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Overview

In this chapter, you will learn how to differentiate between traditional data 
warehousing and modern AI-focused systems. You'll be able to describe the 
typical layers in an architecture that is suited for building AI systems, such 
as a data lake, and list the requirements for creating the storage layers for 
an AI system. Later, you will learn how to define the specific requirements 
per storage layer for a use case and identify the infrastructure as well as the 
software systems based on the requirements. By the end of this chapter, 
you'll be able to identify the requirements for data storage solutions for AI 
systems based on the data layers. 

Artificial Intelligence 

Storage Requirements

2
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Introduction
In the previous chapter, we covered the fundamentals of data storage. In this chapter, 
we'll dive a little deeper into the architecture of Artificial Intelligence (AI) solutions, 
starting with the requirements that define them. This chapter will be a mixture 
of theoretical content and hands-on exercises, with real-life examples where AI is 
actively used.

Let's say you are a solution architect involved in the design of a new data lake. There 
are a lot of technology choices to be made that would have an impact on the people 
involved and on the long-term operations of the organization. It is great to have a 
set of requirements at the start of the project that each decision could be based 
on. Storing data essentially means writing data to disk or memory so that it is safe, 
secure, findable, and retrievable. There are many ways to store data: on-premise, 
in the cloud, on disk, in a database, in memory, and so on. Each way fulfills a set 
of requirements to a greater or lesser extent. Therefore, always think about your 
requirements before choosing a technology or launching an AI project. 

When designing a solution for AI systems, it's important to start with the 
requirements for data storage. The storage solution (infrastructure and software) is 
determined by the type of data you want to store and the types of analysis you want 
to perform. AI-powered solutions usually require high scalability, big data stores, and 
high-performance access.

IT solutions tend to be either data-intensive or compute-intensive. Data-intensive 
solutions are "big data" systems that store large amounts of data in a distributed 
form but require relatively little processing power. An example of a data-intensive 
system is an online video website that just shows videos, but where no intelligent 
algorithms are being run to classify them or offer any suggestions about what to 
watch next to its users. Compute-intensive solutions can have smaller datasets but 
demand many computing resources from the hardware; for example, language 
translation software that is continuously being trained with neural networks.
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AI projects are not your typical IT projects; they are both data-intensive and compute-
intensive. Data scientists need to have access to huge amounts of data to build and 
train their models. Once trained, the models need to be served in production and 
fed through a data pipeline. It's possible that these models get their features from a 
data store that holds the customer data in a type of cache for quick access. Another 
possibility is that data is continuously loaded from source systems so that it can be 
stored in a historical overview and queried by real-time dashboards that contain 
predictive models or other forms of intensive data usage. For example, a retail 
organization might want to predict trends in their product sales based on previous 
years. This kind of data cannot be retrieved from the source systems directly since 
they only keep track of the current state. For each of these scenarios, a combination 
of data stores must be deployed, filled, and maintained in order to fulfill the 
business requirements.

Let's have a look at the requirements that need to be evaluated for an AI project. We'll 
start with a brief list and do a deep dive later in the chapter.

Storage Requirements
It's crucial to keep track of the requirements of your solution in all phases of the 
project. Since most projects follow the agile methodology, it's not an option to just 
define the requirements at the start of the project and then "get to work."

The agile methodology requires team members to continuously reflect on the initial 
plan and requirements provided in the Deming cycle, as shown in the following figure:

Figure 2.1: The Deming cycle
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A list of requirements can be divided into functional and non-functional 
requirements. The functional requirements contain the user stories that explain 
how to interact with the system; these are not in the scope of this book since they 
are less technical and more concerned with UX design and customer journeys. The 
non-functional (or technical) requirements contain descriptions of the required 
workings of the system. The non-functional architecture requirements for an AI 
storage solution describe the technical aspects and have an impact on technology 
choices and their way of working. The major requirements of an AI system are 
as follows:

Figure 2.2: Requirements for AI systems

Since this a very extensive list and some requirements are more important for a 
certain architectural layer than others, we will list the most important requirements 
per architecture layer. Before we start with that deep dive, we'll give a brief overview 
of the architecture of an AI system or data lake.
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Throughout this chapter, we'll provide you with an example of a use case that helps 
translate the abstract concepts in the requirements for data storage to real-world, 
hands-on content. Although the sample is fictional, it's built on some common 
projects that we came across in real life. Therefore, the situation, target architecture, 
and requirements are quite realistic for an AI project.

A bank in the UK (let's say it's called PacktBank) wanted to upgrade its data storage 
systems to create a better environment for data scientists for AI-related projects. 
Currently, the data is spread out in various source systems, ranging from an old ERP 
system to on-premise Oracle databases, to a SaaS solution in the cloud. The new 
data environment (data lake) must be secure, accessible, high-performing, scalable, 
and easy to use. The target infrastructure is Amazon Web Services (AWS), but in 
the future, the company might switch to other cloud vendors or take a multi-cloud 
strategy; therefore, the software components should be vendor-agnostic if possible.

The Three Stages of Digital Data

It's important to realize that data storage comes in three stages:

•	 At rest: Data that is stored on a disk or in memory for long-term storage; for 
example, data on a hard disk or data in a database.

•	 In motion: Data that is transferred across a network from one system to 
another. Sometimes, this is also called in transit; for example, HTTP traffic 
on the internet, or data that comes from a database and is "on its way" to 
an application.

•	 In use: Data that is loaded in the RAM of an application for short-term usage. 
This data is only available in the context of the software that is loaded. It can be 
seen as a cache that is temporarily needed by the software that performs tasks 
on the data. The data is usually a copy of data at rest; for example, a piece of 
customer information (let's say, a changed home address) that has been pushed 
from a website to the server where an API processes the update.

These stages are important to keep in mind when reasoning about technology, 
security, scalability, and so on. We'll bring them up in this book in several places, so 
make sure that you understand the differences. 
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Data Layers
An AI system consists of multiple data storage layers that are connected with Extract, 
Transform, and Load (ETL) or Extract, Load, and Transform (ELT) pipelines. Each 
separate storage solution has its own requirements, depending on the type of data 
that is stored and the usage pattern. The following figure shows this concept:

Figure 2.3: Conceptual overview of the data layers in a typical AI solution

From a high-level viewpoint, the backend (and thus, the storage systems) of an AI 
solution is split up into three parts or layers:

•	 Raw data layer: Contains copies of files from source systems. Also known as the 
staging area.

•	 Historical data layer: The core of a data-driven system, containing an overview 
of data from multiple source systems that have been gathered over time. 
By stacking the data rather than replacing or updating old values, history is 
preserved and time travel (being able to make queries over a data state in the 
past) is made possible in the data tables.

•	 Analytics data layer: A set of tools that are used to get access to the data in the 
historical data layer. This includes cache tables, views (virtual or materialized), 
queries, and so on.

These three layers contain the data in production. For model development and 
training, data can be offloaded into a special model development environment 
such as a DataBricks cluster or SageMaker instance. In that case, an extra layer can 
be added:

•	 Model training layer: A set of tools (databases, file stores, machine learning 
frameworks, and so on) that allows data scientists to build models and train 
them with massive amounts of data.
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For scenarios where data is not being ingested by the system per batch but rather 
streamed in continuously, such as a system that processes sensory machine data 
from a factory, we must set up specific infrastructure and software. In those cases, 
we will use a new layer that takes the role of the raw data layer:

•	 Streaming data layer: An event bus that can store large amounts of 
continuously inflowing data streams, combined with a streaming data engine 
that is able to get data from the event bus in real time and analyze it. The 
streaming data engine can also read and write data to data stores in other 
layers, for example, to combine the real-time data from the event bus with 
historical data about customers from a historical data view.

Depending on the requirements for data storage and analysis, for each layer, a 
different technology set can be picked. The data stores don't have to be physical file 
stores or databases. An in-memory database, graph database, or even a virtual view 
(just queries) can be considered as a proper data storage mechanism. Working with 
large datasets in complex machine learning algorithms requires special attention 
since the models to be trained require the storage and usage of big datasets, but for 
a relatively short period of time.

To summarize, the data layers of AI solutions are like many other data-driven 
architecture layers, with the addition of the model training layer and possibly the 
streaming data layer. But there is a bigger shift happening, namely the one from 
data warehouses to data lakes. We'll explore that paradigm shift in the next part of 
this chapter.

From Data Warehouse to Data Lake 

The common architecture of a data processing system is shifting from traditional data 
warehouses that run on-premise toward modern data lakes in the cloud. This shift is 
being made by a new technology wave that started in the "big data" era with Hadoop 
in around 2006. Since then, more and more technology has arrived that makes it 
easier to store and process large datasets and to build models efficiently, making use 
of advanced concepts such as distributed data, in-memory storage, and graphical 
processing units (GPUs). Many organizations saw the opportunities of these new 
technologies and started migrating their report-driven data warehouses toward 
data lakes with the aim of becoming more predictive and to get more value out of 
their data.
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Next to a technology shift, what we see is a move toward more virtual data layers. 
Since computing power has become cheap and parallel processing is now a common 
practice, it's possible to virtualize the analytics layer instead of storing the data on 
disk. The following figure illustrates this; while the patterns and layers are almost the 
same, the technology and approach differ:

Figure 2.4: Data pipelines in a data warehouse and a data lake

The following table highlights the similarities and differences between the 
data platforms:

Figure 2.5 Comparison between data warehouses and data lakes

Note 

The preceding table has been written to highlight the differences between 
data warehouses and date lakes, but there is a "gray zone." There are 
many data solutions that don't fall into either of the extremes; for example, 
ETL pipelines that run in the cloud.
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To understand data layers better, let's revisit our bank example. The architects of 
PacktBank started by defining a new data lake architecture that should be the data 
source for all AI projects. Since the bank did not foresee any streaming project on 
short notice, the focus was on batch; every source system had to upload a daily 
export to the data lake. This data was then transformed into a relational data vault 
with time-traveling possibilities. Finally, a set of views allowed quick access to the 
historical data for a set of use cases. The data scientists were building models on top 
of the data from these views, which was temporarily stored in a model development 
environment (Amazon SageMaker). Where needed, the data scientists could also get 
access to the raw data. All these access points were regulated with role-based access 
and were monitored extensively. The following figure shows the final architecture of 
the solution:

Figure 2.6: Sample data lake architecture

Exercise 2.01: Designing a Layered Architecture for an AI System

The purpose of this exercise is to get acquainted with the layered architecture that is 
common for large AI systems.
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For this exercise, imagine that you must design a new system for a telecom 
organization; let's call it PacktTelecom. The company wants to analyze internet traffic, 
call data, and text messages on a daily basis and perform predictive analysis on the 
dataset to forecast the load on the network. The data itself is produced by the clients 
of the company, who are using their smartphones on the network. The company is 
not interested in the content of the traffic itself, but most of the information at the 
meta-level is interesting. The AI system is considered part of a new data lake, which 
will be created with the aim of supporting many similar use cases in the future. 
Data from multiple sources should be combined and analyzed in reports and made 
available to websites and mobile apps through a set of APIs.

Now, answer the following questions for this use case:

1.	 What is the data source of the use case? Which systems are producing data, and 
in which way are they sending data to the data lake?

The prime data source is the smartphones of the clients. The smartphones are 
continuously connected to the network of the company and send their metadata 
to the core systems (for example, internet traffic and text messages). These core 
systems will send a daily batch of data to the data lake; if required, this can be 
made real-time streaming at a later stage.

2.	 Which data layers should you use for the use case? Is it a streaming 
infrastructure or a more traditional data warehousing scenario?

A raw data layer stores the daily batches that are sent from the core systems. 
A historical data layer is used to build a historical overview per customer. An 
analytics layer is used to query the data in an efficient way. At a later stage, a 
streaming infrastructure can be realized to replace the daily batches.

3.	 What data preparation steps need to be done in the ETL process to get the raw 
data in shape so that it's useful to work with?

The raw data needs to be cleaned; the content must be removed. Some 
metadata might have to be added from other data sources, for example, client 
information or sales data.

4.	 Are there any models that need to be trained? If so, which layer are they getting 
their data from?

To forecast the network load, a machine learning model needs to be created that 
is trained on the daily data. This data is gathered from the historical data layer.
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By completing this exercise, you have reasoned about the layers in an AI system and 
(partly) designed an architecture.

Requirements per Infrastructure Layer

Let's dive into the requirements for each part of a data solution. Depending on the 
actual requirements per layer, an architect can choose the technology options for the 
layer. We'll list the most important requirements per category here.

Some requirements apply to all data layers and can, therefore, be considered generic. 
For example, scalability and security are always important for a data-driven system. 
However, we've chosen to list them for each layer separately because each layer has 
many specific attention points for these generic requirements as well.

The following table highlights the most important requirements per data layer:

Figure 2.7: Important requirements per data layer
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Raw Data
The raw data layer contains the one-to-one copies of files from the source systems. 
The copies are stored to make sure that any data that arrives is preserved in its 
original form. After storing the raw data, some checks can be done to make sure that 
the data can be processed by the rest of the ETL pipeline, such as a checksum.

Security

We'll look at data security first. All modern software and data systems must be 
secure. By security requirements, we mean all aspects related to ensuring that the 
data in a system cannot be viewed or deleted by unauthorized people or systems. It 
entails identity and access management, role-based access, and data encryption.

Basic Protection

In any data project, security is a key requirement. The basic level of data protection is 
to require a username-password combination for anyone who can access the data: 
customers, developers, analysts, and so on. In all cases, the passwords should be 
evaluated against a strong password policy and must be changed on a regular basis. 
Passwords should never be stored in plain text; instead, they should always be in a 
salted and hashed form so that even system administrators cannot retrieve the actual 
passwords. The security levels themselves depend on the Availability, Integrity, and 
Confidentiality (AIC) rating, which we'll explain in the following paragraph. Suffice 
to say that highly secure data should not only be protected with a username and 
password. Multi-factor authentication is a way of adding a security layer by making 
use of a second or even third authentication method alongside password protection, 
such as an SMS message on your phone, a fingerprint ID, or a dedicated security 
token generator.
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The AIC Rating

Data security in organizations can be classified with the AIC rating (sometimes the 
CIA rating is also used, but this causes confusion with the abbreviation for the Central 
Intelligence Agency). Each data source and application should be categorized into 
three dimensions:

•	 A = availability: The level of protection against data loss in cases of system 
failure or upgrades. If data loss must be prevented at all times, for example, for 
payment transactions, the level is high. If data loss is annoying but not terrible, 
for example, spam emails, the level is low.

•	 I = integrity: The level of consistency and accuracy that the dataset must uphold 
during its life cycle. Some data might be removed or updated without any 
consequences; those datasets will receive a low integrity rating. However, if it's 
crucial that data records are preserved for a long time, for example, tax records, 
the rating will go up.

•	 C = confidentiality: The level of personal details of a person or company that 
is included in the dataset. If personal details such as names or addresses are 
stored, it's likely that the rating is high. The highest level of confidentiality is 
reserved for datasets that contain very private data, such as credit card numbers 
or passwords.

Each of these dimensions gets a rating from 1 to 3. Thus, a dataset with an AIC rating 
of 111 is considered to be less risky and vulnerable compared to a dataset with a 
rating of 333. You could argue that when data from a 111 system falls into the wrong 
hands (a hacker or competing organization), it's no big deal. However, when data 
from a 333 system ends up "on the street," you're in serious legal trouble and might 
even be out of business. When it comes to securing data, each category should imply 
certain measurements within your company. For example, any dataset with a C rating 
of 3 can only be accessed with multi-factor authentication.
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Role-Based Access

In the raw data layer, all data files must be governed with role-based access control 
(RBAC) to ensure that no data falls into the wrong hands. Every principal (human or 
machine account) has one or more roles. Each role has one or more permissions to 
a database, file share, table, or other pieces of data. With the right permissions, files 
can be read by humans (for example, data scientists that require access to the raw 
data); write access is only available for software that imports the data from the source 
systems. Every file must be secured. In many cases, the actual security is inherited 
from a higher directory. The file structure proposed in Figure 2.6: Sample data lake 
architecture, allows security to be configured per source system or per period. It 
should also be possible to give data scientists access to a part of the data store 
temporarily, for example, to copy data to a machine learning environment. Modern 
security frameworks and identity and access management systems such as Microsoft 
Active Directory and Amazon AWS Identity and Access Management (IAM) have 
these options available. The following figure shows these:

Figure 2.8: Simplified sample of roles and permissions of a data importing system
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The preceding figure is a highly simplified role-based access diagram that has been 
sketched to illustrate the relations between principals, roles, and permissions. In this 
example, Jordan has the role of System Admin and is therefore allowed to modify 
the parameters of an ETL pipeline. However, he cannot read the actual contents 
of the data sources since he has no permissions. Quinn has two roles: Manager 
and Content Editor. She can assign roles to other principals and add, edit, and 
remove data sources. ETL_pipeline_g1 is a non-human principal, namely an 
account that a piece of software uses to access data and execute tasks. It has the 
role of Data Reader and therefore has permission to read the data from the 
data sources.

Encryption

Data at rest (stored on disk) and in motion (transferred across a network) should be 
encrypted to prevent third parties and hackers from accessing it. By encrypting data, 
a hacker who intercepts the data or reads it straight from disk still cannot get to its 
content; it will just be a scrambled array of characters. To read the data, you must 
be in possession of a private key that has a relation to the public key that the data 
was encrypted with (with asymmetric encryption, which is by far the most popular 
mechanism). These private keys must, therefore, be kept secure at all times, for 
example, in a special purpose key store. All modern cloud infrastructure providers 
have such a key store as a service in their offerings.

There are many types of encryption possible. Advanced Encryption Standard 
(AES) and Rivest-Shamir-Adleman (RSA) are two examples of popular asymmetric 
encryption algorithms. These can both be used to encrypt data at rest and in motion, 
although some performance considerations might apply; RSA is a bit slower than AES. 
What's more important is to choose the size of the keys; the more bits, the harder it is 
to break the encryption with a brute-force attack. Currently, 256 bits is considered to 
be a safe key size.
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Keys should never be stored in places with more or less open access, for example, 
sticky notes or Git repositories. It's good practice to rotate your keys, which means 
that they alter after a certain period (say, a month). This makes sure that even if keys 
are accidentally stored in a public place, they can only be used for a limited period 
of time.

At the core of data security are four basic principles:

•	 Security starts with basic protection, such as strong and rotating passwords. All 
users are registered in a central identity and access management system.

•	 All access to data is regulated with permissions. Permissions can be attached to 
roles, and roles can be assigned to users. This is called role-based access.

•	 The data security measurements are related to the AIC rating of a dataset. A 
higher rating indicates that more security controls should be put into place.

•	 Data at rest and in motion can be encrypted to protect it from intruders.

Let's understand this better by going through the next exercise.

Exercise 2.02: Defining the Security Requirements for Storing Raw Data

For this exercise, imagine that you are creating a new data environment for an 
ambulance control room. The goal of the system is to gather as much useful 
information as possible from government and open data sources in order to direct 
ambulances on their way to a 911 call once it arrives. The core data sources that must 
be stored are the 911 calls; this is combined with maps data, traffic information, local 
news from the internet, and other sources. It's apparent that such systems are prone 
to hacking and a wrong/fake call could lead to medical mistakes or the late arrival of 
emergency personnel.

In this exercise, you will create a security plan for the ambulance control room. The 
aim of this exercise is to become familiar with the security requirements of a system 
where data protection plays an important role. 

Now, answer the following questions for this use case:

1.	 Consider the data source of your application. Who is the owner of the data? 
Where is the data coming from?

The prime data source is the 911 calls that come from the people who need help. 
The call data is owned by the person who makes the call.
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2.	 What is a potential security threat? A hacker on the internet? A malicious 
employee of your company? A physical attack on your data center?

Potential security threats are hackers on the internet, fake phone callers, 
employees who might turn against the company, physical attackers on the data 
center, terrorists, and many more.

3.	 Try to define the AIC rating of the dataset. What are the levels (from 1 to 3) for 
the availability, integrity, and consistency of the data?

The phone calls have an AIC rating of 233. The availability is reasonably high but 
retrieving the data, in retrospect, is not as important as being able to respond to 
the calls once they arrive; thus, the overall availability is 2. The infrastructure for 
making the calls has an availability rating of 3. The integrity rating is 3 since the 
ambulance control room must be able to rely on the data; the location, time, and 
call quality are all very important aspects of the data. The confidentiality rating 
is also 3 since the calls themselves will contain many privacy-related details and 
confidential information.

4.	 Regarding the AIC rating, which measurements should you take to secure 
the data? What kind of identity and access management should you put in 
place? What kind of data encryption will you use? Consider the roles and 
permissions for accessing the data, as well as password regulations and multi-
factor authentication.

Considering the high integrity and confidentiality ratings, the security around 
the call data must be very good. The data should only be accessed by registered 
and authorized personnel of the control room, who have been given access 
by a senior manager. The access controls must be audited on a regular basis. 
Two-factor authentication, a strong password policy, and encryption of all data at 
rest and in motion must be put in place in order to minimize the risk of security 
breaches and hacks from outside.

By completing this exercise, you have created a security plan for a demanding system. 
This helps when setting the requirements for systems in your own organization.

Scalability

Scalability is the ability of a data store to increase in size. Elasticity is the ability 
of a system to grow and shrink on demand, depending on the need at hand. 
For the sake of simplicity, we address both scalability and elasticity under one 
requirement: scalability.
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In traditional data warehousing projects, a retention policy was very important in the 
raw data layer since it prevented the disks from getting full. In modern AI projects, 
what we see is that it's best to keep the raw data for as long as possible since (file) 
storage is cheap, scalable, and available in the cloud. Moreover, the raw data often 
provides the best source for model training in a machine learning environment, so it's 
valuable to give data scientists access to many historical data files.

To cater for storing this much data on such a large scale, a modern file store such 
as Amazon S3 or Microsoft Azure ADLS Gen2 is ideally suited. These cloud-based 
services can be seen as the next generation of Hadoop file stores, where massive 
parallel file storage is made easily available to its consumers. For an on-premise 
solution, Hadoop HDFS is still a good solution.

Using the same example of PacktBank, the new data lake for AI must start small but 
soon scale to incorporate many data sources of the bank.

The architects of PacktBank defined the following set of requirements for the 
new system:

•	 The data store should start very small since we will first do a proof-of-concept 
with only test data. The initial dataset is about 100 MB in size.

•	 The data store should be able to expand rapidly toward a size where all the data 
from hundreds of core systems will be stored. The expected target size is 20 TB.

•	 There will be a retention policy forced on some parts of the data since privacy 
regulations enforce that certain sensitive data be removed after 7 years. The 
data store should be able to shrink back to a smaller size (~15 TB) if needed, and 
the costs associated with the data store should follow proportionally.

Time Travel

For many organizations, it is important to be able to query data in the past. It's very 
valuable and is often required by laws or regulations to be able to answer questions 
such as "how many customers were in possession of product 3019 one month ago?" 
or "which employees had access to document 9201 on 14 March 2018?". This ability is 
called time travel, and it can be embedded in data storage systems.
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Raw data must be stored in a way so that its origins and time of storage are apparent. 
Many companies choose to create a directory structure that reflects the daily or 
hourly import schedule, like so:

Figure 2.9: Example of a directory structure for raw data files

In the preceding figure, a file that arrives on a certain date and time gets placed in 
a directory that reflects its arrival date. We can see that on February 2, 2019, a daily 
export was stored. There is also a file containing ERROR which possibly indicates a 
failed or incomplete import. The full import log is stored in a text file in the same 
folder. By storing the raw data in this structure, it's very easy for an administrator 
to ask questions about the source data in the past; all they must do is browse to the 
right directory on the filesystem.

Retention

Data retention requirements define in what way data is stored to meet laws and 
regulations or to preserve disk space by deleting old files and data records. Since 
it's often convenient and useful in a modern AI system to keep storing all the data 
(after all, data scientists are data-hungry), a retention policy is not always necessary 
from a scalability perspective. As we saw when exploring the scalability requirement, 
many data stores can store massive amounts of data cheaply. However, a retention 
requirement (and therefore, a policy) might be needed because of laws and 
regulations. For example, in the EU's GDPR regulations, it's stated that data must 
be stored "for the shortest time possible." Some laws and regulations are specific 
for industries, for example, call data and metadata in a telecom system may only be 
stored for 7 years by a telecom provider.



58 | Artificial Intelligence Storage Requirements

To cater to retention requirements, the infrastructure and software of your data lake 
should have a means of removing and/or scrambling/anonymizing data periodically. 
In modern file stores and databases, policies can be defined in the tool itself and the 
tool automatically implements the retention mechanisms. For example, Amazon S3 
supports lifecycle policies in which data owners can specify what should happen with 
the data over time, as shown in the following figure:

Figure 2.10: Retention rules in Amazon S3

When storing data in an on-premise data store that does not support retention 
(for example, MySQL or a regular file share), you'll have to write code yourself that 
periodically runs through all your data and deletes it, depending on the parameters 
that have been defined for your policy.
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Metadata and Lineage 

Metadata is data about data. If we store a file on a disk, the actual data is the contents 
of the file. The metadata is its name, location, size, owner, history, origin, and 
many other properties. If metadata is correctly and consistently registered for each 
dataset (a file or database record), this can be used to track and trace data across 
an organization. This tracking and tracing is called lineage, and it can be mostly 
automated with modern tooling.

If the requirements for metadata management and lineage requirements are in place, 
every data point in the pipeline must be traced back to its source if required. This can 
be requested in audits or for internal data checks. For the raw data layer, it implies 
that for every data source file, we store a set of metadata, including the following:

•	 Filename: The name of the file

•	 Origin: The location or source system where the data comes from

•	 Date: The timestamp when the data entered the data layer

•	 Owner: The data owner who is responsible for the file's contents

•	 Size: The file size

For data streams, we store the same attributes as metadata but they are translated to 
the streaming world; for example, the stream name instead of a filename. In Chapter 
3, Data Preparation, we'll discuss lineage in detail and provide an exercise for building 
lineage into ETL jobs.

A further extension to the security model and metadata-driven lineage, once in place, 
is consent management. Based on the metadata of the raw data files, a data owner 
can select which roles or individuals have access to its files. In that way, it's possible to 
create a data-sharing environment where each data owner can take responsibility for 
the availability of their own data.

Now, we have discussed the main requirements for the raw data layer: security, 
scalability, time travel, retention, and metadata. Keep in mind that these topics 
are important for any data storage layer and technology. In the next section, we 
will explore these requirements for the historical data layer and add availability as 
an important requirement that is most apparent for the technology and data in 
that layer.
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Historical Data
The historical data layer contains data stores that hold all data from a certain point 
in the past (for example, the start of the company) up until now. In most cases, this 
data is considered to be important to run a business, and in some cases, even vital for 
its existence. For example, the historical data layer of a newspaper agency contains 
sources, reference material, interviews, media footage, and so on, all of which were 
used to publish news articles. Data is stored in blobs, file shares, and relational tables, 
often with primary and foreign keys (enforced by the infrastructure or in software). 
The data can be modeled to a standard such as a data vault to preserve historical 
information. This data layer is responsible for keeping the truth, which means it is 
highly regulated and governed. Any data that is inserted into one of the tables in this 
layer has gone through several checks, and metadata is stored next to the actual data 
to keep track of the history and manage security.

Security

In general, the same requirements that apply to the raw data store also apply to the 
historical data layer. Whereas the raw data layer dealt with files, the historical data 
layer has tables to protect. But that is often not enough granularity since a lot of 
data can be combined in tables. For example, a company that provides consultancy 
services to multiple customers could have a table with address information that 
contains records from these companies. But for the sake of privacy and secrecy, 
not all account managers in the consultancy organization may have access to each 
client; they should only see the information of the clients that they are working for 
directly. For these kinds of cases, it must be possible to apply row-level or column-
level security.

Row-Level Security

When setting up tables in a multi-tenant way, containing data from multiple owners, 
it's necessary to administer the owner per record. Modern databases and data 
warehouse systems such as Azure Synapse can then assign role-based access security 
controls to the tables per row; for example, "people that have role A have read-only 
access to all records where the data owner is O."

Column-Level Security

In a similar way, security can be arranged per column in modern columnar NoSQL 
databases. It might be beneficial to add columns to a table for a specific client or data 
owner. In those cases, access to the columns can be arranged with similar role-based 
access; for example, "people that have role B have read and write access to all data in 
columns Y and Z."
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Scalability

The amount of data in the historical data layer will keep on growing since fresh data 
will arrive every day and not all data will be part of a retention plan. Business users 
will also regard the historical data as highly valuable since the information there 
can be used to train models and generally compare situations of the organization. 
Therefore, it's crucial to pick technology that can scale. Modern data warehouses 
in the cloud all cater to scalability and elasticity, for example, Amazon Redshift and 
Snowflake. The scalability of data stores on-premise is more limited, constrained 
by your own data center. However, for many organizations, the requirements to 
scale might be perfectly met by an on-premise infrastructure. For example, local 
government organizations often deal with complex data from many sources, but 
the total size of a data lake usually does not surpass the 1 TB mark. In these kinds 
of cases, setting up a solid infrastructure that can hold this data is perhaps a better 
choice than to put all the data in the public cloud.

Availability

A system or datastore is considered to be reliable and highly available if there is a 
guarantee that a system keeps on running and no data is lost in the lifespan of the 
system, even during outages or failures. Usually, this problem is solved by distributing 
data across an infrastructure cluster (separated in servers/nodes or geographical 
regions) as soon as it enters the system. In the case of a crash or other malfunction, 
the data is backed up in multiple locations that seamlessly take over from the 
main database.

The historical data layer is the heart of the modern data lake and as such, it is 
primarily concerned with storing data for an (in principle) indefinite duration. 
Therefore, reliability and robustness are key to selecting the technology components 
for this layer. Technology components are selected based on the maximum 
downtime of a system. So, first, let's look into calculating the availability percentage 
and from there, decide on the technology.

The availability of a system is usually expressed in a percentage, which denotes time 
(in hours) that the system is up and running as a function of its lifespan. For example, 
a system with an availability of 90% is expected to be online 168 * 0.9 = 151 hours of 
a full week of 168 hours, which means that there are 168 - 151 = 17 hours in which 
the system can be taken offline for maintenance. Unfortunately, an availability of 90% 
is very poor nowadays. 
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The following table gives an overview of availability as a percentage, and the amount 
of downtime related to the percentage:

Figure 2.11: Availability percentages explained in downtime

It's possible to calculate the availability of a system using the following formula:

Figure 2.12: Availability formula

For example, if a data store was down for maintenance for 3 hours with available 
hours being 5040, the availability of that system was as follows:

Figure 2.13: Availability calculation

Let's understand this better with an exercise.

Exercise 2.03: Analyzing the Availability of a Data Store

For this exercise, imagine that you work as an operations engineer for TV 
broadcasting company PacktNet. The core system of the company must be available 
so that clients can binge-watch their favorite series at all times. The system, therefore, 
has received an availability rating of 99.99%.

The aim of this exercise is to become familiar with the availability formula and to 
practice it in a real-world scenario.
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Now, answer the following questions for this use case:

1.	 Is it allowed to bring the system down for 5 minutes per month for maintenance?

An availability of 99.99% means that the system can be down for 1 minute per 
week or about 4 minutes per month. So, a downtime of 5 minutes per month is 
not allowed.

2.	 In the previous year, there were only a few minor incidents and almost no 
scheduled maintenance. The system was offline for 1 hour in total. What was the 
availability during that year?

There are 365 x 24 = 8760 hours in a year. The availability in the previous year 
was  (rounded to two decimals).

By completing this exercise, you have successfully calculated the availability of a data 
store. This is an important requirement for any system. 

Availability Consequences

Once the availability requirements of a system have been determined, a matching 
infrastructure should be chosen. There are many different data stores (file shares and 
databases) that all have their own availability percentage. The following table contains 
the percentages for a selection of popular cloud-based data stores. Note that some 
services offer a stepped approach, where more uptime costs more. Also, note that 
the availability can be drastically increased if the data is parallelized across different 
data centers and different regions:

Figure 2.14: Availability of a few popular data stores in the cloud

Some cloud services offer high availability but don't express this in a percentage. For 
example, the documentation of Amazon SageMaker states that it is designed for high 
availability and runs on Amazon's scalable and robust infrastructure (with availability 
zones, data replication, and so on), but does not give a guaranteed maximum 
downtime percentage.
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When working with data on-premise, the calculation differs a bit. The correct way 
to calculate the entire availability of a system is to multiply the availability of the 
infrastructure (servers) by the availability of the software.

Some considerations when writing down the availability requirements for data 
storage are as follows:

•	 There is planned downtime versus unplanned downtime; planned downtime 
is for scheduled upgrades and other maintenance on the system that must 
be done on a regular basis. Planned downtime counts as non-available, but 
obviously, it can be controlled, managed, and communicated better (for 
example, an email to all users of the system) than unplanned downtime, which is 
when there are unexpected crashes of the system.

•	 Once availability becomes very high, it's often described in the "number of 
nines." This indicates the number of nines in the percentage; 99.99% is four 
nines availability.

•	 A system that is 100% available might still be unusable, for example, if the 
performance of the interface is very slow. So, keep in mind that the availability 
percentage does not express the entire scope of the reliability and availability of 
the system; it's just a helpful measurement.

•	 Next to measuring availability, it can be even more important to measure data 
loss. If a system is down for 1 hour, but all the data that was entered into the 
system during that period is lost, there could be major implications. Therefore, 
it's good practice to focus on the distribution (and thereby redundancy) of 
data; as soon as data is stored, it should be replicated across multiple nodes. 
Furthermore, there should be backups in place for emergency scenarios where 
all the nodes fail.

•	 High availability always comes at a cost. There is a trade-off between 
the "number of nines" and the cost of development, infrastructure, and 
maintenance. This is ultimately a business decision; how mission-critical is the 
data and the system, and at what price?
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Time Travel

One of the key requirements of the historical data layer is the ability to "time travel." 
That means it should be possible to retrieve the status of a record or table from any 
moment in the past, providing the data was there. Tables that have this ability are 
called temporal tables. This can be achieved by applying a data model that allows 
time travel, for example, a data vault. Essentially, these data models are append-only; 
no updates or deletes are allowed. With every new record that enters the system, a 
"valid from" and optionally "valid to" timestamp is set. Let's understand this better 
with an example.

The following table contains an example of a table with company addresses. The data 
format is according to the "facts and dimensions" model, where a relatively static 
dimension (for example, company, person, or object) is surrounded by changing facts 
(for example, address, purchase, call). The company with ID 51 recently changed 
address from Dallas to Seattle, so a new record was added (record ID: 4). The old 
address of the same company is still preserved in the table (record ID: 3). So, now, 
we have two address rows for the same company, which is fine since only one can be 
valid at any given moment:

Figure 2.15: Example of a table that preserves historical data and allows time travel

Suppose the government needs to have a report with a list of offices that have shut 
down in Dallas and their new locations. In such cases, time travel is a very important 
requirement. A query that retrieves all these addresses (current and historical) of the 
company is as follows:

SELECT * FROM Addresses WHERE CompanyId = 51;

A query that retrieves the current address of a company is as follows:

SELECT TOP 1 * FROM Addresses WHERE CompanyId = 51 ORDER BY ValidFrom 
DESC;
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The same requirement can also be fulfilled by using a ValidTo column; if that is 
empty (NULL), the record is the most actual one. The downside of this approach is 
that it requires updates to a table, not just inserts, so the ETL code can become more 
complex. Using both ValidFrom and ValidTo is also possible and provides better 
querying options but adds some complexity and requires the insert and update 
statements to be in sync.

If time travel is a key feature for your use case, for example, a healthcare system 
that needs to keep track of all the medicine that was provided to patients, you might 
consider a database where these kinds of timestamps are a native element for all 
data entry; for example, Snowflake.

Another way to achieve the possibility to time-travel your data is with a mechanism 
called event sourcing. This is a relatively new method of storing data, where each 
change that's made to the data is stored separately rather than as a result of the 
change. For example, an UPDATE statement in a traditional database results in the 
overwriting of a record. With event sourcing, an UPDATE statement would not alter 
the record itself but rather add a new record to the table, along with information 
about the change. In this way, there is automatically a trail of events that leads from 
the original record to the latest one. This trail can be quite long and is therefore 
mostly used in the historical data layer, not in the analytics layer of an AI application. 
To get the latest record, all events must be replayed and calculated over the 
original event. This can include events that cancel each other out; for example, the 
combination of an INSERT and DELETE statement.

The data of PacktBank has great value if it can be queried from a historical 
perspective. Since many source systems only store the "present" situation, it's 
important that the new data lake preserves the data's history. To that extent, the 
bank chooses to create a historical data warehouse that AI systems can benefit from. 
On a daily basis, the current state of the source systems is appended to the database 
tables, which are arranged in a data vault model. Data scientists and analysts can 
now request access to perform time-series analysis, for example, of the earnings and 
spending of a customer to forecast their ability to afford a loan.
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Locality of Data

When data is stored in an international organization, it's important to think 
about the physical location of data storage. We are used to systems that respond 
instantaneously and smoothly; a lag of 1 second when visiting a web page is already 
considered to be annoying. When data is stored in one continent, it can take some 
time (up to a few seconds) to reach another continent, due to the time it takes on the 
network. This kind of delay (latency) is not acceptable to clients who are working with 
the data, for example, the visitors of websites. Therefore, data must be stored close 
to the end users to minimize the amount of network distance. Furthermore, there 
might be laws and regulations that constrain the possible physical locations of data 
storage. For example, a government organization might require that all data is stored 
in its own country.

Most cloud-based data storage services offer the option to store data in specific 
regions or locations. Amazon and Microsoft provide geographical regions across 
the globe for their cloud offerings (AWS and Azure), in which customers can choose 
to put their data. If needed, there is a guarantee that the data will not leave the 
chosen region. For the sake of availability and robustness, it's best to distribute data 
across regions.

Metadata and Lineage

Metadata management in the historical data layer is important but quite difficult to 
realize. For every table and record (row), there should be a metadata entry that lists 
the origin, timestamp, owner, transformations, and so on. Usually, this metadata 
is stored in a separate table or database, or in a dedicated metadata management 
system. Since data is usually entered into the database via an ETL process, there is a 
big responsibility for the ETL tools to keep updating the metadata. Once in place, the 
metadata repository will be a valuable asset in the data lake, since it allows questions 
such as the following to be answered:

•	 What are the sources of the aggregated calculation in my report?

•	 At what date and time were the records from source system X last updated?

•	 How often on average is the data in the employee table refreshed?
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In this section, we have looked at the most important requirements for the historical 
data layer of an AI system. We have looked at security, scalability, availability, 
time travel, and the locality of data. In the next section, we'll look at the typical 
requirements that should be considered when working with data streams.

Streaming Data
The requirements for a streaming data layer are different from a batch-oriented 
data lake. Firstly, the time dimension plays a crucial role. Any event data that enters 
the message bus as a stream must be timestamped. Secondly, performance and 
latency are more important since it must be certain that data can be processed in 
due time. Thirdly, the way that analytics and machine learning are applied differs; 
while the data is being streamed in, the system must analyze it in near-real-time. 
In general, streaming data software relies more on computing power than storage 
space; processing speed, low latency, and high throughput are key. Nevertheless, 
the storage requirements that are in place for a streaming data system are worth 
considering and are a bit different from "static" batch-driven applications.

Security

A typical streaming datastore is separated into topics. A topic is named as such in 
the popular streaming data store Kafka. These can be considered as being like tables 
in a traditional database. In other frameworks, they might have different names; for 
example, in the cloud-based Amazon Kinesis data store, the topics are called shards. 
For the sake of clarity, we will continue to call them topics in the remainder of this 
chapter. Topics can be secured by administering role-based access. For example, in 
a bank, there are many kinds of streaming data: financial transactions, page visits 
of clients, stock market traders, and others. Each of these kinds of data gets its own 
topic in a streaming data store, with its own data format, security, access role, and 
availability rating.

Data at rest (stored in an event bus) and in motion (incoming and outgoing traffic) 
should be encrypted with the mechanisms we explained in the Security subsection 
within the Raw Data section. 
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Performance

When analyzing data streams, it's crucial to select technology and write code that can 
handle thousands or even millions of records per second. For example, systems that 
work with Internet of Things (IoT) or sensory data must handle massive amounts of 
events. There are two important performance requirements for these systems:

•	 The amount of data (the number of events per second and bytes per second) 
that the event bus and stream processing engine is able to handle; this is the 
base figure that tells us whether there is a risk of overloading the system. In 
frameworks such as Kafka, Spark, and Flink, this is scalable; roughly speaking, 
just add more hardware to process more events.

•	 The amount of data that the software runs as jobs on the stream processing 
engine that it is able to handle. The software should run fast enough to be able 
to process all events per time window before a new calculation is required. 
Therefore, the software that performs the aggregations and eventually more 
complex event processing, such as machine learning, must be optimized and 
carefully tested.

Availability

When a streaming engine crashes or must be taken offline for maintenance, it should 
only temporarily stop processing the never-ending stream of data and reprocess 
any events it missed. Also, there must be a guarantee that no data is lost; even when 
the system is down temporarily, data should be replayed into the streaming engine 
to make sure that all the events go through the system. To that extent, modern 
streaming engines such as Spark and Flink offer savepoints and checkpoints. These 
are backups of the in-memory state of the streaming engine to disk. If there is a 
crash or scheduled maintenance, the latest checkpoint or savepoint is reloaded 
into memory from disk, and the data isn't lost. In combination with Kafka offsets (the 
latest point that is read from a data source topic by a consumer), it's clear that all data 
is replayed if necessary.
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There are three main semantics when configuring availability and preventing the data 
loss of a streaming system:

•	 At-least-once: The guarantee that any event is processed at least once, but it's 
possible that one event goes through the system multiple times in the event 
of failures.

•	 At-most-once: The guarantee that any event is never processed more 
than once.

•	 Exactly-once: The guarantee that any event is processed exactly once by the 
streaming engine; this can only be accomplished with tight integration between 
the event bus (using offsets) and the streaming engine (using checkpoints 
and savepoints).

For example, one of the requirements of PacktBank is to analyze the financial 
transactions and online user activity of its customers in real time. Use cases that 
should be supported include real-time fraud detection and customer support (based 
on clickstreams and actions in the mobile app). A streaming engine was designed 
and developed with state-of-the-art technology, including Apache Kafka and Apache 
Flink. The requirement for the availability of the system was clear: in the case of 
maintenance or bugs, the system should not lose any data, since all transactions 
have to be processed. It's better to have a little delay and to keep customers waiting 
for a few minutes more than to miss fraudulent transactions altogether. Therefore, 
the architecture of the system was designed with an at-least-once guarantee of data 
availability. For every streaming job that handles the customer event data, an offset in 
Kafka keeps track of the latest data that has been read. Once data has entered a job 
in Flink, it's backed up in savepoints and checkpoints to make sure that no data 
has been lost.

Retention

In a streaming data system, the data is used when it's "fresh." Old data is only used 
for training models and generating historical (aggregated) reports. Therefore, the 
retention of a streaming data topic in an event bus can usually be set to a few days or 
a few weeks at the most. This saves storage space and other resources. When setting 
this requirement, think carefully about the aggregation step; perhaps it's useful to 
store the averages per hour or the results of the window calculations in your stream. 
As a typical example, the clickstream data of an online news website is only valuable 
when it's less than 1 day old. After all, news that's 1 day old is not very relevant 
anymore and the customers who have read the articles have already moved on!.
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Retention is also related to the amount of data that is expected. Sometimes, the 
number of events is just too many to be stored for a long period of time. When 
reasoning about data retention, it's advised to estimate the average and peak load 
of a system first. This can be done by multiplying the number of concurrent data 
sources that produce event data with the number of events that are being produced. 
For example, a payment processing engine at PacktBank has 1 million users in total, 
which all make 3 payments per day on average with a peak of 20 per day. The average 
load of the system is 1 million x 3 = 3 million payments per day, which is about 2,000 
payments per minute or 35 per second. At peak times, this can rise to 250 or so per 
second. A streaming data store that handles these events should be able to store 
these amounts of data and set a retention period in such a way that the disks will not 
become full. 

Exercise 2.04: Setting the Requirements for Data Retention

For this exercise, imagine that you are building a real-time marketing engine for an 
online clothing distribution company. Based on the online behavior of (potential) 
customers, you want to create advertisements and personalized offerings to increase 
your sales. You will get real-time clickstreams (page visits) as your prime event data 
source. On average, 200,000 individuals visit your website per day. They spend about 
20 minutes on your site and usually visit the home page, their favorites, about 75 
clothing items, and their shopping basket.

The aim of this exercise is to become familiar with the concept of data retention.

Now, answer the following questions for this use case:

1.	 What is a reasonable number of events that the system should be able to handle 
per minute? Are there peak times, and how would you handle them?

A quick estimation: 200,000 visits per day is 8,333 per hour on average. But we 
expect the evenings to be much busier than the mornings and nights, so we 
aim for a load of 25,000 concurrent users. They visit at least 75 items plus some 
other pages, so a reasonable clickstream size is 100-page visits per 20 minutes, 
which is 5 visits per minute. So, the total load is 5 x 25,000 = 125, 000 events 
per minute.

2.	 What retention policy would you attach to the event data? How long would the 
events be useful for in their raw form? Would you still require a report or other 
form of historical insight into the old data?
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The page visits will probably be valuable data for a week or so. After a week, 
other items will have sparked the interest of the clients, so the real-time 
information about the old events won't be as valuable anymore. Of course, this 
depends on the frequency of visits; if someone only logs in once per month, the 
historical data might be valuable over a longer period of time.

In this section, we discussed the typical requirements for streaming data storage: 
security, performance, availability, and retention. In the next section, we'll explore 
the requirements for the analytics layer, where data is stored for quick access in APIs 
and reports.

Analytics Data
The responsibility of the analytics layer of an AI system is to make data fast and 
available for machine learning models, queries, and so on. This can be achieved 
by caching data efficiently or by virtualizing views and queries where needed to 
materialize these views.

Performance

The data needs to be quickly available for ad hoc queries, reports, machine learning 
models, and so on. Therefore, the data schema that is chosen should reflect a 
"schema-on-read" pattern rather than a "schema-on-write" one. When caching data, 
it can be very efficient to store the data in a columnar NoSQL database for fast 
access. This would mean the duplication of data in many cases, but that's all right 
since the analytics layer is not responsible for maintaining "one version of the truth." 
We call these caches data marts. They are usually specific for one goal, for example, 
retrieving the sales data of the last month.

In modern data lakes, the entire analytics layer can be virtualized so that it just 
consists of queries and source code. When doing so, regular performance testing 
should be done to make sure that these queries are still delivering data as quickly as 
expected. Also, monitoring is crucial since queries may be being used in inappropriate 
ways, for example, setting parameters to such values (dates in WHERE clauses that 
span too many days) that the entire system becomes slow to respond. It's possible to 
set maximum durations for queries.
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Cost-Efficiency

The queries that run in the analytics layer can become very resource-intensive and 
keep running for hours. Any compute action in a cloud-based environment costs 
money, so it's crucial to keep the queries under control and to limit the amount of 
resources that are spent. A few ways to make the environment more cost-effective 
are as follows:

•	 Limit the maximum duration of queries to (for example) 10 minutes.

•	 Develop more specific queries for reports, APIs, and so on, rather than having a 
few parameterized queries that are "one size fits all." Large, complicated queries 
and views are more difficult to maintain, debug, and tune.

•	 Apply good database practices to the tables where possible: indexes, 
partitioning, and so on.

•	 Analyze the usage of the data and create caches and/or materialized views for 
the most commonly used queries.

Quality

Maintaining the data and software in an analytics cluster is difficult but necessary. 
The quality of the environment becomes higher when traditional software practices 
are being applied to the assets in the environment, which are as follows:

•	 DTAP environments (development → test → acceptance → production)

•	 Software development principles (SOLID, KISS, YAGNI, clean code, and so on)

•	 Testing (unit tests, regression tests, integration tests, security tests)

•	 Continuous integration (version control, code reviews)

•	 Continuous delivery (controlled releases)

•	 Monitoring and alerting

•	 Proper and up-to-date documentation
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For example, PacktBank stores its data about products, customers, sales, and 
employees in the new data lake. The analytics layer of the data lake provides business 
users and data analysts access to the historical data in a secure and controlled way. 
Since the results of queries and views must be trusted by management, any updates 
to the software must go through an extensive review and testing pipeline before 
they're deployed to the production environment. The models and code are part of a 
continuous integration and delivery cycle, where the release pipeline and an enforced 
"4-eyes principle" (the mechanism that ensures that development and operations 
are separated) makes sure that no software goes to production before a set of 
automatic and manual checks. When writing code, the engineers often engage in pair 
programming to keep the code quality high and to learn from each other. Models are 
documented and explained as carefully as possible and reviewed by a central risk 
management team.

In this section, we have discussed some important requirements for the analytics 
layer: performance, cost-efficiency, and quality. Keep in mind that other requirements 
for data storage that were described in the other layers, such as scalability, metadata, 
and retention, also play an important role. In the next and final section, we will dive 
into the specific requirements for the model development and training layer.

Model Development and Training
Data that is used for developing and training machine learning models is temporarily 
stored in a model development environment. The data store itself can be physical (a 
file share or database) or in memory. The data is a copy of one or more sources in 
the other data layers. Once the data has been used, it should be removed to free up 
space and to prevent security breaches. When developing reinforcement learning 
systems, it's necessary to merge this environment with the production environment; 
for example, by training the models directly on the data in the historical data layer.

In our example of PacktBank, the model development environment of the new data 
lake is used by data scientists to build and train new risk models. Whereas the old 
way of forecasting whether clients could afford a loan was purely based on rules, 
the new management wants to become more data-driven and rely on algorithms 
that have been trained on historical data. The historical data in this example is the 
combination of clients' history with the number of missed payments (defaults) for 
each client. This information can be used in the model development environment to 
create machine learning models.



Model Development and Training | 75

Security

The model development environment must be secured with a very strict access 
policy since it can contain a lot of production data. A common practice is to make the 
environment only available to a select set of data scientists, who only have access to a 
few datasets that are temporarily available.

Datasets that are copied from a production environment into the model development 
environment fall under the responsibility of the data scientist who is developing and 
training the model. They should govern access to the datasets that are temporarily 
acquired in this way. The level of security is set is on the dataset level and not a row 
or table level. Data scientists usually require a full dataset and it would make no 
sense to have fine-grained access once the data has been copied into the secure 
model environment where only data scientists have access.

Availability

The required availability of data in a model development environment is usually not 
very high. Since the data is only a copy of the actual production data, the data doesn't 
have to be available at all times. If the environment becomes unavailable due to a 
crash or regular maintenance, the data scientists working with the data will just have 
a productivity loss (for example, they will not be able to work on new models for a 
few days) but not a production incident (for example, a mission-critical system not 
working for a few days).

Retention

The data in a model development environment is essentially copied here temporarily, 
for data scientists to work on. This data should be treated as a developer cache. This 
means the data should be automatically or manually deleted as soon as the models 
have been trained. For any subsequent training that's required, the data can be 
loaded as a copy of the production environment again. It's considered to be good 
practice to only keep the data in the model development environment for a short 
period in order to prevent data leaks and to keep resources available. For example, 
once the data scientists of PacktBank have created a new model for the acceptance 
of a credit card, the data that was used to train the model can be removed from the 
model development environment. It's important to store the metadata of the model 
so that the data can be loaded from the historical archive again if needed.
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Activity 2.01: Requirements Engineering for a Data-Driven Application

Now, we have covered the major requirements that should be considered when 
building AI systems. In this activity, you will combine the concepts you've learned 
and defined the requirements of so far for a new set of data-driven applications for 
a national taxi organization. The customers, taxi rides, drivers, financial information, 
and other data must all be captured in one data lake. Historical data such as rides in 
the past should be combined with real-time data, such as the current location of the 
taxis. The aim of the data lake is to serve as the new data source for financial reports, 
client investigations, marketing and sales, real-time updates, and more. Algorithms 
and machine learning models should be trained on the data to provide advice to 
taxi drivers and planners about staffing and routes. Imagine that you're the architect 
who is responsible for setting the requirements for the data lake and choosing 
the technology.

The aim of this activity is to combine all the requirements that you've learned into 
one set that makes it possible to select the technology for a data-driven solution.

Answer the following questions to complete this activity:

1.	 Write down a list of data sources that you will need to import data from, either 
via batch or streaming.

2.	 With the business aim and the data sources in mind, select the layers of the 
solution that you will require.

3.	 What would your ETL data pipelines look like? How often would they be required 
to run? Are there any streaming data pipelines?

4.	 What metadata will be captured when importing and processing the data? 
To what extent can the metadata be used in the extension to the raw and 
transformed data?

5.	 What are the security, scalability, and availability requirements of the solution 
(per layer)?

6.	 How important are time travel, retention, and the locality of the data?

7.	 When selecting technology, how will you judge the cost-efficiency and quality 
(maintainability, operability, and so on) of the solution?

8.	 What are the requirements for an environment that will serve data scientists 
who are building forecasting models on top of the historical and real-time data?
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Now that you've completed this activity, you have mastered the skill of designing a 
high-level architecture and can reason about the requirements for AI solutions.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, we discussed the non-functional requirements for data storage 
solutions. It has become clear that a data lake, which is an evolution of a data 
warehouse, consists of multiple layers that have their own requirements and thus 
technology. We have discussed the key requirements for a raw data store where 
primarily flat files need to be stored in a robust way, for a historical database where 
temporal information is saved, and for analytics data stores where fast querying 
is necessary. Furthermore, we have explained the requirements for a streaming 
data engine and for a model development environment. In all cases, requirements 
management is an ongoing process in an AI project. Rather than setting all the 
requirements in stone at the start of the project, architects and developers should be 
agile, revisiting and revising the requirements after every iteration.

In the next chapter, we will connect the layers of the architecture we have explored 
in this chapter by creating a data processing pipeline that transforms data from the 
raw data layer to the historical data layer and to the analytics layer. We will do this to 
ensure that all the data has been prepared for use in machine learning models. We 
will also cover data preparation for streaming data scenarios.




