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Naming

Whether we like it or not, names follow us everywhere. In every software system we
build, and every API we design or use, there are names hiding around each corner
that will live far longer than we ever intend them to. Because of this, it should seem
obvious that it’s important to choose great names (even if we don’t always give our
naming choices as much thought as we should). In this chapter, we’ll explore the
different components of an API that we’ll have to name, some strategies we can
employ to choose good names, the high-level attributes that distinguish good
names from bad ones, and finally some general principles to help guide us when
making tough naming decisions that we’ll inevitably run into.

This chapter covers
 Why we should bother caring about names

 What makes some better than others

 How to make choices about language, grammar, 
and syntax

 How context influences the meaning of a name

 A case study of what can happen with poor name 
choices
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34 CHAPTER 3 Naming

3.1 Why do names matter?
In the world of software engineering generally, it’s practically impossible to avoid
choosing names for things. If that were possible, we’d need to be able to write chunks
of code that used only language keywords (e.g., class, for, or if), which would be
unreadable at best. With that in mind, compiled software is a special case. This is
because with traditional compiled code, the names of our functions and variables are
only important to those who have access to the source code, as the name itself gener-
ally disappears during compilation (or minification) and deployment.

 On the other hand, when designing and building an API, the names we choose are
much more important, as they’re what all the users of the API will see and interact
with. In other words, these names won’t simply get compiled away and hidden from
the world. This means we need to put an extraordinary amount of thought and con-
sideration into the names we choose for an API.

 The obvious question here becomes, “Can’t we just change the names if they turn
out to be bad choices?” As we’ll learn in chapter 24, changing names in an API can be
quite challenging. Imagine changing the name of a frequently used function in your
source code and then realizing you need to do a big find-and-replace to make sure
you updated all references to that function name. While inconvenient (and even
easy in some IDEs), this is certainly possible. However, consider if this source code
was available to the public to build into their own projects. Even if you could some-
how update all references for all public source code available, there is always going
to be private source code that you don’t have access to and therefore cannot possi-
bly update.

 Put a bit differently, changing public-facing names in an API is a bit like changing
your address or phone number. To successfully change this number everywhere, you’d
have to contact everyone who ever had your phone number, including your grand-
mother (who might use a paper address book) and every marketing company that
ever had access to it. Even if you have a way to get in touch with everyone who has your
number, you’d still need them to do the work of updating the contact information,
which they might be too busy to do.

 Now that we’ve seen the importance of choosing good names (and avoiding
changing them), this leads us to an important question: What makes a name “good”?

3.2 What makes a name “good”?
As we learned in chapter 1, APIs are “good” when they are operational, expressive,
simple, and predictable. Names, on the other hand, are quite similar except for the
fact that they aren’t necessarily operational (in other words, a name doesn’t actually
do anything). Let’s look at this subset of attributes and a few examples of naming
choices, starting with being expressive.
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35What makes a name “good”?

3.2.1 Expressive

More important than anything else, it’s critical that a name clearly convey the thing
that it’s naming. This thing might be a function or RPC (e.g., CreateAccount), a
resource or message (e.g., WeatherReading), a field or property (e.g., postal_address),
or something else entirely, such as an enumeration value (e.g., Color.BLUE), but it
should be clear to the reader exactly what the thing represents. This might sound
easy, but it’s often very difficult to see a name with fresh eyes, forgetting all the context
that we’ve built by working in a particular area over time. This context is a huge asset
generally, but in this case it’s more of a liability: it makes us bad at naming things.

 For example, the term topic is often used in the context of asynchronous messaging
(e.g., Apache Kafka or RabbitMQ); however, it’s also used in a specific area of
machine learning and natural language processing called topic modeling. If you were to
use the term topic in your machine learning API, it wouldn’t be all that surprising that
users might be confused about which type of topic you’re referring to. If that’s a real
possibility (perhaps your API uses both asynchronous messaging and topic modeling),
you might want to choose a more expressive name than topic, such as model_topic
or messaging_topic to prevent user confusion.

3.2.2 Simple

While an expressive name is certainly important, it can also become burdensome if
the name is excessively long without adding additional clarity. Using the example
from before (topic, referring to multiple different areas of computer science), if an
API only ever refers to asynchronous messaging (e.g., an Apache Kafka–like API) and
has nothing to do with machine learning, then topic is sufficiently clear and simple,
while messaging_topic wouldn’t add much value. In short, names should be expres-
sive but only to the extent that each additional part of a name adds value to justify
its presence.

 On the other hand, names shouldn’t be oversimplified either. For example, imag-
ine we have an API that needs to store some user-specified preferences. The resource
might be called UserSpecifiedPreferences; however, the Specified isn’t adding very
much to the name. On the other hand, if we simply called the resource Preferences,
it’s unclear whose preferences they are and could cause confusion down the line when
there are system- or administrator-level preferences that need to be stored and man-
aged. In this case, UserPreferences seems to be the sweet spot between an expressive
name and a simple name, summarized in table 3.1.

Table 3.1 Choosing between simple and expressive names

Name Notes

UserSpecifiedPreferences Expressive, but not simple enough

UserPreferences Simple enough and expressive enough

Preferences Too simple
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36 CHAPTER 3 Naming

3.2.3 Predictable

Now that we’ve gone through the balance between expressive and simple, there’s one
final and very important aspect of choosing a good name: predictability. Imagine an
API that uses the name topic to group together similar asynchronous messages (simi-
lar to Apache Kafka). Then imagine that the API uses the name messaging_topic in
other places, without much reason for choosing one or the other. This leads to some
pretty frustrating and unusual circumstances.

function handleMessage(message: Message) {
  if (message.topic == "budget.purge") {    
    client.PurgeTopic({
      messagingTopic: "budget.update"  
    });
  }
}

In the odd case that this doesn’t seem frustrating, consider an important principle
we’re violating here. In general, we should use the same name to represent the same
thing and different names to represent different things. If we take that principle as
axiomatic, this leads to an important question: how is topic different from messaging-
Topic? After all, we used different names, so they must represent different concepts,
right? 

 The basic underlying goal is to allow users of an API to learn one name and con-
tinue building on that knowledge to be able to predict what future names (e.g., if they
represent the same concept) would look like. By using topic consistently throughout
an API when we mean “the topic for a given message” (and something else when we
mean something different), we’re allowing users of an API to build on what they’ve
already learned rather than confusing them and forcing them to research every single
name to ensure it means what they would assume.

 Now that we have an idea of some of the characteristics of good names, let’s
explore some general guidelines that can act as guard rails when naming things in an
API, starting with the fundamental aspects of language, grammar, and syntax. 

3.3 Language, grammar, and syntax
While code is all about ones and zeros, fundamentally stored as numbers, naming is a
primarily subjective construct we express using language. Unlike programming lan-
guages, which have very firm rules about what’s valid and what’s not, language has
evolved to serve people more than computers, making the rules much less firm. This
allows our naming choices to be a bit more flexible and ambiguous, which can be
both a good and bad thing.

 On the one hand, ambiguity allows us to name things to be general enough to
support future work. For example, naming a field image_uri rather than jpeg_uri

Listing 3.1 Example frustrating code due to inconsistent naming

Here we use the name topic to 
read the topic of a given message.

Here we use the name messagingTopic 
to represent the same concept.
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37Language, grammar, and syntax

prevents us from limiting ourselves to a single image format (JPEG). On the other
hand, when there are multiple ways to express the same thing, we often tend to use
them interchangeably, which ultimately makes our naming choices unpredictable (see
section 3.2.3) and results in a frustrating and cumbersome API. To avoid some of this,
even though “language” has quite a bit of flexibility, by imposing some rules of our
own, we can avoid losing the predictability we value so highly in a good API. In this
section, we’ll explore some of the simple rules related to language that can help mini-
mize some of the arbitrary choices we’ll have to make when naming things.

3.3.1 Language

While there are many languages spoken in the world, if we had to choose a single lan-
guage that was used the most in software engineering, currently American English is
the leading contender. This isn’t to say that American English is any better or worse
than other languages; however, if our goal is maximum interoperability across the
world, using anything other than American English is likely to be a hindrance rather
than a benefit.

 This means that English language concepts should be used (e.g., BookStore rather
than Librería) and common American-style spellings should generally be preferred
(e.g., color rather than colour). This also has the added benefit of almost always fitting
comfortably into the ASCII character set, with a few exceptions where American
English has borrowed from other languages (e.g., café).

 This doesn’t mean that API comments must be in American English. If the audi-
ence of an API is based exclusively in France, it might make sense to provide docu-
mentation (which may or may not be automatically generated from API specification
comments) in French. However, the team of software engineers consuming the API is
likely to use other APIs, which are unlikely to be exclusively targeted toward customers
in France. As a result, it still holds that even if the audience of an API doesn’t use
American English as their primary language, the API itself should still rely on Ameri-
can English as a shared common language across all parties using lots of different
APIs together.

3.3.2 Grammar

Given that an API will use American English as the standard language, this opens
quite a few complicated cans of worms as English is not exactly the simplest of lan-
guages with many different tenses and moods. Luckily, pronunciation won’t be an
issue as source code is a written rather than spoken language, but this doesn’t neces-
sarily alleviate all the potential problems.

 Rather than attempt to dictate every single aspect of American English grammar as it
applies to naming things in an API, this section will touch on a few of the most common
issues. Let’s start by looking at actions (e.g., RPC methods or RESTful verbs).

Licensed to Brenda Horrigan <bhorrigan@techtarget.com>



38 CHAPTER 3 Naming

IMPERATIVE ACTIONS

In any API, there will be something equivalent to a programming language’s “func-
tions,” which do the actual work expected of the API. This might be a purely RESTful
API, which relies only on a specific preset list of actions (Get, Create, Delete, etc.),
then you don’t have all that much to do here as all actions will take the form of
<StandardVerb><Noun> (e.g., CreateBook). In the case of non-RESTful or resource-
oriented APIs that permit nonstandard verbs, we have more choices for how we name
these actions.

 There is one important aspect that the REST standard verbs have in common: they
all use the imperative mood. In other words, they are all commands or orders of the
verb. If this isn’t making a lot of sense, imagine a drill sergeant in the Army shouting
at you to do something: “Create that book!” “Delete that weather reading!” “Archive
that log entry!” As ridiculous as these commands are for the Army, you know exactly
what you’re supposed to do.

 On the other hand, sometimes the names of the functions we write can take on the
indicative mood. One common example is when a function is investigating some-
thing, such as String.IsNullOrEmpty() in C#. In this case, the verb “to be” takes on
the indicative mood (asking a question about a resource) rather than the imperative
mood (commanding a service to do something).

 While there’s nothing fundamentally wrong with our functions taking on this
mood, when used in a web API it leaves a few important questions unanswered. First,
with something that looks like it can be handled without asking a remote service,
“Does isValid() actually result in a remote call or is it handled locally?” While we
hope that users assume all method calls are going over the network, it’s a bit mislead-
ing to have what appears to be a stateless call do so.

 Secondly, what should the response look like? Take the case of an RPC called
isValid(). Should it return a simple Boolean field stating whether the input was
valid? Should it return a list of errors if that input wasn’t valid? On the other hand,
GetValidationErrors() is more clear: either it returns an empty list if the input is
completely valid or a list of errors if it isn’t. There’s no real confusion about the shape
the response will take.

PREPOSITIONS

Another area of confusion when choosing names centers on prepositions, such as
“with,” “to,” or “for.” While these words are very useful in everyday conversation, when
used in the context of a web API, particularly in resource names, they can be indica-
tive of more complicated underlying problems with the API.

 For example, a Library API might have a way to list Book resources. If this API
needed a way to list Book resources and include the Author resources responsible for
that book, it may be tempting to create a new resource for this combination: Book-
WithAuthor (which would then be listed by calling ListBooksWithAuthors or some-
thing similar). This might seem fine at first glance, but what about when we need to
list Book resources with the Publisher resources embedded? Or both Author and
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Publisher resources? Before we know it, we’ll have 30 different RPCs to call depend-
ing on the different related resources we want.

 In this case, the preposition we want to use in the name (“with”) is indicative of a
more fundamental problem: we want a way to list resources and include different attri-
butes in the response. We might instead solve this using a field mask or a view (see
chapter 8) and avoid this oddly-named resource at the same time. In this case, the
preposition was an indication that sometimes wasn’t quite right. So even though prepo-
sitions probably shouldn’t be forbidden entirely (e.g., maybe a field would be called
bits_per_second), these tricky little words act a bit like a code smell, hinting at some-
thing being not quite right and worth further investigation.

PLURALIZATION

Most often, we’ll choose the names for things in our APIs to be the singular form,
such as Book, Publisher, and Author (rather than Books, Publishers, or Authors).
Further, these name choices tend to take on new meanings and purposes through the
API. For example, a Book resource might be referenced somewhere by a field called
Author.favoriteBook (see chapter 13). However, things can sometimes get messy
when we need to talk about multiples of these resources. To make things more com-
plicated, if an API uses RESTful URLs, the collection name of a bunch of resources is
almost always plural. For example, when we request a single Book resource, the collec-
tion name in the URL will almost certainly be something like /books/1234.

 In the case of the names we’ve used as examples (e.g., Book), this isn’t much of an
issue; after all, mentioning multiple Book resources just involves adding an “s” to plu-
ralize the name into Books. However, some names are not so simple. For example,
imagine we’re making an API for a podiatrist’s office (a foot doctor). When we have a
Foot resource, we’ll need to break this pattern of just adding an “s,” leading to a feet
collection.

 This example certainly breaks the pattern, but at least it’s clear and unambiguous.
What if our API deals with people and therefore has a Person resource. Is the collec-
tion persons? Or people? In other words, should Person(id=1234) be retrieved by
visiting a URL that looks like /persons/1234 or /people/1234? Luckily our guidelines
about using American-style English prescribes an answer: use people.

 Other cases are more frustrating still. For example, imagine we are working on an
API for the aquarium. What is the collection for an Octopus resource? As you can see,
our choice of American English sometimes comes back to bite us. What’s most import-
ant though is that we choose a pattern and stick to it, which often involves a quick
search for what the grammarians say is correct (in this case, “octopuses” is perfectly
fine). This also means that we should never assume the plural of a resource can be
created simply by adding an “s”—a common temptation for software engineers look-
ing for patterns.
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3.3.3 Syntax

We’ve reached the more technical aspects of naming. As with the previous aspects we’ve
looked at, when it comes to syntax the same guidelines are in place. First, pick some-
thing and stick to it. Second, if there’s an existing standard (e.g., American English
spellings), use that. So what does this mean in a practical sense? Let’s start with case.

CASE

When we define an API, we need to name the various components, which are things
like resources, RPCs, and fields. For each of these, we tend to use a different case,
which is sort of like a format in which the name is rendered. Most often, this render-
ing is only apparent in how multiple words are strung together to make a single lexical
unit. For example, if we had a field that represents a person’s given name, we might
need to call that field “first name.” However, in almost all programming languages,
spaces are the lexical separation character, so we need to combine “first name” into a
single unit, which opens the door for lots of different options, such as “camel case,”
“snake case,” or “kebab case.”

 In camel case, the words are joined by capitalizing the letters of all words after the
first, so “first name” would render as firstName (which has capital letters as humps
like a camel). In snake case, words are joined using underscore characters, as in
first_name (which is meant to look a bit like a snake). In kebab case, words are
joined with hyphen characters, as in first-name (which looks a bit like a kebab skew-
ering the different words). Depending on the language used to represent an API spec-
ification, different components are rendered in different cases. For example, in
Google’s Protocol Buffer language, the standard is for messages (like TypeScript inter-
faces) to use upper camel case, as in UserSettings (note the uppercase “U”) and
snake case for field names, as in first_name. On the other hand, in open API specifi-
cation standards, field names take on camel case, as in firstName.

 As noted earlier, the specific choice isn’t all that important so long as the choices
are used consistently throughout. For example, if you were to use the name user_
settings for a protocol buffer (https://developers.google.com/protocol-buffers)
message, it would be very easy to think that this is actually a field name and not a mes-
sage. As a result, this is likely to cause confusion to anyone using the API. Speaking of
types, let’s take a brief moment to look at reserved words.

RESERVED KEYWORDS

In most API definition languages, there will be a way to specify the type of the data
being stored in a particular attribute. For example, we might say firstName: string
to express in TypeScript that the field called firstName contains a primitive string
value. This also implies that term string has some special meaning, even if used in a dif-
ferent position in code. As a result, it can be dangerous to use restricted keywords as
names in your API and should be avoided whenever possible.

 If this seems difficult, it can be worthwhile to spend some time thinking about what a
field or message truly represents and not what the easiest option is. For example, rather
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than “to” and “from” (from being those special reserved keywords in languages like
Python), you might want to try using more specific terminology such as “sender” and
“recipient” (if the API is about messages) or maybe “payer” and “payee” (if the API is
about payments). 

 It’s also important to consider the target audience of your API. For example, if the
API will only ever be used in JavaScript (perhaps it’s intended to be used exclusively in
a web browser), then keywords in other languages (e.g., Python or Ruby) may not be
worth worrying about. That said, if it’s not much work, it’s a good idea to avoid key-
words in other languages. After all, you never know when your API might end up
being used by one of these languages.

 Now that we’ve gone through some of these technical aspects, let’s jump up a level
and talk about how the context in which our API lives and operates might affect the
names we choose.

3.4 Context
While names on their own can sometimes convey all the information necessary to be
useful, more often than not we rely on the context in which a name is used to discern
its meaning and intended use. For example, when we use the term book in an API, we
might be referring to a resource that lives in a Library API; however, we might also be
referring to an action to be taken in a Flight Reservation API. As you can imagine, the
same words and terminology can mean completely different things depending on the
context in which they’re used. What this means is that we need to keep the context in
which our API lives in mind when choosing names for it.

 It’s important to remember that this goes both ways. On the one hand, context can
impart additional value to a name that might otherwise lack specific meaning. On the
other hand, context can lead us astray when we use names that have a very specific
meaning but don’t quite make sense in the given context. For example, the name
“record” might not be very useful without any context nearby, but in the context of an
audio recording API, this term absorbs the extra meaning imparted from the API’s
general context. 

 In short, while there are no strict rules about how to name things in a given con-
text, the important thing to remember is that all the names we choose in an API are
inextricably linked to the context provided by that API. As a result, we should be cog-
nizant of that context and the meaning it might impart (for better or worse) when
choosing names.

 Let’s change direction a bit and talk about data types and units, specifically how
they should be involved in the names we choose.

3.5 Data types and units
While many field names are descriptive without units (e.g., firstName: string), oth-
ers can be extraordinarily confusing without units. For example, imagine a field called
“size.” Depending on the context (see section 3.4), this field could have entirely
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different meanings but also entirely different units. We can see the same field (size)
that would have entirely different and, in many cases, confusing meaning and units.

interface AudioClip {
  content: string;   
  size: number;    
}

interface Image {
  content: string;   
  size: number;    
}

In this example, the size field could mean multiple things, but those different mean-
ings also would lead to very different units (e.g., bytes, seconds, pixels, etc.). Luckily
this relationship goes both ways, meaning that if the units were present somewhere the
meaning would become more clear. In other words, sizeBytes and sizeMegapixels
are much more clear and obvious than just size. 

interface AudioClip {
  content: string;
  sizeBytes: number;       
}

interface Image {
  content: string;
  sizeMegapixels: number;  
}

Does this mean that we should always simply include the unit or format for any given
field in all scenarios? After all, that would certainly minimize any confusion in cases
like those shown. For example, imagine that we wanted to store the dimensions of the
image in pixels resource along with the size in bytes. We might have two fields called
sizeBytes and dimensionsPixels. But the dimensions are actually more than one
number: we need both the length and the width. One option is to use a string field
and have the dimensions in some well-known format.

interface Image {
  content: string;
  sizeBytes: number;

  // The dimensions (in pixels). E.g., "1024x768".   
  dimensionsPixels: string;       
}

Listing 3.2 An audio clip and image using size fields

Listing 3.3 An audio clip and image using clearer size fields with units

Listing 3.4 An image storing the dimensions in pixels using a string field

This might
contain
Base64-
encoded

binary audio
content.

The units of this field are 
confusing. Is it the size in bytes? 
Or the duration in seconds of 
the audio? Or dimensions of the 
image? Or something else?

Now the meaning of 
these size fields is much 
more clear because the 
units are provided.

The format of the field is
expressed in a leading

comment on the field itself. The units of the field 
are clear (pixels), but 
the primitive data type 
can be confusing.
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43Case study: What happens when you choose bad names?

While this option is technically valid and is certainly clear, it displays a bit of an obses-
sion toward using primitive data types always, even when they might not make sense.
In other words, just like sometimes names become more clear and usable when a unit
is included in the name, other times a name can become more clear when using a
richer data type. In this case, rather than using a string type that combines two num-
bers, we can use a Dimensions interface that has length and width numeric values,
with the unit (pixels) included in the name.

interface Image {
  content: string;
  sizeBytes: number;
  dimensions: Dimensions;   
}

interface Dimensions {
  lengthPixels: number;   
  widthPixels: number;
}

In this case, the meaning of the dimensions field is clear and obvious. Further, we
don’t have to unpack some special structural details of the field itself because the
Dimensions interface has done this for us. Let’s wrap up this topic of naming by look-
ing at some case studies of what can go wrong when we don’t take the proper caution
when choosing names in an API.

3.6 Case study: What happens when you choose 
bad names?
These guidelines about how to choose good names and the various aspects worth con-
sidering during that choosing process are all well and good, but it might be worth-
while to look at a couple of real-world examples using names that aren’t quite right.
Further, we can see the end consequences of these naming choices and the potential
issues they might cause. Let’s start by looking at a naming issue where a subtle but
important piece is left out.

SUBTLE MEANING

If you were to walk into a Krispy Kreme donut shop and ask for 10 donuts, you’d
expect 10 donuts, right? And you’d be surprised if you only got 8 donuts? Maybe if you
got 8 donuts you’d assume that the store must be completely out of donuts. It cer-
tainly wouldn’t seem right that you’d get 8 donuts right away, then have to ask for 2
more donuts to get your desired 10.

 What if, instead, you only had a way to ask for a maximum of N donuts. In other
words, you could only ask the cashier “Can I have up to 10 donuts?” You’d get back
any number of donuts, but never more than 10. (And keep in mind that this might

Listing 3.5 An image with dimensions relying on a richer data type

In this case, the dimensions field name 
doesn’t need a unit in the name as the 
richer data type conveys the meaning.

The units of the field are 
clear (pixels) without any 
special string formatting.
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result in you getting zero donuts!) Suddenly the weird behavior in the first donut
shop example makes sense. It’s still inconvenient (I’ve not yet seen a donut shop with
this kind of ordering system), but at least it’s not baffling and surprising.

 In chapter 21, we’ll learn about a design pattern that demonstrates how to page
through a bunch of resources during a list standard method operation in a way that’s
safe, clear, and scales nicely to lots and lots of resources. And it turns out that this
exclusive ability to ask only for the maximum (and not an exact amount) is exactly
how the pagination pattern works (using a maxPageSize field).

 The folks over at Google (for historical reasons) follow the pagination pattern as
described except for one important difference: instead of specifying a maxPageSize to
say “give me a maximum of N items,” requests specify a pageSize. These three missing
characters lead to an extraordinarily large amount of confusion, just like the person
ordering donuts: they think they’re asking for an exact number, but they actually are
only able to ask for a maximum number.

 The most common scenario is when someone asks for 10 items, gets back 8, and
thinks that there must be no more items (just like we might assume the donut shop is
out of donuts). In fact, this isn’t the case: just because we got 8 back doesn’t mean the
shop is out of donuts; it just means that they have to go find more in the back. This
ultimately results in API users to miss out on lots of items because they stop paging
through the results before the actual end of the list.

 While this might be frustrating and lead to some inconvenience, let’s look at a
more serious mistake made by mixing up units for a field.

UNITS

Back in 1999, NASA planned to maneuver the Mars Climate Orbiter into an orbit
about 140 miles above the surface. They did a bunch of calculations to figure out
exactly what impulse forces to apply in order to get the orbiter into the right position
and then executed the maneuver. Unfortunately, soon after that the team noticed that
the orbiter was not quite where it was supposed to be. Instead of being at 140 miles
above the surface, it was far lower than that. In fact, calculations made later seemed to
show that the orbiter would’ve been within 35 miles of the surface. Sadly, the mini-
mum altitude the orbiter could survive was 50 miles. As you’d expect, going below that
floor means that the orbiter was likely destroyed in Mars’s atmosphere.

 In the investigation that followed, it was discovered that the Lockheed Martin team
produced output in US standard units (specifically, lbf-s or pound-force seconds)
whereas the NASA teams worked in SI units (specifically, N-s or Newton seconds). A
quick calculation shows that 1 lbf-s is equivalent to 4.45 N-s, which ultimately resulted
in the orbiter getting more than four times the amount of impulse force needed,
which ultimately sent it below its minimum altitude. 

abstract class MarsClimateOrbiter {
  CalculateImpulse(CalculateImpulseRequest):

Listing 3.6 A (very simplified) example of the API for calculations on the MCO
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      CalculateImpulseResponse;              
  CalculateManeuver(CalculateManeuverRequest):
      CalculateManeuverResponse;             
}

interface CalculateImpulseResponse {
  impulse: number;                    
}

interface CalculateManeuverRequest {
  impulse: number;                    
}

If, on the other hand, the integration point had included the units in the names of
the fields, the error would’ve been far more obvious. 

interface CalculateImpulseResponse {
  impulsePoundForceSeconds: number;   
}

interface CalculateManeuverRequest {
  impulseNewtonSeconds: number;       
}

Obviously the Mars Climate Orbiter was a far more complicated piece of software and
machinery than portrayed here, and it’s unlikely that this exact scenario (https://en
.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure) could have been avoided
simply by using more descriptive names. That said, it’s a good illustration of why
descriptive names are valuable and can help highlight differences in assumptions, par-
ticularly when coordinating between different teams.

3.7 Exercises
1 Imagine you need to create an API for managing recurring schedules (“This

event happens once per month”). A senior engineer argues that storing a value
for seconds between events is sufficient for all the use cases. Another engineer
thinks that the API should provide different fields for various time units (e.g.,
seconds, minutes, hours, days, weeks, months, years). Which design covers the
correct meanings of the intended functionality and is the better choice? 

2 In your company, storage systems use gigabytes as the unit of measurement (109

bytes). For example, when creating a shared folder, you can set the size to 10
gigabytes by setting sizeGB = 10. A new API is launching where networking
throughput is measured in Gibibits (230 bits) and wants to set bandwidth limits
in terms of Gibibits (e.g., bandwidthLimitGib = 1). Is this too subtle a differ-
ence and potentially confusing for users? Why or why not?

Listing 3.7 Alterations to the example interfaces to include units

The CalculateImpulseRequest and 
CalculateManeuverResponse 
interfaces are omitted for brevity.

Here we have the impulse 
calculated, but there are no units! 
This implies we can feed the 
previous output as the next input.

Here it becomes obvious that you can’t 
just take the output of one API method 
and feed it into the next method due to 
the different units.
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Summary
 Good names, like good APIs, are simple, expressive, and predictable.
 When it comes to language, grammar, and syntax (and other arbitrary choices),

often the right answer is to pick something and stick to it.
 Prepositions in names are often API smells that hint at some larger underlying

design problem worth fixing.
 Remember that the context in which a name is used both imparts information

and can be potentially misleading. Be aware of the context in place when choos-
ing a name.

 Include the units for primitives and rely on richer data types to help convey
information not present in a name.
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