

Elasticsearch 8.x
Cookbook
Fifth Edition

Over 180 recipes to perform fast, scalable, and
reliable searches for your enterprise

Alberto Paro

BIRMINGHAM—MUMBAI

Elasticsearch 8.x Cookbook
Fifth Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Publishing Product Manager: Devika Battike
Senior Editor: Nathanya Dias
Content Development Editor: Sean Lobo
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Ponraj Dhandapani
Marketing Coordinator: Priyanka Mhatre

First published: December 2013
Second edition: January 2015
Third edition: February 2017
Fourth edition: April 2019
Fifth edition: May 2022

Production reference: 1280422

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-981-5

www.packt.com

http://www.packt.com

Contributors

About the author
Alberto Paro is an engineer, manager, and software developer. He currently works as
the technology architecture delivery associate director of the Accenture Cloud First
data and AI team in Italy. He loves to study emerging solutions and applications, mainly
related to cloud and big data processing, NoSQL, Natural Language Processing (NLP),
software development, and machine learning. In 2000, he graduated in computer science
engineering from Politecnico di Milano. Then, he worked with many companies, mainly
using Scala/Java and Python on knowledge management solutions and advanced data
mining products, using state-of-the-art big data software. A lot of his time is spent
teaching others how to effectively use big data solutions, NoSQL data stores, and related
technologies.

About the reviewers
Kyle Davis is the senior developer advocate with OpenSearch and Open Distro for
Elasticsearch at Amazon Web Services (AWS). Kyle has a long history of working in
software development, starting in the late 1990s. His experience runs the gamut from
frontend development to microcontrollers, but his most passionate area of interest is
NoSQL databases. He has blogged and presented extensively about technology and is
the author of Redis Microservices for Dummies. Kyle is based out of Edmonton, Alberta,
Canada.

Mahipalsinh Rana is currently chief technology officer (CTO) of Inexture Solutions
LLP. At Inexture, he specializes in enterprise searching, Python, Java, and ML/AI. He
has 15 years of experience. His stint with search technologies started in 2010 when he
started working with Solr. He then started working with Elastic and has done various
large-scale implementations and consultations. At the start of his career, he worked for
Sun Microsystems, where he worked on internationalization (i18n). He likes exploring
emerging technology trends such as NLP and intuitive searching for e-commerce.
He plans to develop a search engine for people who are still in the early stages of
technological advancement to provide them with information at ease. He has also worked
on Liferay Beginner's Guide by Packt.

Arpit Dubey is a big data engineer with over 14 years of experience in building large-
scale, data-intensive applications. He has experience in envisioning enterprise-wide
data strategies, roadmaps, and architecture for large internet companies, with varied
use cases. He specializes in building event-driven architectures and real-time analytical
solutions, using distributed systems such as Kafka, Flink, Spark, the Hadoop stack,
NoSQL databases, and graph databases. He has been an active public speaker on various
technology topics and has spoken at Kafka Summit, Druid Summit, and several other
technology meetups.

I would like to thank my entire family for always being my guiding light for
every path I choose and every step I take.

16
Plugin Development

Elasticsearch is designed to be extended with plugins to improve its capabilities. In the
previous chapters, we installed and used many of them (new queries, REST endpoints,
and scripting plugins).

Plugins are application extensions that can add many features to Elasticsearch. They can
have several usages, including the following:

•	 Adding a new scripting language (that is, Python and JavaScript plugins)

•	 Adding new aggregation types

•	 Adding a new ingest processor

•	 Extending Lucene-supported analyzers and tokenizers

•	 Using native scripting to speed up the computation of scores, filters, and field
manipulation

•	 Extending node capabilities, for example, creating a node plugin that can execute
your logic

•	 Monitoring and administering clusters

In this chapter, the Java language will be used to develop a native plugin, but it is possible
to use any Java virtual machine (JVM) language that generates JAR files.

596 Plugin Development

The standard tools for building and testing Elasticsearch components are built on top
of Gradle (https://gradle.org/). All our custom plugins will use Gradle to build
them.

In this chapter, we will cover the following recipes:

•	 Creating a plugin

•	 Creating an analyzer plugin

•	 Creating a REST plugin

•	 Creating a cluster action

•	 Creating an ingest plugin

Creating a plugin
Native plugins allow several aspects of the Elasticsearch server to be extended, but they
require good knowledge of Java.

In this recipe, we will see how to set up a working environment to develop native plugins.

Getting ready
You need an up and running Elasticsearch installation, as we described in the
Downloading and installing Elasticsearch recipe in Chapter 1, Getting Started.

Gradle or an integrated development environment (IDE) that supports Java
programming with Gradle (version 7.3.x used in the examples), such as Eclipse, Visual
Studio Code, or IntelliJ IDEA, is required. Java JDK 17 or above needs to be installed.

The code for this recipe is available in the ch16/simple_plugin directory.

How to do it...
Generally, Elasticsearch plugins are developed in Java using the Gradle build tool
(https://gradle.org/) and deployed as a ZIP file.

https://gradle.org/
https://gradle.org/

Creating a plugin 597

To create a simple JAR plugin, we will perform the following steps:

1.	 To correctly build and serve a plugin, some files must be defined:

	� build.gradle and settings.gradle are used to define the build
configuration for Gradle.

	� LICENSE.txt defines the plugin license.

	� NOTICE.txt is a copyright notice.

2.	 A build.gradle file is used to create a plugin that contains the following code:

buildscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath "org.elasticsearch.gradle:build-
tools:8.0.0"

 }

}

repositories {

 mavenCentral()

}

group = 'org.elasticsearch.plugin'

version = '8.0.0-SNAPSHOT'

apply plugin: 'java'

apply plugin: 'idea'

apply plugin: 'elasticsearch.esplugin'

apply plugin: 'elasticsearch.yaml-rest-test'

esplugin {

 name 'simple-plugin'

 description 'A simple plugin for ElasticSearch'

 classname 'org.elasticsearch.plugin.simple.
SimplePlugin'

 // license of the plugin, may be different than the
above license

 licenseFile rootProject.file('LICENSE.txt')

 // copyright notices, may be different than the above
notice

598 Plugin Development

 noticeFile rootProject.file('NOTICE.txt')

}

// In this section you declare the dependencies for your
production and test code

// Note, the two dependencies are not really needed as
the buildscript dependency gets them in already

// they are just here as an example

dependencies {

 implementation 'org.elasticsearch:elasticsearch:8.0.0'

 yamlRestTestImplementation 'org.elasticsearch.
test:framework:8.0.0'

}

// ignore javadoc linting errors for now

tasks.withType(Javadoc) {

 options.addStringOption('Xdoclint:none', '-quiet')

}

3.	 The settings.gradle file is used for the project name, as follows:

rootProject.name = 'simple-plugin'

4.	 The src/main/java/org/elasticsearch/plugin/simple/
SimplePlugin.java class is an example of the basic (the minimum required)
code that needs to be compiled for executing a plugin, as follows:

package org.elasticsearch.plugin.simple;

import org.elasticsearch.plugins.Plugin;

public class SimplePlugin extends Plugin {

}

How it works...
Several parts make up the development life cycle of a plugin, such as designing, coding,
building, and deploying. To speed up the build and deployment steps, which are common
to all plugins, we need to create a build.gradle file.

Creating a plugin 599

The preceding build.gradle file is a standard for developing Elasticsearch plugins.
This file is composed of the following:

•	 A buildscript section that depends on the Gradle building tools for
Elasticsearch, as follows:

buildscript {

 repositories {

// mavenLocal() // if you want use your local maven
artifact

 mavenCentral()

 }

 dependencies {

 classpath "org.elasticsearch.gradle:build-
tools:8.0.0"

 }

}

Note
The version of the plugin (that is, "org.elasticsearch.
gradle:build-tools:8.0.0") will be the target version of
Elasticsearch.

•	 The group and the version of the plugin, used for artifact deployment, as follows:

group = 'org.elasticsearch.plugin'

version = '8.0.0-SNAPSHOT'

•	 A list of Gradle plugins that must be activated, as follows:

apply plugin: 'java' // for java support

apply plugin: 'idea' // for Intellij IDEA support

apply plugin: 'elasticsearch.esplugin' // Elasticsearch
plugin support

apply plugin: 'elasticsearch.yaml-rest-test' //
Elasticsearch Yaml Rest Test

600 Plugin Development

•	 The core information that's needed to populate the plugin description: that is,
information that is used to generate the plugin-descriptor.properties file
that will be available in the final distribution ZIP and used by Elasticsearch to load
the plugin. The most important parameter is classname, which is the main entry
point of the plugin:

esplugin {

 name 'simple-plugin'

 description 'A simple plugin for ElasticSearch'

 classname 'org.elasticsearch.plugin.simple.
SimplePlugin'

 // license of the plugin, may be different than the
above license

 licenseFile rootProject.file('LICENSE.txt')

 // copyright notices, may be different than the above
notice

 noticeFile rootProject.file('NOTICE.txt')

}

•	 To compile the code, some dependencies are required, as follows:

dependencies {

 implements 'org.elasticsearch:elasticsearch:8.0.0'

}

After configuring Gradle, we can start writing the main plugin class.

Every plugin class must be derived from a plugin one and it must have a public scope,
otherwise, it cannot be loaded dynamically from the JAR, as follows:

package org.elasticsearch.plugin.simple;

import org.elasticsearch.plugins.Plugin;

public class SimplePlugin extends Plugin {}

After having defined all the files that are required to generate a ZIP release of our plugin, it
is enough to invoke the gradle clean check command. This command will compile
the code and create a zip package in the build/distributions/ directory of your
project: the final ZIP file can be deployed as a plugin on your Elasticsearch cluster (see
Chapter 1, Installing Plugins in Elasticsearch, as reference).

In this recipe, we configured a working environment to build, deploy, and test plugins. In
the following recipes, we will reuse this environment to develop several plugin types.

Creating an analyzer plugin 601

There's more...
Compiling and packaging a plugin are not enough to define a good life cycle for your
plugin; a test phase for testing your plugin functionalities needs to be provided.

Testing the plugin functionalities with test cases reduces the number of bugs that can
affect the plugin when it's released.

The Elasticsearch test framework is designed to simplify different test scenarios such
as Unit Test and Integration Test with running node instances. To enable these
functionalities, make sure to put the following line in your dependencies:

dependencies {

 yamlRestTestImplementation

'org.elasticsearch.test:framework:8.0.0'

}

The extension of Elasticsearch for Gradle has everything to set up unit tests (https://
en.wikipedia.org/wiki/Unit_testing) and integration tests (https://
en.wikipedia.org/wiki/Integration_testing).

Creating an analyzer plugin
Elasticsearch provides a large set of analyzers and tokenizers to cover general needs out
of the box. Sometimes, we need to extend the capabilities of Elasticsearch by adding new
analyzers.

Typically, you can create an analyzer plugin when you need to do the following:

•	 Add standard Lucene analyzers/tokenizers that are not provided by Elasticsearch.

•	 Integrate third-party analyzers.

•	 Add custom analyzers.

In this recipe, we will add a new custom English analyzer, similar to the one provided by
Elasticsearch.

Getting ready
You need an up and running Elasticsearch installation, as we described in the
Downloading and installing Elasticsearch recipe in Chapter 1, Getting Started.

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Integration_testing

602 Plugin Development

Gradle or an integrated development environment (IDE) that supports Java
programming with Gradle (version 7.3.x used in the examples), such as Eclipse, Visual
Studio Code, or IntelliJ IDEA, is required. Java JDK 17 or above needs to be installed.

The code for this recipe is available in the ch16/analysis_plugin directory.

How to do it...
An analyzer plugin is generally composed of the following two classes:

•	 A Plugin class, which implements the org.elasticsearch.plugins.
AnalysisPlugin class

•	 An AnalyzerProviders class, which provides an analyzer

To create an analyzer plugin, we will perform the following steps:

1.	 The plugin class is similar to the ones we've seen in previous recipes, but it
includes a method that returns the analyzers, as follows:

package org.elasticsearch.plugin.analysis;

import org.apache.lucene.analysis.Analyzer;

import org.elasticsearch.index.analysis.AnalyzerProvider;

import org.elasticsearch.index.analysis.
CustomEnglishAnalyzerProvider;

import org.elasticsearch.indices.analysis.AnalysisModule;

import org.elasticsearch.plugins.Plugin;

import java.util.HashMap;

import java.util.Map;

public class AnalysisPlugin extends Plugin implements
org.elasticsearch.plugins.AnalysisPlugin {

 @Override

 public Map<String, AnalysisModule.
AnalysisProvider<AnalyzerProvider<? extends Analyzer>>>
getAnalyzers() {

 Map<String, AnalysisModule.
AnalysisProvider<AnalyzerProvider<? extends Analyzer>>>
analyzers = new HashMap<>();

 analyzers.put(CustomEnglishAnalyzerProvider.NAME,
CustomEnglishAnalyzerProvider::getCustomEnglishAnalyz
erProvider);

Creating an analyzer plugin 603

 return analyzers;

 }

}

2.	 The AnalyzerProvider class provides the initialization of our analyzer, and
passes the parameters that are provided by the settings, as follows:

import org.apache.lucene.analysis.en.EnglishAnalyzer;

import org.apache.lucene.analysis.CharArraySet;

import org.elasticsearch.common.settings.Settings;

import org.elasticsearch.env.Environment;

import org.elasticsearch.index.IndexSettings;

public class CustomEnglishAnalyzerProvider extends
AbstractIndexAnalyzerProvider<EnglishAnalyzer> {

 public static String NAME = "custom_english";

 private final EnglishAnalyzer analyzer;

 public CustomEnglishAnalyzerProvider(IndexSettings
indexSettings, Environment env, String name, Settings
settings,

 boolean
ignoreCase) {

 super(indexSettings, name, settings);

 analyzer = new EnglishAnalyzer(

 Analysis.parseStopWords(env, settings,
EnglishAnalyzer.getDefaultStopSet(), ignoreCase),

 Analysis.parseStemExclusion(settings,
CharArraySet.EMPTY_SET));

 }

 public static CustomEnglishAnalyzerProvider
getCustomEnglishAnalyzerProvider(IndexSettings
indexSettings,

Environment env, String name,

Settings settings) {

 return new
CustomEnglishAnalyzerProvider(indexSettings, env, name,
settings, true);

 }

 @Override

604 Plugin Development

 public EnglishAnalyzer get() { return this.analyzer;
} }

After building the plugin and installing it on an Elasticsearch server, our analyzer is
accessible as any native Elasticsearch analyzer.

How it works...
Creating an analyzer plugin is quite simple. The general workflow is as follows:

1.	 Wrap the analyzer initialization in a provider.
2.	 Register the analyzer provider in the plugin.
3.	 In the preceding example, we registered a CustomEnglishAnalyzerProvider

class, which extends the EnglishAnalyzer class:

public class CustomEnglishAnalyzerProvider extends
AbstractIndexAnalyzerProvider<EnglishAnalyzer> {

4.	 We need to provide a name to analyzer, as follows:

public static String NAME = "custom_english";

5.	 We instantiate a private scope Lucene analyzer (in Chapter 2, Managing Mapping,
we discussed custom Lucene analyzer usage) to be provided on request with the
get method, as follows:

 @Override

 public EnglishAnalyzer get() {

 return this.analyzer; }

6.	 The CustomEnglishAnalyzerProvider constructor can be injected via
Google Guice, with settings that can be used to provide cluster defaults via index
settings or elasticsearch.yml, as follows:

public CustomEnglishAnalyzerProvider(IndexSettings
indexSettings, Environment env, String name, Settings
settings, boolean ignoreCase) {

7.	 To make it work correctly, we need to set up the parent constructor via the super
call, as follows:

super(indexSettings, name, settings);

Creating an analyzer plugin 605

8.	 Now, we can initialize the internal analyzer, which must be returned by the get
method, as follows:

analyzer = new EnglishAnalyzer(

 Analysis.parseStopWords(env, settings,
EnglishAnalyzer.getDefaultStopSet(), ignoreCase),

 Analysis.parseStemExclusion(settings,
CharArraySet.EMPTY_SET));

This analyzer accepts the following:

	� A list of stopwords that can be loaded via the settings or set by the default ones

	� A list of words that must be excluded by the stemming step

9.	 To easily wrap the analyzer, we need to create a static method that can be called
to create the analyzer. We'll use it in the plugin definition, as follows:

 public static CustomEnglishAnalyzerProvider
getCustomEnglishAnalyzerProvider(IndexSettings
indexSettings,

Environment env, String name,

Settings settings) {

 return new
CustomEnglishAnalyzerProvider(indexSettings, env, name,
settings, true); }

10.	 Finally, we can register our analyzer in the plugin. To do so, our plugin must derive
from AnalysisPlugin so that we can override the getAnalyzers method, as
follows:

 @Override

 public Map<String, AnalysisModule.
AnalysisProvider<AnalyzerProvider<? extends Analyzer>>>
getAnalyzers() {

 Map<String, AnalysisModule.
AnalysisProvider<AnalyzerProvider<? extends Analyzer>>>
analyzers = new HashMap<>();

 analyzers.put(CustomEnglishAnalyzerProvider.NAME,
CustomEnglishAnalyzerProvider::getCustomEnglishAnalyzer
Provider);

 return analyzers; }

606 Plugin Development

The :: operator of Java 8 allows us to provide a function that will be used for the
construction of our AnalyzerProvider.

There's more...
A plugin extends several Elasticsearch functionalities. To provide them with this requires
extending the correct plugin interface. In Elasticsearch 7.x, the following are the main
plugin interfaces:

•	 ActionPlugin: This is used for REST and cluster actions.

•	 AnalysisPlugin: This is used for extending all the analysis stuff, such as
analyzers, tokenizers, tokenFilters, and charFilters.

•	 ClusterPlugin: This is used to provide new deciders.

•	 DiscoveryPlugin: This is used to provide custom node name resolvers.

•	 EnginePlugin: This is used to provide a new custom engine for indices.

•	 IndexStorePlugin: This is used to provide a custom index store.

•	 IngestPlugin: This is used to provide new ingest processors.

•	 MapperPlugin: This is used to provide new mappers and metadata mappers.

•	 ReloadablePlugin: This allows you to create plugins that reload their state.

•	 RepositoryPlugin: This allows the provision of new repositories to be used in
backup/restore functionalities.

•	 ScriptPlugin: This allows the provision of new scripting languages, scripting
contexts, or native scripts (Java-based ones).

•	 SearchPlugin: This allows an extension of all the search functionalities:
Highlighter, aggregations, suggesters, and queries.

If your plugin needs to extend more than a single functionality, it can extend from several
plugin interfaces at once.

Creating a REST plugin
In the previous recipe, we read how to build an analyzer plugin that extends the query
capabilities of Elasticsearch. In this recipe, we will see how to create one of the most
common Elasticsearch plugins. This kind of plugin allows the standard REST calls to be
extended with custom ones to easily improve the capabilities of Elasticsearch.

Creating a REST plugin 607

In this recipe, we will see how to define a REST entry point and create its action; in the
next one, we'll see how to execute this action distributed in shards.

Getting ready
You need an up and running Elasticsearch installation, as we described in the
Downloading and installing Elasticsearch recipe in Chapter 1, Getting Started.

Gradle or an integrated development environment (IDE) that supports Java
programming with Gradle (version 7.3.x used in the examples), such as Eclipse, Visual
Studio Code, or IntelliJ IDEA, is required. Java JDK 17 or above needs to be installed.

The code for this recipe is available in the ch16/rest_plugin directory.

How to do it...
To create a REST entry point, we need to create the action and then register it in the
plugin. We will perform the following steps:

1.	 We create a REST simple action (RestSimpleAction.java) as follows:

public class RestSimpleAction extends BaseRestHandler {

 public RestSimpleAction(Settings settings,
RestController controller) {

 }

 @Override

 public List<Route> routes() {

 return unmodifiableList(asList(

 new Route(POST, "/_simple"),

 new Route(POST, "/{index}/_simple"),

 new Route(POST, "/_simple/{field}"),

 new Route(GET, "/_simple"),

 new Route(GET, "/{index}/_simple"),

 new Route(GET, "/_simple/{field}")));

 }

 @Override

 public String getName() {return "simple_rest"; }

 @Override

 protected RestChannelConsumer
prepareRequest(RestRequest request, NodeClient client) {

 final SimpleRequest simpleRequest = new

608 Plugin Development

SimpleRequest(Strings.splitStringByCommaToArray(request.
param("index")));

 simpleRequest.setField(request.param("field"));

 return channel -> client.
execute(SimpleAction.INSTANCE, simpleRequest, new
RestBuilderListener<SimpleResponse>(channel) {

 @Override

 public RestResponse
buildResponse(SimpleResponse simpleResponse,
XContentBuilder builder) {

 try {

 builder.startObject();

 builder.field("ok", true);

 builder.array("terms",
simpleResponse.getSimple().toArray());

 builder.endObject();

 } catch (Exception e) {

 onFailure(e);

 }

 return new BytesRestResponse(OK,
builder); } }); } }

2.	 We need to register it in the plugin with the following lines:

public class RestPlugin extends Plugin implements
ActionPlugin {

 @Override

 public List<RestHandler> getRestHandlers(Settings
settings, RestController restController,

ClusterSettings clusterSettings, IndexScopedSettings
indexScopedSettings,

SettingsFilter settingsFilter,

IndexNameExpressionResolver indexNameExpressionResolver,

Supplier<DiscoveryNodes> nodesInCluster) {

 return Arrays.asList(new
RestSimpleAction(settings, restController));

Creating a REST plugin 609

 }

 @Override

 public List<ActionHandler<? extends ActionRequest, ?
extends ActionResponse>> getActions() {

 return Arrays.asList(new
ActionHandler<>(SimpleAction.INSTANCE,
TransportSimpleAction.class)); } }

3.	 Now, we can build the plugin via gradle clean check and manually install the
ZIP. If we restart the Elasticsearch server, we should see the plugin loaded.

4.	 We can test out custom REST via curl, as follows:

curl -XPUT http://127.0.0.1:9200/mytest

curl -XPUT http://127.0.0.1:9200/mytest2

curl 'http://127.0.0.1:9200/_simple?field=mytest&pretty

5.	 The result will be something similar to the following:

{"ok" : true,

 "terms":["mytest_[mytest2][0]","mytest_[mytest][0]"]}

How it works...
Adding a REST action is very easy: We need to create a RestXXXAction class that
handles the calls.

The REST action is derived from the BaseRestHandler class and needs to implement
the handleRequest method.

The constructor is very important. So, let's start by writing the following:

public RestSimpleAction(Settings settings, RestController
controller) {}

The public constructor takes the following parameters:

•	 Settings: This can be used to load custom settings for your REST action.

•	 RestController: This is used to register the advanced REST action with
the controller.

610 Plugin Development

The list of actions that must be registered in an override routers methods is as follows:

@Override

public List<Route> routes() {

 return unmodifiableList(asList(

 new Route(POST, "/_simple"),

 new Route(POST, "/{index}/_simple"),

 new Route(POST, "/_simple/{field}"),

 new Route(GET, "/_simple"),

 new Route(GET, "/{index}/_simple"),

 new Route(GET, "/_simple/{field}")));}

To register an action, a Route class must be instantiated with the following parameters:

•	 The REST method (GET/POST/PUT/DELETE/HEAD/OPTIONS)

•	 The URL entry point

After having defined the constructor, if an action is fired, the prepareRequest class
method is called as follows:

RestChannelConsumer

@Override

protected RestChannelConsumer prepareRequest(RestRequest
request, NodeClient client) {

This method is the core of the REST action. It processes the request and sends back the
result. The following parameters are passed to the method:

•	 RestRequest: This is the REST request that hits the Elasticsearch server.

•	 NodeClient: This is the client used to communicate in the cluster.

The returned value is RestChannelConsumer, which is a FunctionalInterface
interface type that accepts a RestChannel request—it's a simple Java Lambda.

A prepareRequest method is usually composed of these phases:

•	 Process the REST request and build an inner Elasticsearch request object.

•	 Call the client with the Elasticsearch request.

•	 If it is okay, process the Elasticsearch response and build the resulting JSON.

•	 If there are errors, send back the JSON error response.

Creating a REST plugin 611

In the following example, we created SimpleRequest class that processes the request:

final SimpleRequest simpleRequest = new SimpleRequest(Strings.
splitStringByCommaToArray(request.param("index")));

simpleRequest.setField(request.param("field"));

As you can see, it accepts a list of indices (we split the classic comma-separated list of
indices via the Strings.splitStringByCommaToArray helper) and we had the
field parameter if available.

Now that we have SimpleRequest, we can send it to the cluster and get back
SimpleResponse via the Lambda closure as follows:

return channel -> client.execute(SimpleAction.INSTANCE,
simpleRequest, new RestBuilderListener<SimpleResponse>(channel)
{

client.execute accepts an action, a request, and a RestBuilderListener class
that maps a future response. We can now process the response via the definition of a
buildResponse method.

buildResponse receives a Response object that must be converted to a JSON result
via XContentBuilder as follows:

@Override

public RestResponse buildResponse(SimpleResponse
simpleResponse, XContentBuilder builder) {

The builder is the standard JSON XContentBuilder class that we have already seen in
Chapter 13, Java Integration.

After having processed the cluster response and built the JSON, we can send the REST
response as follows:

builder.startObject()

builder.field("ok", true);

builder.array("terms", simpleResponse.getSimple().toArray());

builder.endObject();

Obviously, if something goes wrong during the JSON creation, an exception must be
raised, such as the following:

try {

 // JSON creation

612 Plugin Development

} catch (Exception e) {

 onFailure(e);

}

We will discuss SimpleRequest in the next recipe.

See also
Google Guice (https://github.com/google/guice) is used for dependency
injection. Refer to its official documentation for more insights about the dependency
injection system used by Elasticsearch.

Creating a cluster action
In the previous recipe, we saw how to create a REST entry point, but to execute the action
at the cluster level, we will need to create a cluster action.

An Elasticsearch action is generally executed and distributed in the cluster and, in this
recipe, we will see how to implement this kind of action. The cluster action will be very
bare; we send a string with a value to every shard and the shards echo a result string,
concatenating the string with the shard number.

Getting ready
You need an up and running Elasticsearch installation, as we described in the
Downloading and installing Elasticsearch recipe in Chapter 1, Getting Started.

Gradle or an integrated development environment (IDE) that supports Java
programming with Gradle (version 7.3.x used in the examples), such as Eclipse, Visual
Studio Code, or IntelliJ IDEA, is required. Java JDK 17 or above needs to be installed.

The code for this recipe is available in the ch16/rest_plugin directory.

How to do it...
In this recipe, we will see that a REST call is converted to an internal cluster action. To
execute an internal cluster action, the following classes are required:

•	 A Request and Response class to communicate with the cluster.

•	 A RequestBuilder class is used to execute a request to the cluster.

•	 An Action class used to register the action and bound Request, Response, and
RequestBuilder.

https://github.com/google/guice

Creating a cluster action 613

•	 A Transport*Action to bind the request and response to ShardResponse: it
manages the reduce part of the query.

•	 A ShardResponse to manage the shard results.

We will perform the following steps:

1.	 We write a SimpleRequest class as follows:

public class SimpleRequest extends
BroadcastRequest<SimpleRequest> {

 private String field;

 SimpleRequest() {}

 public SimpleRequest(String... indices) {

 super(indices);

 }

 public SimpleRequest(StreamInput in) throws
IOException {

 super(in);

 field = in.readString();

 }

 public void setField(String field) {

 this.field = field;

 }

 public String getField() { return field; }

 @Override

 public void writeTo(StreamOutput out) throws
IOException {

 super.writeTo(out);

 out.writeString(field); } }

2.	 The SimpleResponse class is very similar to the SimpleRequest class.
3.	 To bind the request and the response, an action (SimpleAction) is required as

follows:

public class SimpleAction extends
ActionType<SimpleResponse> {

 public static final SimpleAction INSTANCE = new
SimpleAction();

 public static final String NAME = "custom:indices/
simple";

614 Plugin Development

 private SimpleAction() {

 super(NAME, SimpleResponse::new);

 }

}

4.	 The Transport class is the core of the action. It's quite long, so we'll only present
the main important parts as follows:

public class TransportSimpleAction

 extends
TransportBroadcastByNodeAction<SimpleRequest,
SimpleResponse, ShardSimpleResponse> {

 private final IndicesService indicesService;

 @Inject

 public TransportSimpleAction(ClusterService
clusterService,

 TransportService
transportService, IndicesService indicesService,

 ActionFilters
actionFilters, IndexNameExpressionResolver
indexNameExpressionResolver) {

 super(SimpleAction.NAME, clusterService,
transportService, actionFilters,

 indexNameExpressionResolver,
SimpleRequest::new, ThreadPool.Names.SEARCH);

 this.indicesService = indicesService;

 }

 @Override

 protected SimpleResponse newResponse(SimpleRequest
request, int totalShards, int successfulShards, int
failedShards,

List<ShardSimpleResponse> shardSimpleResponses,

List<DefaultShardOperationFailedException> shardFailures,

 ClusterState
clusterState) {

 Set<String> simple = new HashSet<String>();

 for (ShardSimpleResponse shardSimpleResponse :
shardSimpleResponses) {

Creating a cluster action 615

 simple.addAll(shardSimpleResponse.
getTermList());

 }

 return new SimpleResponse(totalShards,
successfulShards, failedShards, shardFailures, simple);

 }

 @Override

 protected void shardOperation(SimpleRequest request,
ShardRouting shardRouting, Task task,

 ActionListener<ShardSimpleResponse> listener)
{

 IndexService indexService = indicesService.
indexServiceSafe(shardRouting.shardId().getIndex());

 IndexShard indexShard = indexService.
getShard(shardRouting.shardId().id());

 indexShard.store().directory();

 Set<String> set = new HashSet<String>();

 set.add(request.getField() + "_" + shardRouting.
shardId());

 listener.onResponse(new
ShardSimpleResponse(shardRouting, set));

 }

 @Override

 protected ShardSimpleResponse
readShardResult(StreamInput in) throws IOException {

 return ShardSimpleResponse.readShardResult(in);

 }

 @Override

 protected SimpleRequest readRequestFrom(StreamInput
in) throws IOException {

 return new SimpleRequest(in);

 }

 @Override

 protected ShardsIterator shards(ClusterState
clusterState, SimpleRequest request, String[]
concreteIndices) {

 return clusterState.routingTable().
allShards(concreteIndices);

 }

616 Plugin Development

 @Override

 protected ClusterBlockException
checkGlobalBlock(ClusterState state, SimpleRequest
request) {

 return state.blocks().
globalBlockedException(ClusterBlockLevel.METADATA_READ);

 }

 @Override

 protected ClusterBlockException
checkRequestBlock(ClusterState state, SimpleRequest
request, String[] concreteIndices) {

 return state.blocks().
indicesBlockedException(ClusterBlockLevel.METADATA_READ,
concreteIndices);

 }

}

How it works...
In this example, we used an action that is executed in every cluster node and for every
shard that is selected on that node.

As you have seen, to execute a cluster action, the following classes are required:

•	 A couple of Request/Response class to interact with the cluster

•	 A task action on the cluster level

•	 A shard Response class to interact with the shards

•	 A Transport class to manage the map/reduce shard part that must be invoked by
the REST call

These classes must extend one of the supported actions, for example:

•	 TrasportBroadcastAction: For actions that must be spread across the entire
cluster.

•	 TransportClusterInfoAction: For actions that need to read information at
the cluster level.

•	 TransportMasterNodeAction: For actions that must be executed only
by the master node (such as index and mapping configuration). For a simple
acknowledgment on the master, there is also the AcknowledgedRequest
response.

Creating a cluster action 617

•	 TransportNodeAction: For actions that must be executed on nodes (that is, all
the node statistic actions).

•	 TransportBroadcastReplicationAction,
TransportReplicationAction, TransportWriteAction: For actions that
must be executed by a particular replica, first on primary and then on secondary
ones.

•	 TransportInstanceSingleOperationAction: For actions that must be
executed as a singleton in the cluster.

•	 TransportSingleShardAction: For actions that must be executed only in a
shard (that is, GET actions). If it fails on a shard, it automatically tries on the shard
replicas.

•	 TransportTasksAction: For actions that need to interact with cluster tasks.

In our example, we have defined an action that will be broadcast to every node and for
every node, it collects its shard result and then it aggregates as follows:

public class TransportSimpleAction

 extends TransportBroadcastByNodeAction<SimpleRequest,
SimpleResponse, ShardSimpleResponse> {

All the request/response classes extend an ActionResponse class, so the following two
methods for serializing their content must be provided:

•	 A contructor, which reads from a StreamInput, a class that encapsulates
common input stream operations. This method allows the deserialization of the
data we transmit on the wire. In the preceding example, we read a string with the
following code:

public SimpleResponse(StreamInput in) throws IOException
{

 super(in);

 int n = in.readInt();

 simple = new HashSet<String>();

 for (int i = 0; i < n; i++) {

 simple.add(in.readString());

 }

}

618 Plugin Development

•	 writeTo, which writes the contents of the class to be sent via the network.
StreamOutput provides convenient methods to process the output. In the
following example, we serialized the StreamOutput string:

@Override

public void writeTo(StreamOutput out) throws IOException
{

 super.writeTo(out);

 out.writeInt(simple.size());

 for (String t : simple) {

 out.writeString(t);

 }

}

In both actions, super must be called to allow the correct serialization of parent classes.

Every internal action in Elasticsearch is designed as a request/response pattern:

1.	 To complete the request/response action, we must define an action that binds the
request with the correct response and a builder to construct it. To do so, we need to
define an Action class as follows:

public class SimpleAction extends
ActionType<SimpleResponse> {

2.	 This Action object is a singleton object. We obtain it by creating a default static
instance and private constructors as follows:

public static final SimpleAction INSTANCE = new
SimpleAction();

3.	 The NAME static string is used to uniquely identify the action at the cluster level.

public static final String NAME = "custom:indices/
simple";

4.	 To complete the Action definition, in the definition of the super constructor, we
need to define a lambda to create a Response, which is used to create a new empty
response as follows:

private SimpleAction() {

 super(NAME, SimpleResponse::new);

}

Creating a cluster action 619

When the action is executed, the request and the response are serialized and sent to the
cluster. To execute our custom code at the cluster level, a transport action is required.

The transport actions are usually defined as map and reduce jobs. The map part consists of
executing the action on several shards and then reducing parts consisting of collecting all
the results from the shards in a response that must be sent back to the requester. To speed
up the process in Elasticsearch 5.x or above, all the shard's responses that belong in the
same node are reduced in place to optimize the I/O and the network usage.

The transport action is a long class with many methods, but the most important ones are
ShardOperation (map part) and newResponse (reduce part).

The original request is converted to a distributed ShardRequest that is processed by the
shardOperation method as follows:

@Override

protected void shardOperation(SimpleRequest request,
ShardRouting shardRouting, Task task,

 ActionListener<ShardSimpleResponse> listener) {

To obtain the internal shard, we need to ask IndexService to return a shard based on
the wanted index.

The shard request contains the index and the ID of the shard that must be used to execute
the action as follows:

IndexService indexService = indicesService.
indexServiceSafe(shardRouting.shardId().getIndex());

IndexShard indexShard = indexService.getShard(shardRouting.
shardId().id());

The IndexShard object allows the execution of every possible shard operation
(search, get, index, and many others). By means of this method, we can execute every
data shard manipulation that we want.

Tip
Custom shard action can execute the application's business operation in a
distributed and fast way.

1.	 In the following example, we have created a simple set of values:

indexShard.store().directory();

Set<String> set = new HashSet<String>();

620 Plugin Development

set.add(request.getField() + "_" + shardRouting.
shardId());

2.	 The final step of our shard operation is to create a response to send back to the
reduce step. In creating ShardResponse, we need to return the result plus
information about the index and the shard that executed the action via listener
as follows:

listener.onResponse(new ShardSimpleResponse(shardRouting,
set));

3.	 The distributed shard operations are collected in the reduce step (the
newResponse method). This step aggregates all the shard results and sends back
the result to the original Action as follows:

@Override

protected SimpleResponse newResponse(SimpleRequest
request, int totalShards, int successfulShards, int
failedShards,

List<ShardSimpleResponse> shardSimpleResponses,

List<DefaultShardOperationFailedException> shardFailures,

 ClusterState
clusterState) {

Other than the shard's result, the methods receive the status of the shard
level operation and they are collected in three values: successfulShards,
failedShards, and shardFailures.

4.	 The request result is a set of collected strings, so we create an empty set to collect the
term's results as follows:

Set<String> simple = new HashSet<String>();

return new SimpleResponse(totalShards, successfulShards,
failedShards, shardFailures, simple);

5.	 Then you collect the results that we need to iterate on the shard responses as follows:

for (ShardSimpleResponse shardSimpleResponse :
shardSimpleResponses) {

 simple.addAll(shardSimpleResponse.getTermList());

}

Creating an ingest plugin 621

6.	 The final step is to create the response by collecting the previous result and response
status as follows:

return new SimpleResponse(totalShards, successfulShards,
failedShards, shardFailures, simple);

A cluster action needs to be created when there are low-level operations that we want
to execute very quickly, such as special aggregations, server-side join, or a complex
manipulation that requires several Elasticsearch calls to be executed. Writing custom
Elasticsearch actions is an advanced Elasticsearch feature, but it can create new business
use scenarios that can level up the capabilities of Elasticsearch.

See also
Refer to the Creating a REST plugin recipe in this chapter for how to interface the cluster
action with a REST call.

Creating an ingest plugin
Elasticsearch 5.x introduced the ingest node that allows the modification, via a pipeline,
to the records before ingesting in Elasticsearch. We have already seen in Chapter 12,
Using the Ingest Module, that a pipeline is composed of one or more processor actions. In
this recipe, we will see how to create a custom processor that stores in a field the initial
character of another one.

Getting ready
You need an up and running Elasticsearch installation, as we described in the
Downloading and installing Elasticsearch recipe in Chapter 1, Getting Started.

Gradle or an integrated development environment (IDE) that supports Java
programming with Gradle (version 7.3.x used in the examples), such as Eclipse, Visual
Studio Code, or IntelliJ IDEA, is required. Java JDK 17 or above needs to be installed.

The code for this recipe is available in the ch16/ingest_plugin directory.

622 Plugin Development

How to do it...
To create an ingest processor plugin, we need to create the processor and then register it in
the plugin class. We will perform the following steps:

1.	 We create the processor, and its factory, as follows:

The class declaration and internal attributes:
public final class InitialProcessor extends
AbstractProcessor {

 public static final String TYPE = "initial";

 private final String field;

 private final String targetField;

 private final String defaultValue;

 private final boolean ignoreMissing;

 public InitialProcessor(String tag, String
description, String field, String targetField, boolean
ignoreMissing, String defaultValue) {

 super(tag, description);

 this.field = field;

 this.targetField = targetField;

 this.ignoreMissing = ignoreMissing;

 this.defaultValue = defaultValue;

 }

The helper methods to access private attributes:
 String getField() { return field; }

 String getTargetField() { return targetField; }

 String getDefaultField() { return defaultValue; }

 boolean isIgnoreMissing() {return ignoreMissing;}

 @Override

 public String getType() { return TYPE; }

The execute function, which is the core of the processors:
 @Override

 public IngestDocument execute(IngestDocument
document) {

 if (document.hasField(field, true) == false) {

 if (ignoreMissing) { return document;

 } else {

Creating an ingest plugin 623

 throw new IllegalArgumentException("field
[" + field + "] not present as part of path [" + field +
"]");

 }

 }

 // We fail here if the target field point to an
array slot that is out of range.

 // If we didn't do this then we would fail if we
set the value in the target_field

 // and then on failure processors would not see
that value we tried to rename as we already

 // removed it.

 if (document.hasField(targetField, true)) {

 throw new IllegalArgumentException("field ["
+ targetField + "] already exists");

 }

 Object value = document.getFieldValue(field,
Object.class);

 if(value!=null && value instanceof String) {

 String myValue=value.toString().trim();

 if(myValue.length()>1){

 try {

 document.setFieldValue(targetField,
myValue.substring(0,1).toLowerCase(Locale.getDefault()));

 } catch (Exception e) {

 // setting the value back to the
original field shouldn't as we just fetched it from that
field:

 document.setFieldValue(field, value);

 throw e;

 }

 }

 }

 return document;

 }

624 Plugin Development

The factory used to initialize the processor:
 public static final class Factory implements
Processor.Factory {

 @Override

 public Processor create(Map<String, Processor.
Factory> processorFactories, String tag, String
description, Map<String, Object> config) throws Exception
{

 String field = ConfigurationUtils.
readStringProperty(TYPE, tag, config, "field");

 String targetField = ConfigurationUtils.
readStringProperty(TYPE, tag,

 config, "target_field");

 String defaultValue = ConfigurationUtils.
readOptionalStringProperty(TYPE, tag,

 config, "defaultValue");

 boolean ignoreMissing = ConfigurationUtils.
readBooleanProperty(TYPE, tag,

 config, "ignore_missing", false);

 return new InitialProcessor(tag, description,
field, targetField, ignoreMissing, defaultValue);

 }

 }

}

2.	 We need to register it in the Plugin class with the following lines:

public class InitialIngestPlugin extends Plugin
implements IngestPlugin {

 @Override

 public Map<String, Processor.Factory>
getProcessors(Processor.Parameters parameters) {

 return Collections.singletonMap(InitialProcessor.
TYPE, new InitialProcessor.Factory());

 }}

Creating an ingest plugin 625

3.	 Now we can build the plugin via gradlew clean check and manually install
the ZIP. If we restart the Elasticsearch server, we should see the plugin loaded as
follows:

… truncated …

[2021-05-01T20:55:39,740][INFO][o.e.p.PluginsService
] [iMacParo] loaded module [x-pack-watcher]

[2021-05-01T20:55:39,741][INFO][o.e.p.PluginsService
] [iMacParo] loaded plugin [initial-processor]

[2021-05-01T20:55:39,780][INFO][o.e.e.NodeEnvironment
] [iMacParo] using [1] data paths, mounts [[/System/
Volumes/Data (/dev/disk1s1)]], net usable_space [16.9gb],
net total_space [931.6gb], types [apfs]

... truncated ...

4.	 We can test our custom ingest plugin via the Simulate Ingest API with a curl as
follows:

curl -XPOST -H "Content-Type: application/
json" 'http://127.0.0.1:9200/_ingest/pipeline/_
simulate?verbose&pretty' -d '{

"pipeline": {

 "description": "Test my custom plugin",

 "processors": [

 {

 "initial": {

 "field": "user",

 "target_field": "user_initial"

 } }], "version": 1 },

"docs": [

 { "_source": { "user": "john" } },

 { "_source": { "user": "Nancy" } }] }'

5.	 The result will be something similar to the following:

{ "docs" : [

 { "processor_results" : [

 { "processor_type" : "initial",

 "status" : "success",

 "doc" : {

626 Plugin Development

 "_index" : "_index", "_id" : "_id",

 "_source" : {

 "user_initial" : "j", "user" : "john" },

 "_ingest" : {

 "pipeline" : "_simulate_pipeline",

 "timestamp" : "2021-05-01T18:57:58.316032Z"
} } }] },

 { "processor_results" : [

 { "processor_type" : "initial",

 "status" : "success",

 "doc" : {

 "_index" : "_index", "_id" : "_id",

 "_source" : {

 "user_initial" : "n", "user" : "Nancy"},

 "_ingest" : {

 "pipeline" : "_simulate_pipeline",

 "timestamp" : "2021-05-01T18:57:58.316046Z"
} } }] }] }

How it works...
First, you need to define the class that will manage your custom processor, which extends
AbstractProcessor:

public final class InitialProcessor extends AbstractProcessor {

The processor class needs to know the fields on which it operates (tag name
and description are mandatory). They are kept in the internal state of the processor
as follows:

public InitialProcessor(String tag, String description, String
field, String targetField, boolean ignoreMissing, String
defaultValue) {

 super(tag, description);

 this.field = field;

 this.targetField = targetField;

 this.ignoreMissing = ignoreMissing;

 this.defaultValue = defaultValue;}

Creating an ingest plugin 627

The core of the processor is the execute function, which contains our processor
login as follows:

@Override

public IngestDocument execute(IngestDocument document) {

The execute function comprises the following steps:

1.	 Check whether the source field exists as follows:

if (!document.hasField(field, true)) {

 if (ignoreMissing) { return document; } else {

 throw new IllegalArgumentException("field [" +
field + "] not present as part of path [" + field + "]");

 } }

2.	 Check whether the target field does not exist as follows:

if (document.hasField(targetField, true)) {

 throw new IllegalArgumentException("field [" +
targetField + "] already exists"); }

3.	 We extract the value from document and check whether it's valid as follows:

Object value = document.getFieldValue(field, Object.
class);

if(value!=null && value instanceof String) {

4.	 Now, we can process the value and set in the target field as follows:

String myValue=value.toString().trim();

if(myValue.length()>1){

 try {

 document.setFieldValue(targetField, myValue.
substring(0,1).toLowerCase(Locale.getDefault()));

 } catch (Exception e) {

 // setting the value back to the original field
shouldn't as we just fetched it from that field:

 document.setFieldValue(field, value);

 throw e;

 } }

return document;

628 Plugin Development

5.	 To be able to initialize the processor for its definition, we need to define a Factory
object as follows:

public static final class Factory implements Processor.
Factory {

6.	 The Factory object contains the create method that receives the registered
processors, processorTag, and its configuration, which must be read as follows:

@Override

public Processor create(Map<String, Processor.Factory>
processorFactories, String tag, String description,
Map<String, Object> config) throws Exception {

 String field = ConfigurationUtils.
readStringProperty(TYPE, tag, config, "field");

 String targetField = ConfigurationUtils.
readStringProperty(TYPE, tag,

 config, "target_field");

 String defaultValue = ConfigurationUtils.
readOptionalStringProperty(TYPE, tag,

 config, "defaultValue");

 boolean ignoreMissing = ConfigurationUtils.
readBooleanProperty(TYPE, tag,

 config, "ignore_missing", false);

7.	 After having recovered, we can initialize the processor parameters as follows:

 return new InitialProcessor(tag, description, field,
targetField, ignoreMissing, defaultValue);

}

8.	 To be used as a custom processor, it needs to be registered in the plugin. This is
done by extending the plugin as IngestPlugin as follows:

public class InitialIngestPlugin extends Plugin
implements IngestPlugin {

9.	 Now, we can register the Factory plugin in the getProcessors method
as follows:

@Override

public Map<String, Processor.Factory>
getProcessors(Processor.Parameters parameters) {

Creating an ingest plugin 629

 return Collections.singletonMap(InitialProcessor.
TYPE, new InitialProcessor.Factory());

}

Implementing an ingestion processor via a plugin is quite simple, and it's an incredibly
powerful feature. With this approach, a user can create a custom step in enrichment
pipelines.

See also
You can refer to the following URLs for further reference, which are related to this recipe:

•	 The official Elasticsearch documentation about the Ingest pipeline at https://
www.elastic.co/guide/en/elasticsearch/reference/current/
ingest.html, and Chapter 12, Using the Ingest Module

•	 The official Elasticsearch page of Ingest plugins at https://www.elastic.co/
guide/en/elasticsearch/plugins/current/ingest.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/ingest.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/ingest.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/ingest.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/ingest.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/ingest.html

