	7.3 Implementation
	7.3.1 Which methods should be supported?
	7.3.2 Idempotence and side effects
	7.3.3 Get
	7.3.4 List
	7.3.5 Create
	7.3.6 Update
	7.3.7 Delete
	7.3.8 Replace
	7.3.9 Final API definition

	7.4 Trade-offs
	7.5 Exercises
	Summary

	8 Partial updates and retrievals
	8.1 Motivation
	8.1.1 Partial retrieval
	8.1.2 Partial update

	8.2 Overview
	8.3 Implementation
	8.3.1 Transport
	8.3.2 Maps and nested interfaces
	8.3.3 Repeated fields
	8.3.4 Default values
	8.3.5 Implicit field masks
	8.3.6 Updating dynamic data structures
	8.3.7 Invalid fields
	8.3.8 Final API definition

	8.4 Trade-offs
	8.4.1 Universal support
	8.4.2 Alternative implementations

	8.5 Exercises
	Summary

	9 Custom methods
	9.1 Motivation
	9.1.1 Why not just standard methods?

	9.2 Overview
	9.3 Implementation
	9.3.1 Side effects
	9.3.2 Resources vs. collections
	9.3.3 Stateless custom methods
	9.3.4 Final API definition

	9.4 Trade-offs
	9.5 Exercises
	Summary

	10 Long-running operations
	10.1 Motivation
	10.2 Overview
	10.3 Implementation
	10.3.1 What does an LRO look like?
	10.3.2 Resource hierarchy
	10.3.3 Resolution
	10.3.4 Error handling
	10.3.5 Monitoring progress
	10.3.6 Canceling operations
	10.3.7 Pausing and resuming operations
	10.3.8 Exploring operations
	10.3.9 Persistence
	10.3.10 Final API definition

	10.4 Trade-offs
	10.5 Exercises
	Summary

	11 Rerunnable jobs
	11.1 Motivation
	11.2 Overview
	11.3 Implementation
	11.3.1 Job resources
	11.3.2 The custom run method
	11.3.3 Job execution resources
	11.3.4 Final API definition

	11.4 Trade-offs
	11.5 Exercises
	Summary

	Part 4—Resource relationships
	12 Singleton sub-resources
	12.1 Motivation
	12.1.1 Why should we use a singleton sub-resource?

	12.2 Overview
	12.3 Implementation
	12.3.1 Standard methods
	12.3.2 Resetting
	12.3.3 Hierarchy
	12.3.4 Final API definition

	12.4 Trade-offs
	12.4.1 Atomicity
	12.4.2 Exactly one sub-resource

	12.5 Exercises
	Summary

	13 Cross references
	13.1 Motivation
	13.2 Overview
	13.3 Implementation
	13.3.1 Reference field name
	13.3.2 Data integrity
	13.3.3 Value vs. reference
	13.3.4 Final API definition

	13.4 Trade-offs
	13.5 Exercises
	Summary

	14 Association resources
	14.1 Motivation
	14.2 Overview
	14.2.1 Association alias methods

	14.3 Implementation
	14.3.1 Naming the association resource
	14.3.2 Standard method behavior
	14.3.3 Uniqueness
	14.3.4 Read-only fields
	14.3.5 Association alias methods
	14.3.6 Referential integrity
	14.3.7 Final API definition

	14.4 Trade-offs
	14.4.1 Complexity
	14.4.2 Separation of associations

	14.5 Exercises
	Summary

	15 Add and remove custom methods
	15.1 Motivation
	15.2 Overview
	15.3 Implementation
	15.3.1 Listing associated resources
	15.3.2 Data integrity
	15.3.3 Final API definition

	15.4 Trade-offs
	15.4.1 Nonreciprocal relationship
	15.4.2 Relationship metadata

	15.5 Exercises
	Summary

	16 Polymorphism
	16.1 Motivation
	16.2 Overview
	16.3 Implementation
	16.3.1 Deciding when to use polymorphic resources
	16.3.2 Polymorphic structure
	16.3.3 Polymorphic behavior
	16.3.4 Why not polymorphic methods?
	16.3.5 Final API definition

	16.4 Trade-offs
	16.5 Exercises
	Summary

	Part 5—Collective operations
	17 Copy and move
	17.1 Motivation
	17.2 Overview
	17.3 Implementation
	17.3.1 Identifiers
	17.3.2 Child resources
	17.3.3 Related resources
	17.3.4 External data
	17.3.5 Inherited metadata
	17.3.6 Atomicity
	17.3.7 Final API definition

	17.4 Trade-offs
	17.5 Exercises
	Summary

	18 Batch operations
	18.1 Motivation
	18.2 Overview
	18.3 Implementation
	18.3.1 Atomicity
	18.3.2 Operation on the collection
	18.3.3 Ordering of results
	18.3.4 Common fields
	18.3.5 Operating across parents
	18.3.6 Batch Get
	18.3.7 Batch Delete
	18.3.8 Batch Create
	18.3.9 Batch Update
	18.3.10 Final API definition

	18.4 Trade-offs
	18.5 Exercises
	Summary

	19 Criteria-based deletion
	19.1 Motivation
	19.2 Overview
	19.3 Implementation
	19.3.1 Filtering results
	19.3.2 Validation only by default
	19.3.3 Result count
	19.3.4 Result sample set
	19.3.5 Consistency
	19.3.6 Final API definition

	19.4 Trade-offs
	19.5 Exercises
	Summary

	20 Anonymous writes
	20.1 Motivation
	20.2 Overview
	20.3 Implementation
	20.3.1 Consistency
	20.3.2 Final API definition

	20.4 Trade-offs
	20.5 Exercises
	Summary

	21 Pagination
	21.1 Motivation
	21.2 Overview
	21.3 Implementation
	21.3.1 Page size
	21.3.2 Page tokens
	21.3.3 Total count
	21.3.4 Paging inside resources
	21.3.5 Final API definition

	21.4 Trade-offs
	21.4.1 Bi-directional paging
	21.4.2 Arbitrary windows

	21.5 Anti-pattern: Offsets and limits
	21.6 Exercises
	Summary

	22 Filtering
	22.1 Motivation
	22.2 Overview
	22.3 Implementation
	22.3.1 Structure
	22.3.2 Filter syntax and behavior
	22.3.3 Final API definition

	22.4 Trade-offs
	22.5 Exercises
	Summary

	23 Importing and exporting
	23.1 Motivation
	23.2 Overview
	23.3 Implementation
	23.3.1 Import and export methods
	23.3.2 Interacting with storage systems
	23.3.3 Converting between resources and bytes
	23.3.4 Consistency
	23.3.5 Identifiers and collisions
	23.3.6 Handling related resources
	23.3.7 Failures and retries
	23.3.8 Filtering and field masks
	23.3.9 Final API definition

	23.4 Trade-offs
	23.5 Exercises
	Summary

	Part 6—Safety and security
	24 Versioning and compatibility
	24.1 Motivation
	24.2 Overview
	24.2.1 What is compatibility?
	24.2.2 Defining backward compatibility

	24.3 Implementation
	24.3.1 Perpetual stability
	24.3.2 Agile instability
	24.3.3 Semantic versioning

	24.4 Trade-offs
	24.4.1 Granularity vs. simplicity
	24.4.2 Stability vs. new functionality
	24.4.3 Happiness vs. ubiquity

	24.5 Exercises
	Summary

	25 Soft deletion
	25.1 Motivation
	25.2 Overview
	25.3 Implementation
	25.3.1 Deleted designation
	25.3.2 Modifying standard methods
	25.3.3 Undeleting
	25.3.4 Expunging
	25.3.5 Expiration
	25.3.6 Referential integrity
	25.3.7 Effects on other methods
	25.3.8 Adding soft delete across versions
	25.3.9 Final API definition

	25.4 Trade-offs
	25.5 Exercises
	Summary

	26 Request deduplication
	26.1 Motivation
	26.2 Overview
	26.3 Implementation
	26.3.1 Request identifier
	26.3.2 Response caching
	26.3.3 Consistency
	26.3.4 Request ID collisions
	26.3.5 Cache expiration
	26.3.6 Final API definition

	26.4 Trade-offs
	26.5 Exercises
	Summary

	27 Request validation
	27.1 Motivation
	27.2 Overview
	27.3 Implementation
	27.3.1 External dependencies
	27.3.2 Special side effects
	27.3.3 Final API definition

	27.4 Trade-offs
	27.5 Exercises
	Summary

	28 Resource revisions
	28.1 Motivation
	28.2 Overview
	28.3 Implementation
	28.3.1 Revision identifiers
	28.3.2 Creating revisions
	28.3.3 Retrieving specific revisions
	28.3.4 Listing revisions
	28.3.5 Restoring a previous revision
	28.3.6 Deleting revisions
	28.3.7 Handling child resources
	28.3.8 Final API definition

	28.4 Trade-offs
	28.5 Exercises
	Summary

	29 Request retrial
	29.1 Motivation
	29.2 Overview
	29.2.1 Client-side retry timing
	29.2.2 Server-specified retry timing

	29.3 Implementation
	29.3.1 Retry eligibility
	29.3.2 Exponential back-off
	29.3.3 Retry After
	29.3.4 Final API definition

	29.4 Trade-offs
	29.5 Exercises
	Summary

	30 Request authentication
	30.1 Motivation
	30.1.1 Origin
	30.1.2 Integrity
	30.1.3 Nonrepudiation

	30.2 Overview
	30.3 Implementation
	30.3.1 Credential generation
	30.3.2 Registration and credential exchange
	30.3.3 Generating and verifying raw signatures
	30.3.4 Request fingerprinting
	30.3.5 Including the signature
	30.3.6 Authenticating requests
	30.3.7 Final API definition

	30.4 Trade-offs
	30.5 Exercises
	Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

