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CHAPTER 10

Automation

This chapter covers the following topics:

■ Challenges Being Addressed: This section identifies the challenges that need to be
addressed with the advent of software-defined networking, DevOps, and network
programmability.

■ Software-Defined Networking (SDN): This section covers the genesis of software-
defined networking, its purpose, and the value gained.

■ Application Programming Interfaces (APIs): This section provides guidance around
application programming interfaces. Network engineering and operations were very
different before APIs; some environments are still resistant to change, but the benefits
outweigh the risks of not embracing them.

■ REST APIs: This section provides insights to the functionality and benefit of REST
APIs and how they are used.

■ Cross-Domain, Technology-Agnostic Orchestration: This section contains material
that is not covered in the DEVCOR certification test. However, as network IT con-
tinues to transform, it provides an important consideration for the transformation of
environments.

■ Impact to IT Service Management and Security: This section acknowledges the
influence of IT service management and security to network programmability. With
so many companies investing in ITIL and TOGAF methodologies in the early 2010s,
understanding the alignments is helpful.

This chapter maps to the second part of the Developing Applications Using Cisco 
Core Platforms and APIs v1.0 (350-901) Exam Blueprint Section 5.0, “Infrastructure and 
Automation.”

As we’ve learned about the infrastructure involved in network IT and see the continued 
expansion, we also recognize that static, manual processes can no longer sustain us. When 
we were managing dozens or hundreds of devices using manual methods of logging in to ter-
minal servers, through a device’s console interface, or through inband connectivity via SSH, 
it may have been sufficient. However, now we are dealing with thousands, tens of thousands, 
and in a few projects I’ve been on, hundreds of thousands of devices. It is simply untenable 
to continue manual efforts driven by personal interaction. At some point, these valuable 
engineering, operations, and management resources must be refocused on more impactful 
activities that differentiate the business. So, automation must be embraced. This chapter 
covers some key concepts related to automation: what challenges need to be addressed, how 
SDN and APIs enable us, and the impact to IT service management and security.
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“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read this 
entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in 
doubt about your answers to these questions or your own assessment of your knowledge 
of the topics, read the entire chapter. Table 10-1 lists the major headings in this chapter and 
their corresponding “Do I Know This Already?” quiz questions. You can find the answers in 
Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 10-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Challenges Being Addressed 1–5
Software-Defined Networking (SDN) 6
Application Programming Interfaces (APIs) 11
REST APIs 7–10

1. When you are considering differences in device types and function, which technology
provides the most efficiencies?
a. Template-driven management
b. Model-driven management
c. Atomic-driven management
d. Distributed EMSs

2. The SRE discipline combines aspects of _______ engineering with _______ and
_______.
a. Hardware, software, firmware
b. Software, infrastructure, operations
c. Network, software, DevOps
d. Traffic, DevOps, SecOps

3. What do the Agile software development practices focus on?
a. Following defined processes of requirements gathering, development, testing, QA,

and release.
b. Giving development teams free rein to engineer without accountability.
c. Pivoting from development sprint to sprint based on testing results.
d. Requirements gathering, adaptive planning, quick delivery, and continuous

improvement.
4. Of the software development methodologies provided, which uses a more visual

approach to the what-when-how of development?
a. Kanban
b. Agile
c. Waterfall
d. Illustrative
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5. Concurrency focuses on _______ lots of tasks at once. Parallelism focuses on _______
lots of tasks at once.
a. Doing; working with
b. Exchanging; switching
c. Threading; sequencing
d. Working with; doing

6. The _______ specification, originally the _______ specification, defines a model for
machine-readable interface files for describing, producing, consuming, and visualizing
RESTful web services.
a. OpenAPI; Swagger
b. REST; CLI
c. SDN; Clean Slate
d. OpenWeb; CORBA

7. What would be the correct method to generate a basic authentication string on a
macOS/Linux CLI?
a. echo -n 'username:password' | openssl md5
b. echo -n 'username:password' | openssl
c. echo -n 'username:password' | openssl base64
d. echo -n 'username&password' | openssl base64

8. What does XML stand for?
a. Extendable machine language
b. Extensible markup language
c. Extreme machine learning
d. Extraneous modeling language

9. In JSON, what are records or objects denoted with?
a. Angle braces < >
b. Square brackets [ ]
c. Simple quotes “ ”
d. Curly braces { }

10. Which REST API HTTP methods are both idempotent?
a. PATCH, POST
b. HEAD, GET
c. POST, OPTIONS
d. PATCH, HEAD

11. Which are APIs? (Choose two.)
a. REST
b. RMON
c. JDBC
d. SSH
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Foundation Topics

Challenges Being Addressed
As described in the chapter introduction, automation is a necessity for growing sophis-
ticated IT environments today. Allow me to share a personal example: if you’ve been to a 
CiscoLive conference in the US, it is common to deploy a couple thousand wireless access 
points in the large conference venues in Las Vegas, San Diego, and Orlando. I’m talking a 
million square feet plus event spaces. 

Given that the network operations center (NOC) team is allowed onsite only four to five 
days before the event starts, that’s not enough time to manually provision everything with 
a couple dozen event staff volunteers. The thousands of wireless APs are just one aspect 
of the event infrastructure (see Figure 10-1). There are still the 600+ small form-factor 
switches that must be spread across the venue to connect breakout rooms, keynote areas, 
World of Solutions, testing facilities and labs, the DevNet pavilion, and other spaces (see 
Figure 10-2). 

Figure 10-1 Moving a Few Wireless APs
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Figure 10-2 Lots of Equipment to Stage

Automation is a “do or die” activity for our businesses: without it, we overwork individuals 
and that impacts the broader organization. Automation must also extend beyond provision-
ing into the wide-scale collection of performance, health, and fault information.

Discerning companies are investigating how artificial intelligence and machine learning (AI/
ML) can benefit them in obtaining new operational insights and reducing human effort even
more.

We might even acknowledge “change is hard and slow.” If you started networking after prior 
experience with a more programmatic environment or dealt with other industries where mass 
quantities of devices were managed effectively, you might wonder why network IT lags. This 
is a fair question, but also to be fair, enormous strides have been made in the last 10 years 
with an industry that found its start in ARPANET at the end of the 1960s. Cisco incorpo-
rated in 1984, and the industry has been growing in scale and functionality ever since.

Being involved in the latter part of the first wave of network evolution has been a constant 
career of learning and advancing skills development. The change and expansion of scope and 
function with networking have been very interesting and fulfilling for me.

Differences of Equipment and Functionality
Some of the challenges with networking deal with the diversity of equipment and function-
ality. In the last part of the 1960s and early 1970s, the aforementioned ARPANET included 
few network protocols and functions. A router’s purpose was to move traffic across different, 
isolated network segments of specialized endpoints. The industry grew with shared media 
technologies (hubs), then to switches. Businesses started acquiring their own servers; they 
weren’t limited to government agencies and the development labs of colleges and universities. 
Slowly, home PCs contributed to a burgeoning technology space.
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Connectivity technology morphed from more local-based technologies like token ring and 
FDDI to faster and faster Ethernet-based solutions, hundred megabit and gigabit local inter-
faces, also influencing the speed of WAN technologies to keep up.

Switches gave advent to more intelligent routing and forwarding switches. IP-based telephony 
was developed. Who remembers that Cisco’s original IP telephony solution, Call Manager, 
was originally delivered as a compact disc (CD), as much software was?

Storage was originally directly connected but then became networked, usually with different 
standards and protocols. The industry then accepted the efficiencies of a common, IP-based 
network. The rise of business computing being interconnected started influencing home 
networking. Networks became more interconnected and persistent. Dial-up technologies and 
ISDN peaked and started a downward trend in light of always-on cable-based technologies 
to the home. Different routing protocols needed to be created. Multiple-link aggregation 
requirements needed to be standardized to help with resiliency.

Wireless technologies came on the scene. Servers, which had previously been mere end-
points to the network, now became more integrated. IPv6. Mobile technologies. A lot of 
hardware innovations but also a lot of protocols and software developments came in parallel. 
So why the history lesson? Take them as cases in point of why networking IT was slow in 
automation. The field was changing rapidly and growing in functionality. The scope and pace 
of change in network IT were unlike those in any other IT disciplines.

Unfortunately, much of the early development relied on consoles and the expectation of a 
human administrator always creating the service initially and doing the sustaining changes. 
The Information Technology Information Library (ITIL) and The Open Group Architecture 
Framework (TOGAF) service management frameworks helped the industry define structure 
and operational rigor. Some of the concepts seen in Table 10-2 reflect a common vocabulary 
being established.

Table 10-2 Operational Lifecycle

Operational Perspective Function

Day-0 Initial installation
Day-1 Configuration for production purpose
Day-2 Compliance and optimization
Day-X Migration/decommissioning

The full lifecycle of a network device or service must be considered. All too often the “spin-
up” of a service is the sole focus. Many IT managers have stories about finding orphaned 
recurring charges from decommissioned systems. Migrating and decommissioning a service 
are just as important as the initial provisioning. We must follow up on reclaiming precious 
consumable resources like disk space, IP addresses, and even power.

In the early days of compute virtualization, Cisco had an environment called CITEIS—Cisco 
IT Elastic Infrastructure Services, which were referred to as “cities.” CITEIS was built to pro-
mote learning, speed development, and customer demos, and to prove the impact of automa-
tion. A policy was enacted that any engineer could spin up two virtual machines of any kind 
as long as they conformed to predefined sizing guidelines. If you needed something differ-
ent, you could get it, but it would be handled on an exception basis. Now imagine the num-
ber of people excited to learn a new technology all piling on the system. VMs were spun up; 
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CPU, RAM, disk space, and IP addresses consumed; used once or twice, then never accessed 
again. A lot of resources were allocated. In the journey of developing the network program-
mability discipline, network engineers also needed to apply operational best practices. New 
functions were added to email (and later send chat messages to) the requester to ensure the 
resources were still needed. If a response was not received in a timely fashion, the resources 
were archived and decommissioned. If no acknowledgment came after many attempts over 
a longer period, the archive may be deleted. These kinds of basic functions formed the basis 
of standard IT operations to ensure proper use and lifecycle management of consumable 
resources.

With so many different opportunities among routing, switching, storage, compute, collabo-
ration, wireless, and such, it’s also understandable that there was an amount of specialization 
in these areas. This focused specialization contributed to a lack of convergence because each 
technology was growing in its own right; the consolidation of staff and budgets was not 
pressuring IT to solve the issue by building collaborative solutions. But that would change. 
As addressed later in the topics covering SDN, the industry was primed for transformation.

In today’s world of modern networks, a difference of equipment and functionality is to be 
expected. Certainly, there are benefits recognized with standardizing device models to pro-
vide efficiencies in management and device/module sparing strategies. However, as network 
functions are separated, as seen later with SDN, or virtualized, as seen with Network Func-
tion Virtualization (NFV), a greater operational complexity is experienced. To that end, the 
industry has responded with model-driven concepts, which we cover in Chapter 11, “NET-
CONF and RESTCONF.” The ability to move from device-by-device, atomic management 
considerations to more service and function-oriented models that comprehend the relation-
ships and dependencies among many devices is the basis for model-driven management.

Proximity of Management Tools and Support Staff
Another situation that needed to be addressed was the proximity of management tools and 
support staff. Early networks were not as interconnected, persistent, or ingrained to as many 
aspects of our lives as they are now. It was common to deploy multiple copies of manage-
ment tools across an environment because the connectivity or basic interface link speed 
among sites often precluded using a central management tool. Those were the days of “Hey, 
can you drive from Detroit down to Dayton to install another copy of XYZ?”

Support staff existed at many large sites, sometimes with little collaboration among them or 
consistency of service delivery across states or countries.

Because early networks often metered and charged on traffic volume across a wide area, 
they were almost disincentivized to consolidate monitoring and management. “Why would I 
want to run more monitoring traffic and increase my cost? I only want ‘business-critical traf-
fic’ across those WAN links now.” However, fortunately, even this way of thinking changed.

Today networks are more meshed, persistent, highly available, and faster connected. There 
is little need to deploy multiple management tools, unless it is purposeful for scale or 
functional segmentation. The support teams today may include a “follow the sun” model 
where three or four different support centers are spread across the globe to allow personnel 
to serve others in their proximate time zone. As businesses experience higher degrees of 
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automation and orchestration, there is reduced need for on-shift personnel. Consolidation of 
support teams is possible. This pivot to a more on-call or exception-based support model is 
desired. The implementation of self-healing networks that require fewer and fewer support 
personnel is even more desirable. Google’s concept of site reliability engineering (SRE) is an 
example of addressing the industry’s shortcomings with infrastructure and operations sup-
port. The SRE discipline combines aspects of software engineering with infrastructure and 
operations. SRE aims to enable highly scalable and reliable systems. Another way of thinking 
about SRE is what happens when you tell a software engineer to do an operations role.

Speed of Service Provisioning
With early networks being “small” and “specialized,” there was a certain acceptance to how 
long it took to provision new services. The network engineer of the late 1990s and early 
2000s might have experienced lead times of many months to get new circuits from their 
WAN service provider. However, this was an area of transformation in network IT also. Net-
works became more critical to businesses. Soon, having a web presence, in addition to any 
brick-and-mortar location, was a necessity. This would drive a need for faster service provi-
sioning and delivery. Previous manual efforts that included a “truck roll,” or someone driving 
to another location, put too much latency into the process.

Businesses that could provide a service in weeks were driving a competitive differentiator to 
those that took months. Then this model progressed to those that could provide services in 
days versus weeks, and now you see the expectation of minutes, or “while I watch from my 
browser.”

Business models have greatly changed. The aforementioned brick-and-mortar model was 
the norm. As the Internet flourished, having a web presence became a differentiator, then a 
requirement. To that end, so many years later, it is very difficult to find impactful domain 
names to register. Or it may cost a lot to negotiate a transfer from another owner!

Today, the physical presence is not required and is sometimes undesirable. More agile busi-
ness models mean companies can be operated out of the owner’s home. Fulfillment can be 
handled by others, and the store or marketplace is handled through a larger e-commerce 
entity like Amazon, Alibaba, or eBay.

It is impossible to provide services in such a rapid fashion without automation. The customer 
sitting at a browser expects to see an order confirmation or expected service access right 
then. Indeed, some customers give up and look for alternative offers if their request is not 
met as they wait.

This expectation of now forces businesses to consolidate their offers into more consistent or 
templatized offers. The more consistent a service can be delivered, the better suited it is for 
automation. It’s the exceptions that tend to break the efficiencies of automation and cause 
longer service delivery cycles.

This rapid pace of service delivery influenced IT service management and development with 
DevOps and models like Agile and Lean. Figure 10-3 depicts the Agile methodology.
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Figure 10-3 Agile Methodology

Agile, as a software development practice, focuses on extracting requirements and develop-
ing solutions with collaborative teams and their users. Planning with an adaptive approach to 
quick delivery and continuous improvement sets Agile apart from other, less flexible mod-
els. Agile is just one software development methodology, but it has a large following and is 
suggested for consideration in your network programmability journey. Several more of the 
broad spectrum of methodologies and project management frameworks are described in 
Table 10-3.

Table 10-3 Software Development Methodologies and Frameworks

Method Name Description

Agile Flexible and incremental design process focused on collaboration
Kanban Visual framework promoting what, when, and how to develop in 

small, incremental changes; complements Agile
Lean Process to create efficiencies and remove waste to produce more 

with less
Scrum Process with fixed-length iterations (sprints); follows roles, 

responsibilities, and meetings for well-defined structure; derivative 
of Agile

Waterfall Sequential design process; fully planned; execution through phases

Whatever model you choose, take time to understand the pros and cons and evaluate against 
your organization’s capabilities, culture, motivations, and business drivers. Ultimately, the 
right software development methodology for you is the one that is embraced by the most 
people in the organization.
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Accuracy of Service Provisioning
Walt Disney is known for sharing this admirable quote, “Whatever you do, do it well.” That 
has been the aspiration of any product or service provider. The same thinking can be drawn 
to network service provisioning: nobody truly intends to partially deploy a service or to 
deploy something that will fail. One reason accuracy of service provisioning struggled before 
network programmability hit its stride was due to the lack of programmatic interfaces.

As we mentioned before, much of the genesis of network IT, and dare we say even IT more 
broadly, was founded on manual command-line interface interactions. Provisioning a device 
meant someone was logging into it and typing or pasting a set of configuration directives. 
The task wasn’t quite as bad as that in Figure 10-4, but it sure felt that way!

Figure 10-4 Not Quite This Painful

A slightly more advanced method might be typing or pasting those directives and putting 
them into a file to be transferred to the device and incorporated into its running configura-
tion state. However, these manual efforts still required human interaction and an ability to 
translate intent to a set of configuration statements.

Some automations were, and sometimes still are, simply the collection and push of those 
same CLI commands (see Figure 10-5), but in an unattended fashion by a script or manage-
ment application. 
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Figure 10-5 Automating the CLI

The fact that the foundation has been based on CLI automation seems to imply that the 
industry was conceding the “best” way to interact with a device was through the CLI. A lot 
of provisioning automation occurs through CLI with many management applications and 
open-source solutions.

Yet the CLI, while suited for human consumption, is not optimal for programmatic use. If 
the command syntax or output varies between releases or among products, the CLI-based 
solutions need to account for the differences. Consider the command output for show 
interface in Example 10-1.

Example 10-1 Show Interface Output

Switch# show interface te1/0/2

TenGigabitEthernet1/0/2 is up, line protocol is up (connected)

  Hardware is Ten Gigabit Ethernet, address is 0023.ebdd.4006 (bia 0023.ebdd.4006)

  MTU 1500 bytes, BW 10000000 Kbit, DLY 10 usec,

     reliability 255/255, txload 1/255, rxload 1/255

  Encapsulation ARPA, loopback not set

  Keepalive not set

  Full-duplex, 10Gb/s, link type is auto, media type is 10GBase-SR

  input flow-control is off, output flow-control is unsupported

  ARP type: ARPA, ARP Timeout 04:00:00

  Last input 00:00:04, output 00:00:00, output hang never

 Last clearing of "show interface" counters never

  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

  Queueing strategy: fifo

 Output queue: 0/40 (size/max)
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  5 minute input rate 5000 bits/sec, 9 packets/sec

  5 minute output rate 0 bits/sec, 0 packets/sec

     200689496 packets input, 14996333682 bytes, 0 no buffer

     Received 195962135 broadcasts (127323238 multicasts)

     0 runts, 0 giants, 0 throttles

     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

     0 watchdog, 127323238 multicast, 0 pause input

     0 input packets with dribble condition detected

     7642905 packets output, 1360729535 bytes, 0 underruns

     0 output errors, 0 collisions, 0 interface resets

     0 babbles, 0 late collision, 0 deferred

     0 lost carrier, 0 no carrier, 0 PAUSE output

     0 output buffer failures, 0 output buffers swapped out

What are the options for extracting information like number of multicast packets output?

The use of Python scripts is in vogue, so let’s consider that with Example 10-2, which 
requires a minimum of Python 3.6.

Example 10-2 Python Script to Extract Multicast Packets

import paramiko

import time

import getpass

import re

username = input('Enter Username: ')

userpassword = getpass.getpass('Enter Password: ')

devip = input('Enter Device IP: ')

devint = input('Enter Device Interface: ')

try:

    devconn = paramiko.SSHClient()

    devconn.set_missing_host_key_policy(paramiko.AutoAddPolicy())

    devconn.connect(devip, username=username, password=userpassword,timeout=60)

    chan = devconn.invoke_shell()

    chan.send("terminal length 0\n")

    time.sleep(1)

    chan.send(f'show interface {devint}')

    time.sleep(2)

    cmd_output = chan.recv(9999).decode(encoding='utf-8')

    devconn.close()

    result = re.search('(\d+) multicast,', cmd_output)

    if result:

print(f'Multicast packet count on {devip} interface {devint} is {result.
group(1)}')

    else:

print(f'No match found for {devip} interface {devint} - incorrect 
interface?')
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except paramiko.AuthenticationException:

    print("User or password incorrect - try again")

except Exception as e:

    err = str(e)

    print(f'ERROR: {err}')

There’s a common theme in methodologies that automate against CLI output which requires 
some level of string manipulation. Being able to use regular expressions, commonly called 
regex, or the re module in Python, is a good skill to have for CLI and string manipula-
tion operations. While effective, using regex can be difficult skill to master. Let’s call it 
an acquired taste. The optimal approach is to leverage even higher degrees of abstraction 
through model-driven and structure interfaces, which relieve you of the string manipulation 
activities. You can find these in solutions like pyATS (https://developer.cisco.com/pyats/) 
and other Infrastructure-as-Code (IaC) solutions, such as Ansible and Terraform.

Product engineers intend to maintain consistency across releases, but the rapid rate of 
change and the intent to bring new innovation to the industry often result in changes to 
the command-line interface, either in provisioning syntax and arguments or in command-
line output. These differences often break scripts and applications that depend on CLI; this 
affects accuracy in service provisioning. Fortunately, the industry recognizes the inefficien-
cies and results of varying CLI syntax and output. Apart from SNMP, which generally lacked 
a strong provisioning capability, one of the first innovations to enable programmatic interac-
tions with network devices was the IETF’s NETCONF (network configuration) protocol.

We cover NETCONF and the follow-on RESTCONF protocol in more detail later in this 
book. However, we can briefly describe NETCONF as an XML representation of a device’s 
native configuration parameters. It is much more suited to programmatic use. Consider now 
a device configuration shown in an XML format with Figure 10-6.

Figure 10-6 Partial NETCONF Device Configuration 
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Although the format may be somewhat unfamiliar, you can see patterns and understand 
the basic structure. It is the consistent structure that allows NETCONF/RESTCONF and an 
XML-formatted configuration to be addressed more programmatically. By referring to tags 
or paths through the data, you can cleanly extract the value of a parameter without depend-
ing on the existence (or lack of existence) of text before and after the specific parameter(s) 
you need. This capability sets NETCONF/RESTCONF apart from CLI-based methods that 
rely on regex or other string-parsing methods.

A more modern skillset would include understanding XML formatting and schemas, along 
with XPath queries, which provide data filtering and extraction functions.

Many APIs output their data as XML- or JSON-formatted results. Having skills with XPath 
or JSONPath queries complements NETCONF/RESTCONF. Again, we cover these topics 
later in Chapter 11.

Another way the industry has responded to the shifting sands of CLI is through abstracting 
the integration with the device with solutions like Puppet, Chef, Ansible, and Terraform. 
Scripts and applications can now refer to the abstract intent or API method rather than a 
potentially changing command-line argument or syntax. These also are covered later in this 
book.

Scale
Another challenge that needs to be addressed with evolving and growing network is scale. 
Although early and even some smaller networks today can get by with manual efforts of a 
few staff members, as the network increases in size, user count, and criticality, those models 
break. Refer back to Figure 9-19 to see the growth of the Internet over the years.

Scalable deployments are definitely constrained when using CLI-based methodologies, espe-
cially when using paste methodologies because of flow control in terminal emulators and 
adapters. Slightly more efficiencies are gained when using CLI to initiate a configuration file 
transfer and merge process.

Let me share a personal example from a customer engagement. The customer was dealing 
with security access list changes that totaled thousands of lines of configuration text and 
was frustrated with the time it took to deploy the change. One easy fix was procedural: cre-
ate a new access list and then flip over to it after it was created. The other advice was show-
ing the customer the inefficiency of CLI flow-control based methods. Because the customer 
was copying/pasting the access list, they were restricted by the flow control between the 
device CLI and the terminal emulator. 

Strike one: CLI/terminal.

Strike two: Size of access list.

Strike three: Time to import.

Pasting the customer’s access list into the device’s configuration took more than 10 minutes. 
I showed them the alternative of putting the configuration  parameters into a file that could 
be transferred and merged with the device and the resulting seconds that this approach took 
instead. Needless to say, the customer started using a new process.

Using NETCONF/RESTCONF protocols to programmatically collect information and 
inject provisioning intent is efficient. In this case, it is necessary to evaluate the extent of 
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deployment to gauge the next level of automation for scale. Here are some questions to ask 
yourself:

■ How many devices, nodes, and services do I need to deploy?

■ Do I have dependencies among them that require staggering the change for optimal
availability? Any primary or secondary service relationships?

■ How much time is permitted for the change window, if applicable?

■ How quickly can I revert a change if unexpected errors occur?

Increasingly, many environments have no maintenance windows; there is no time that they 
are not doing mission-critical work. They implement changes during all hours of the day 
or night because their network architectures support high degrees of resiliency and avail-
ability. However, even in these environments, it is important to verify that the changes being 
deployed do not negatively affect the resiliency.

One more important question left off the preceding list for special mention is “How much 
risk am I willing to take?” I remember working with a customer who asked, “How many 
devices can we software upgrade over a weekend? What is that maximum number?”
Together, we created a project and arranged the equipment to mimic their environment as 
closely as possible—device types, code versions, link speeds, device counts. The lab was 
massive—hundreds of racks of equipment with thousands of devices. In the final analysis, 
I reported, “You can effectively upgrade your entire network over a weekend.” In this case, 
it was 4000 devices, which at the time was a decent-sized network. I followed by saying, 
“However, I wouldn’t do it. Based on what I know of your risk tolerance level, I would sug-
gest staging changes. The network you knew Friday afternoon could be very different from 
the one Monday morning if you run into an unexpected issue.” We obviously pressed for 
extensive change testing, but even with the leading test methodologies of the time, we had 
to concede something unexpected could happen. We saved the truly large-scale changes for 
those that were routine and low impact. For changes that were somewhat new, such as new 
software releases or new features and protocols, we established a phased approach to gain 
confidence and limit negative exposure.

■ Lab testing of single device(s) representing each model/function

■ Lab testing of multiple devices, including primary/backup peers

■ Lab testing of multiple devices, including primary/backup peers to maximum scale
possible in lab

■ Production deployment of limited device counts in low-priority environments
(10 percent of total)

■ Change observation for one to two weeks (depending on criticality of change)
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■ Production deployment of devices in standard priority environments (25 percent of
total)

■ Change observation for two to four weeks (depending on criticality of change)

■ Second batch deployment in standard priority environments (25 percent of total)

■ Change observation for two to four weeks (depending on criticality of change)

■ Production deployment of devices in high-priority environments (10 percent of total)

■ Change observation for two to four weeks (depending on criticality of change)

■ Second batch deployment of high-priority environments (10 percent of total)

■ Change observation for two to four weeks (depending on criticality of change)

■ Third batch deployment of high-priority environments (20 percent of total)

As you contemplate scale, if you’re programming your own solutions using Python scripts or 
similar, it is worthwhile to understand multithreading and multiprocessing. A few definitions 
of concurrency and parallelism also are in order.

An application completing more than one task at the same time is considered concurrent. 
Concurrency is working on multiple tasks at the same time but not necessarily simultane-
ously. Consider a situation with four tasks executing concurrently (see Figure 10-7). If you 
had a virtual machine or physical system with a one-core CPU, it would decide the switching 
involved to run the tasks. Task 1 might go first, then task 3, then some of task 2, then all of 
task 4, and then a return to complete task 2. Tasks can start, execute their work, and com-
plete in overlapping time periods. The process is effectively to start, complete some (or all) 
of the work, and then return to incomplete work where necessary—all the while maintain-
ing state and awareness of completion status. One issue to observe is that concurrency may 
involve tasks that have no dependency among them. In the world of IT, an overall workflow 
to enable a new web server may not be efficient for concurrency. Consider the following 
activities:

1. Create the virtual network.

2. Create the virtual storage volume.

3. Create the virtual machine vCPUs and vMemory.

4. Associate the VM vNet and vStorage.

5. Install the operating system to the VM.

6. Configure the operating system settings.

7. Update the operating system.

8. Install the Apache service.

9. Configure the Apache service.
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Figure 10-7 Workflow Creating a Web Server

Several of these steps depend on a previous step being completed. So, this workflow is not 
well suited to concurrency. However, deploying software images to many devices across the 
network would be well suited. Consider these actions on a multidevice upgrade process (see 
Figure 10-8):

1. Configure Router-A to download new software update (wait for it to process, flag it to
return to later, move on to next router), then . . .

2. Configure Router-B to download new software update (wait for it to process, flag it to
return to later, move on to next router), then . . .

3. Configure Router-C to download new software update (wait for it to process, flag it to
return to later, move on to next router), then . . .

4. Check Router-A status—still going—move on to next router.
5. Configure Router-D to download new software update (wait for it to process, flag it to

return to later, move on to next router).

6. Check Router-B status—complete—remove flag to check status; move to next router.

7. Configure Router-E to download new software update (wait for it to process, flag it to
return to later, move on to next router).

8. Check Router-A status—complete—remove flag to check status; move to next router.

9. Check Router-C status—complete—remove flag to check status; move to next router.

10. Check Router-D status—complete—remove flag to check status; move to next router.

11. Check Router-E status—complete—remove flag to check status; move to next router.
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Router-A

Router-B

Router-C

Router-D

Router-E

Figure 10-8 Concurrency Example

Parallelism is different in that an application separates tasks into smaller activities to process 
in parallel on multiple CPUs simultaneously. Parallelism doesn’t require multiple tasks to 
exist. It runs parts of the tasks or multiple tasks at the same time using multicore functions 
of a CPU. The CPU handles the allocation of each task or subtask to a core.

Returning to the previous software example, consider it with a two-core CPU. The following 
actions would be involved in this multidevice upgrade (see Figure 10-9):

1. Core-1: Configure Router-A to download new software update (wait for it to process, flag
it to return to later, move on to next router), while at the same time on another CPU . . .

2. Core-2: Configure Router-B to download new software update (wait for it to process,
flag it to return to later, move on to next router).

3. Core-1: Configure Router-C to download new software update (wait for it to process,
flag it to return to later, move on to next router).

4. Core-1: Check Router-A status—still going—move on to next router.

5. Core-2: Configure Router-D to download new software update (wait for it to process,
flag it to return to later, move on to next router).

6. Core-2: Check Router-B status—complete—remove flag to check status; move to next
router.

7. Core-2: Configure Router-E to download new software update (wait for it to process,
flag it to return to later, move on to next router).

8. Core-1: Check Router-A status—complete—remove flag to check status; move to next
router.

9. Core-1: Check Router-C status—complete—remove flag to check status; move to next
router.

10. Core-1: Check Router-D status—complete—remove flag to check status; move to next
router.

11. Core-2: Check Router-E status—complete—remove flag to check status; move to next
router.
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Router-A

Router-B

Router-C

Router-D

Router-E

Figure 10-9 Parallelism Example

Because two tasks are executed simultaneously, this scenario is identified as parallelism. Par-
allelism requires hardware with multiple processing units, cores, or threads. 

To recap, a system is concurrent if it can support two or more tasks in progress at the same 
time. A system is parallel if it can support two or more tasks executing simultaneously. Con-
currency focuses on working with lots of tasks at once. Parallelism focuses on doing lots of 
tasks at once.

So, what is the practical application of these concepts? In this case, I was dealing with the 
Meraki Dashboard API; it allows for up to five API calls per second. Some API resources 
like Get Organization (GET /organizations/{organizationId}) have few key-values to return, 
so they are very fast. Other API resources like Get Device Clients (GET /devices/{serial}/cli-
ents) potentially return many results, so they may take more time. Using a model of parallel-
ism to send multiple requests across multiple cores—allowing for some short-running tasks 
to return more quickly than others and allocating other work—provides a quicker experience 
over doing the entire process sequentially.

To achieve this outcome, I worked with the Python asyncio library and the semaphores feature 
to allocate work. I understood each activity of work had no relationship or dependency on 
the running of other activities; no information sharing was needed, and no interference across 
threads was in scope, also known as thread safe. The notion of tokens to perform work was 
easy to comprehend. The volume of work was created with a loop building a list of tasks; then 
the script would allocate as many tokens as were available in the semaphore bucket. When the 
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script first kicked off, it had immediate access to do parallel processing of the four tokens I 
had allocated. As short-running tasks completed, tokens were returned to the bucket and made 
available for the next task. Some tasks ran longer than others, and that was fine because the 
overall model was not blocking other tasks from running as tokens became available.

Doing More with Less
Continuing in the theme of challenges being addressed, we must acknowledge the busi-
ness pressures of gaining efficiencies to reduce operation expenses (OpEx) and potentially 
improve margins, if applicable. Network IT varies between a necessary cost center and a 
competitive differentiating profit center for many businesses. It is not uncommon for the 
cost center–focused businesses to manage budgets by reducing resources and attempting to 
get more productivity from those remaining. The profit center–focused businesses may do 
the same, but mostly for margin improvement.

Automation, orchestration, and network programmability provide the tools to get more done 
with less. If tasks are repetitive, automation reduces the burden—and burnout—on staff. 
Team members are able to focus on more strategic and fulfilling endeavors.

In reflection with the previous section on scale, if you have a lot of tasks that would benefit 
from parallel execution, if they are not dependent on each other, then it makes sense to allo-
cate more threads/cores to the overall work. Efficient use of existing resources is desirable. It 
is a waste of resources if a system with many cores is often idle.

When building automated solutions, observe the tasks and time the original manual pro-
cess from end to end. After you have automated the process, measure the runtime of the 
newly automated process and provide reporting that shows time and cost savings with the 
automation. Having practical examples of return on investment (ROI) helps decision makers 
understand the benefits of automation and encourage its implementation. You’re building the 
automation; you can create your own telemetry and instrumentation!

Software-Defined Networking (SDN)
The catalyst for software-defined networking is largely attributed to Stanford University’s 
Clean Slate Program in 2008. Cisco was a sponsor of this project, which reimagined what a 
new Internet would look like if we set aside conventional norms of traditional networks and 
worked from a clean slate. It was difficult to develop next-generation routing or connectivity 
protocols if the equipment available was purposely programmed to follow the original con-
ventions. Programmable logic arrays (PLAs) were pretty expensive to test theories, so a more 
software-based approach was proposed.

What Is SDN and Network Programmability?
Definitions of SDN and network programmability varied among network IT vendors, but 
some points were generally agreed upon. As illustrated in Figure 10-10, SDN is 

■ An approach and architecture in networking where control and data planes are decou-
pled, and intelligence and state are logically centralized

■ An enabling technology where the underlying network infrastructure is abstracted
from the applications (network virtualization)

■ A concept that leverages programmatic interfaces to enable external systems to influ-
ence network provisioning, control, and operations
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Figure 10-10 The SDN Concept

Although all of these definitions were exciting and transformative, the last item of leverag-
ing programmatic interfaces appeals mostly to the network programming crowd. The last 
item also enables us to influence the first two through provisioning and monitoring network 
assets.

In my talks at CiscoLive, I would share that SDN was

■ An approach to network transformation*

■ Empowering alternative, nontraditional entities to influence network design and opera-
tions

■ Impacting the networking industry, challenging the way we think about engineering,
implementing, and managing networks

■ Providing new methods to interact with equipment and services via controllers and
APIs

■ Normalizing the interface with equipment and services

■ Enabling high-scale, rapid network and service provisioning and management

■ Providing a catalyst for traditional route/switch engineers to branch out

Approach
So, why the asterisk next to an approach to network transformation? Well, it wasn’t the first 
attempt at network transformation. If we consider separation of the control plane and data 
plane, we can look no further than earlier technologies, such as SS7, ATM LANE, the wire-
less LAN controller, and GMPLS. If we were considering network overlays/underlays and 
encapsulation, the earlier examples were MPLS, VPLS, VPN, GRE Tunnels, and LISP. Finally, 
if our consideration was management and programmatic interfaces, we had SNMP, NET-
CONF and EEM. Nonetheless, SDN was a transformative pursuit.
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Nontraditional Entities
What about those nontraditional entities influencing the network? As new programmatic 
interfaces were purposely engineered into the devices and controllers, a new wave of net-
work programmers joined the environment. Although traditional network engineers skilled 
up to learn programming (and that may be you, reading this book!), some programmers who 
had little prior networking experience decided to try their hand at programming a network. 
Or the programmers decided it was in their best interests to configure an underpinning net-
work for their application themselves, rather than parsing the work out to a network provi-
sioning team.

Regardless of the source of interaction with the network, it is imperative that the new inter-
faces, telemetry, and instrumentation be secured with the same, if not more, scrutiny as the 
legacy functions. The security policies can serve to protect the network from unintentional 
harm by people who don’t have deep experience with the technology and from the inten-
tional harm of bad actors. 

Industry Impact
The impact to the network industry with operations and engineering was greatly influenced 
by control plane and data plane separation and the development of centralized controllers. 
The network management teams would no longer work as hard to treat each network asset as 
an atomic unit but could manage a network en masse through the controller. One touchpoint 
for provisioning and monitoring of all these devices! The ACI APIC controller is acknowl-
edged as one of the first examples of an SDN controller, as seen in Figure 10-11. It was able 
to automatically detect, register, and configure Cisco Nexus 9000 series switches in a data 
center fabric.

Leaf Switches

ESX ServerPhysical
APIC

Spine Switches

APIC APIC

VM1 VM2

ACI ACI

ACI ACI

ACI ACI

Figure 10-11 Cisco ACI Architecture with APIC Controllers

New Methods
With respect to new methods, protocols, and interfaces to managed assets, APIs became 
more prolific with the SDN approach. Early supporting devices extended a style of REST-
like interface and then more fully adopted the model. First NETCONF and then RESTCONF 
became the desired norm. Centralized controllers, like the wireless LAN controller, ACI’s 
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APIC controller, Meraki, and others, prove the operational efficiency of aggregating the 
monitoring and provisioning of fabrics of devices. This model has coaxed the question 
“What else can we centralize?” 

Normalization
SDN’s impact on network normalization is reflected in the increasingly standardized inter-
faces. While SNMP had some utility, SDN provided a fresh opportunity to build and use 
newer management technologies that had security at their core, not just a “bolt-on” consid-
eration. Although the first API experiences felt a bit like the Wild Wild West, the Swagger 
project started to define a common interface description language to REST APIs. Swagger 
has since morphed into the OpenAPI initiative, and specification greatly simplifies API 
development and documentation tasks.

Enabling Operations
Network operations, service provisioning, and management were influenced with SDN 
through the new interfaces, their standardization, and programmatic fundamentals. Instead 
of relying on manual CLI methods, operators began to rely on their growing knowledge base 
of REST API methods and sample scripts in growing their operational awareness and ability 
to respond and influence network functions.

Besides the REST API, other influences include gRPC Network Management Interface 
(gNMI), OpenConfig, NETCONF, RESTCONF, YANG, time-series databases, AMQP pub-
sub architectures, and many others.

Enabling Career Options
Finally, SDN provided traditional network engineers an opportunity to extend their skills 
with new network programming expertise. The traditional network engineer with years of 
domain experience could apply that knowledge in an impactful way with these program-
matic interfaces. They could deploy more services at scale, with fewer errors and more 
quickly.

How impactful could SDN be? Let’s consider the early days of IP telephony: it didn’t ramp 
up as quickly as desired. On one side there were the traditional “tip-ring telco” team mem-
bers; on the other side was the new “packet-switch” team. IP telephony technology was slow 
to gain momentum because few individuals crossed the aisle to learn the other side and 
become change and translation agents for the greater good. When people started to under-
stand and share the nuanced discipline of the other side, then SDN started to make strides.

Network programmability is in that same transition: there are strong network engineers who 
understand their tradition route/switch technology. Likewise, there are very strong software 
developers who understand how to build apps and interact with systems; they just don’t have 
the network domain expertise. As network engineers skill up with the automation and net-
work programming discipline, they bring their experience of networks with them. So, let’s 
do IT!

Use Cases and Problems Solved with SDN
SDN aimed to address several use cases. The research and academic communities were look-
ing for ways to create experimental network algorithms and technologies. The hope was to 
turn these into new protocols, standards, and products. Because existing products closely 
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adhered to well-defined routing protocol specifications, SDN was to help separate the cur-
rent norms from new, experimental concepts.

The massively scalable data center community appreciated SDN for the ability to separate 
the control plane from the data plane and use APIs to provide deep insight into network traf-
fic. Cloud providers drew upon SDN for automated provisioning and programmable network 
overlays. Service providers aligned to policy-based control and analytics to optimize and 
monetize service delivery. Enterprise networks latched onto SDN’s capability to virtualize 
workloads, provide network segmentation, and orchestrate security profiles.

Nearly all segments realized the benefits of automation and programmability with SDN:

■ Centralized configuration, management control, and monitoring of network devices
(physical or virtual)

■ The capability to override traditional forwarding algorithms to suit unique business or
technical needs

■ The capability of external applications or systems to influence network provisioning
and operation

■ Rapid and scalable deployment of network services with lifecycle management

Several protocols and solutions contributed to the rise of SDN. See Table 10-4 for examples.

Table 10-4 Contributing Protocols and Solutions to SDN

Protocol/Solution Definition Function

OpenFlow Layer-2 programmable 
forwarding protocol and 
specification for switch 
manufacturing

I2RS Interface to Routing System Layer-3 programmable 
protocol to the routing 
information base (RIB); 
allowed manipulation and 
creation of new routing 
metrics

PCEP Path Computation Element 
Protocol

L3 protocol capable of 
computing a network 
path or route based on a 
network graph and applying 
computational constraints

BGP-LS/FS BGP Link-State / Flow Spec The ability to gather IGP 
topology of the network 
and export to a central SDN 
controller or alternative 
method to remotely triggered 
black hole filtering useful for 
DDoS mitigation
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Protocol/Solution Definition Function

OpenStack Hypervisor technology for 
virtualization of workloads

OMI Open Management 
Infrastructure

Open-source Common 
Information Model 
with intent to normalize 
management 

Puppet Agent-based configuration 
management solution 
embedded in devices (later 
updated to agentless)

Ansible Agentless configuration 
management solution

NETCONF Network Configuration 
standard

IETF working group 
specification normalizing 
configuration across vendors 
using XML schemas (later 
updated with YANG)

YANG Data Modeling Language Data modeling language for 
defining IT technologies and 
services

Overview of Network Controllers
One of the main benefits of SDN was the notion of control plane and data plane separation. 
You can think of the control plane as the brains of the network: it makes forwarding deci-
sions based on interactions with adjacent devices and their forwarding protocols. The data 
plane is the muscle, acting on the forwarding decisions programmed into it. Routing proto-
cols like OSPF and BGP operate in the control plane. A link aggregation protocol like LACP 
or the MAC address table would be representative of the data plane.

The first traditional networks combined the functionality of the control plane/data plane 
into the same device. Each device acted autonomously, creating and executing its own for-
warding decisions. With the advent of SDN, the notion of centralizing that brain function 
into one control unit yet keeping the data plane function at the managed device was the new 
architectural goal. These centralized controllers aggregated the monitoring and management 
function. They oftentimes also provided that centralized forwarding path determination and 
programming function.

The separation of functional planes also resulted in the definition of new overlay and under-
lay functionality. Network overlays defined that tunnel endpoints terminated on routers and 
switches. The physical devices executed the protocols to handle resiliency and loops. Some 
examples are OTV, VXLAN, VPLS, and LISP.

Host overlays defined that tunnel endpoints terminated on virtual nodes. Examples of host 
overlays are VXLAN, NVGRE, and STT. Finally, integrated overlays allowed for physical 
or virtual endpoints in tunnel termination. The Cisco ACI fabric with Nexus 9000 series 
switches are examples of integrated overlays.
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The Cisco Solutions
Cisco has many offerings in the SDN space, the most prominent being the Cisco ACI fabric 
with Nexus 9000 series switches. Software-defined access (SDA) is enabled by Cisco DNA 
Center on enterprise fabric-enabled devices. Software-defined wide-area networks (SD-
WANs) can be seen in the acquired technologies of Viptela, resulting in the vManage solu-
tion for central cloud management, authentication, and licensing.

Network Function Virtualization (NFV) enables cloud technology to support network func-
tions, such as the Cisco Integrated Services Virtual Router (ISRv), ASAv, and vWLC. The 
Cisco Managed Services Accelerator (MSX) provides automated end-to-end SD-WAN ser-
vices managed from the service provider cloud.

Application Programming Interfaces (APIs)
Application programming interfaces are the foundational method for interacting with 
devices, applications, controllers, and other networked entities. Although the command-
line interface has reigned supreme for years, we must admit, if an entity has an API, it is the 
desirable method for interacting with it.

APIs are common in many fashions: some are application to application, whereas others are 
application to hardware entity. Consider some of the following interactions as examples:

■ DNAC software controller API call to Cisco Support API endpoint for opening cases:
software to software

■ Cisco Intersight with UCS IMC for device registration, monitoring, and provisioning
from the cloud: software to hardware

■ Network Services Orchestrator (NSO) to ASR1000 for provisioning and monitoring:
software to hardware

To use an API, you must know the way to make requests, how to authenticate to the service, 
how to handle the return results (data encoding), and other conventions it may use, such as 
cookies. Public APIs often involve denial-of-service protections beyond authentication, such 
as rate limiting the number of requests per time period, the number of requests from an IP 
endpoint, and pagination or volume of data returned.

For the purposes of network IT, we mostly focus on web APIs, as we discuss in the next 
section on REST APIs, but other common APIs you may experience are the Java Database 
Connectivity (JDBC) and Microsoft Open Database Connectivity (ODBC) APIs. JDBC and 
ODBC permit connections to different types of databases, such as Oracle, MySQL, and 
Microsoft SQL Server, with standard interfaces that ease application development.

The Simple Object Access Protocol (SOAP) is also a well-known design model for web ser-
vices. It uses XML and schemas with a strongly typed messaging framework. A web service 
definition (WSDL) defines the interaction between a service provider and the consumer. In 
Cisco Unified Communications, the Administrative XML Web Service (AXL) is a SOAP-
based interface enabling insertion, retrieval, updates, and removal of data from the Unified 
Communication configuration database.

Because a SOAP message has the XML element of an “envelope” and further contains 
a “body,” many people draw the parallel of SOAP being like a postal envelope, with the 
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necessary container and the message within, to REST being like a postcard that has none of 
the “wrapper” and still contains information. Figure 10-12 illustrates this architecture.

POST /v1/devices

Figure 10-12 Cisco ACI Architecture with APIC Controllers

APIs are used in many Internet interactions—logins, data collection, performance reporting, 
analytics. Microservices are associated with APIs as self-contained, lightweight endpoints 
that you can interact with to gather data or effect change. They are usually specific to a 
function, such as validate login, and are engineered with resiliency in mind, so continuous 
integration/continuous deployment (CI/CD) processes allow for routine maintenance without 
service impact to users.

REST APIs
RESTful APIs (or representational state transfer APIs) use Web/HTTP services for read and 
modification functions. This stateless protocol has several predefined operations, as seen 
in Table 10-5. Because it’s a stateless protocol, the server does not maintain the state of a 
request. The client’s request must contain all information needed to complete a request, such 
as session state. 

Table 10-5 REST API Operation Types

Method Function Idempotency Safety/Read-
only Function

GET Reads resource data, settings YES YES
HEAD Tests the API endpoint for validity, 

accessibility, and recent modifications; 
similar to GET without response 
payload

YES YES

POST Creates a new resource NO NO
PUT Updates or replaces a resource YES NO
PATCH Modifies changes to a resource (not 

complete replacement)
NO NO

DELETE Deletes a resource YES NO
CONNECT Starts communications with the 

resource; opens a tunnel
YES YES

OPTIONS Provides information about the 
capabilities of a resource, without 
initiating a resource retrieval function

YES YES
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API Methods
Another important aspect of a RESTful API is the API method’s idempotency, or capabil-
ity to produce the same result when invoked, regardless of the number of times. The same 
request repeated to an idempotent endpoint should return an identical result regardless of 
two executions or hundreds.

API Authentication
Authentication to a RESTful API can take any number of forms: basic authentication, API 
key, bearer token, OAuth, or digest authentication, to name a few. Basic authentication is 
common, where the username is concatenated with a colon and the user’s password. The 
combined string is then Base64-encoded. You can easily generate the authentication string 
on macOS or other Linux derivatives using the built-in openssl utility. Windows platforms 
can achieve the same result by installing OpenSSL or obtaining a Base64-encoding utility.

NOTE Do not use an online website to generate Base64-encoded authentication strings. 
You do not know whether the site is logging user input, and security may be undermined.

Example 10-3 shows an example of generating a basic authentication string with openssl on 
macOS. 

Example 10-3 Generating Base64 Basic Authentication String on MacOS

Mac ~ % echo -n 'myusername:DevNet4U!' | openssl base64

bXl1c2VybmFtZTpEZXZOZXQ0VSE=

Mac ~ %

This method is not considered secure due to the encoding; at a minimum, the connection 
should be TLS-enabled so that the weak security model is at least wrapped in a layer of 
transport encryption.

Either API key or bearer token is more preferable from a security perspective. These models 
require you to generate a one-time key, usually from an administrative portal or user profile 
page. For example, you can enable the Meraki Dashboard API by first enabling the API for 
your organization: Organization > Settings > Dashboard API access. Then the associated 
Dashboard Administrator user can access the My Profile page to generate an API key. The 
key can also be revoked and a new key generated at any time, if needed.

API Pagination
API pagination serves as a method to protect API servers from overload due to large data 
retrieval requests. An API may limit return results, commonly rows or records, to a specific 
count. For example, the DNA Center REST API v2.1.2.x limits device results to 500 records 
at a time. To poll inventory beyond that, you would use pagination:

GET /dna/intent/api/v1/network-device/{index}/{count}

For example, if you had 1433 devices in inventory, you would use these successive polls:

GET /dna/intent/api/v1/network-device/1/500

GET /dna/intent/api/v1/network-device/501/500

GET /dna/intent/api/v1/network-device/1000/433
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Other APIs may provide different cues that pagination was in effect. The API return results 
may include the following parameters:

Records: 2034

First: 0

Last: 999

Next: 1000

Payload Data Formats JSON XML
When dealing with REST APIs, you often need to provide a request payload containing 
parameters. The parameters could be anything—username to provision, interface name to 
poll, operating system template for a virtual machine. The API response payload body like-
wise has information to be consumed. In either case, it is common to work with XML- or 
JSON-formatted data, although others are possible and less common. These two data encod-
ing models are conducive to programmatic use.

XML
The Extensible Markup Language (XML) is a markup language and data encoding model 
that has similarities to HTML. It is used to describe and share information in a programmatic 
but still humanly readable way.

XML documents have structure and can represent records and lists. Many people look at 
XML as information and data wrapped in tags. See Example 10-4 for context.

Example 10-4 XML Document

<Document>

   <Nodes>

<Node>

<Name>Router-A</Name>

<Location>San Jose, CA</Location>

<Interfaces>

<Interface>

<Name>GigabitEthernet0/0/0</Name>

<IPv4Address>10.1.2.3</IPv4Address>

<IPv4NetMask>255.255.255.0</IPv4NetMask>

<Description>Uplink to Switch-BB</Description>

</Interface>

<Interface>

<Name>GigabitEthernet0/0/1</Name>

<IPv4Address>10.2.2.1</IPv4Address>

<IPv4NetMask>255.255.255.128</IPv4NetMask>

<Description />

</Interface>

</Interfaces>

</Node>

   </Nodes>

</Document>
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In this example, the structure of this XML document represents a router record. <Docu-
ment>, <Nodes>, <Node>, <Name>, and <Location> are some of the tags created by the 
document author. They also define the structure. Router-A, San Jose, CA, and GigabitEther-
net0/0/0 are values associated with the tags. Generally, when an XML document or schema 
is written, the XML tags should provide context for the value(s) supplied. The values associ-
ated with the tags are plaintext and do not convey data type. As a plaintext document, XML 
lends well to data exchange and compression, where needed.

XML has a history associated with document publishing. Its functional similarity with 
HTML provides value: XML defines and stores data, focusing on content; HTML defines 
format, focusing on how the content looks. The Extensible Stylesheet Language (XSL) pro-
vides a data transformation function, XSL Transformations (XSLT), for converting XML 
documents from one format into another, such as XML into HTML. When you consider 
that many APIs output results in XML, using XSLTs to convert that output into HTML is an 
enabling feature. This is the basis for simple “API to Dashboard” automation.

Referring to Example 10-4, you can see that XML documents contain starting tags, such as 
<Node>, and ending (or closing) tags, such as </Node>. There is also the convention of an 
empty element tag; note the <Description /> example. All elements must have an end tag or 
be described with the empty element tag for well-formed XML documents. Tags are case 
sensitive, and the start and end tags must match case. If you’re a document author, you are 
able to use any naming style you wish: lowercase, uppercase, underscore, Pascal case, Camel 
case, and so on. It is suggested that you do not use dashes (-) or periods (.) in tags to prevent 
misinterpretation by some processors.

All elements must be balanced in nesting, but the spacing is not prescribed. A convention 
of three spaces aids the reader. It is acceptable for no spacing in a highly compressed docu-
ment, but the elements must still be nested among start and end tags.

XML can have attributes, similar to HTML. In the HTML example <img src="devnet_
logo.png" alt="DevNet Logo" />, you can recognize attributes of src and alt with values of 
"devnet_logo.png" and "DevNet Logo". Similarly, in XML, data can have attributes—for 
example, <interface type="GigabitEthernet">0/0/0</interface>.

Attribute values, such as “GigabitEthernet”, must be surrounded by double quotes. Values 
between tags, such as 0/0/0, do not require quotes.

XML documents usually start with an XML declaration or prolog to describe the version 
and encoding being used, but it is optional:

<?xml version="1.0" encoding="UTF-8"?>

XML documents are often described as trees composed of elements. The root element starts 
the document. Branches and child elements define the structure with elements potentially 
having subelements, or children. In Example 10-4, the root element is <Document>. Because 
XML does not predefine tags, you may see other root element tags. Some common ones are 
<Root>, <DocumentRoot>, <Parent>, and <rootElement>. It is up to the document author to 
define the tags and structure.

The <Nodes> element is a child. The <Node> elements are also children. The <Node> 
elements are also siblings to each other, as a list of records. The <Name>, <IPv4Address>, 
<IPv4NetMask>, and <Description> elements are children to <Node>, siblings to each other 
and form a record. Because there are multiple <Node> elements, a list is formed.
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XML documents can be viewed in browsers, typically through an Open File function. The 
browser may render the XML with easy-to-understand hierarchy and expand or collapse 
functions using + and -or ^ and > gadgets. See Figure 10-13 for another example of ACI 
XML data, rendered in a browser.

Figure 10-13 ACI XML Data Rendered in Browser

JSON
JavaScript Object Notation (JSON) is a newer data encoding model than XML and is 
growing in popularity and use with its more compact notation, ease of understanding, and 
closer integration with Python programming. It is lightweight, self-describing, and program-
ming language independent. If your development includes JavaScript, then JSON is an easy 
choice for data encoding with its natural alignment to JavaScript syntax.

The JSON syntax provides data being written as name-value pairs. Data is separated by com-
mas. Records or objects are defined by curly braces { }. Arrays and lists are contained within 
square brackets [ ].

The name of a name-value pair should be surrounded by double quotes. The value should 
have double quotes if representing a string. It should not have quotes if representing a 
numeric, Boolean (true/false), or null value. See Example 10-5 for a sample JSON record.
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Example 10-5 REST API Payload as JSON

{

   "Document": {

"Nodes": {

"Node": {

"Name": "Router-A",

"Location": "San Jose, CA",

"InterfaceCount": 2,

"Interfaces": {

"Interface": [

{

"Name": "GigabitEthernet0/0/0",

"IPv4Address": "10.1.2.3",

"IPv4NetMask": "255.255.255.0",

"Description": "Uplink to Switch-BB",

"isConnected": true

},

{

"Name": "GigabitEthernet0/0/1",

"IPv4Address": "10.2.2.1",

"IPv4NetMask": "255.255.255.128",

"Description": null,

"isConnected": false

}

]

}

}

}

   }

}

Using this example, you can compare the structure with the previous XML representation. 
There is a list of interfaces; each interface is a record or object.

With APIs, the system may not give you a choice of data formatting; either XML or JSON 
may be the default. However, content negotiation is supported by many APIs. If the server 
drives the output representation, a Content-Type header shows “application/xml” or “appli-
cation/json” as the response body payload type.

If the requesting client can request what’s desired, then an Accept header specifies similar 
values for preference. With some APIs, appending .xml or .json to the request URI returns 
the data with the preferred format.
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Cross-Domain, Technology-Agnostic Orchestration 
(CDTAO)

This section is not part of the official DEVCOR certification; however, in the spirit of grow-
ing network programmability skills, it does seem appropriate to discuss. You may skip this 
section if you prefer.

Most work in network IT tends to be very domain-specific. It’s not unusual to see engineers 
and operators focus on specific technologies—enterprise networking, route/switch, wire-
less, storage networks, compute, wide-area networking, MPLS, security, and so on. However, 
many do embrace multidomain expertise.

Often the management applications follow a similar segmentation. It is easy to appreciate, 
then, when management apps bring a multidomain perspective to monitoring, provisioning, 
and management. However, consider why you’re doing IT: there’s a lot to support a business 
and the apps it depends on for the services it provides. Some typical supporting technolo-
gies include DNS, server connectivity, link aggregation, routing, switching, storage, compute, 
virtualized workloads, authentication, databases, firewall security, content filtering security, 
threat mitigation security, and application hosting. I’m sure you can think of many more!

So, is your operational perspective keeping up with the scope of your IT services? If you 
end up using multiple tools for different domains or scale or geographical segments or secu-
rity segmentation, do you have an aggregate view of the health of your IT services, or do 
you switch back and forth between multiple tools? Doesn’t this issue get exacerbated when 
you pull in other IT vendors and open-source solutions? Is this something you accept as 
“the way it is” or do you try to “glue” together these systems for more unified operational 
insight?

How do you glue these systems together?

APIs are the unifying capability that enable you to achieve that glue. Most partner-vendors, 
Cisco included, strive to provide the best customer experience possible with their product 
and service offers. However, there are many customer segments, different sizes, different 
areas of concentration, and constraints. I have been asked, “Why isn’t there just one manage-
ment tool?” Can you imagine the size in server requirements, cost, and maintenance neces-
sary to provide such a solution? Would the broad functions, some of which don’t apply to 
your circumstances, distract your focus or enable it? In a friendly recognition to Hasbro, the 
movie series, and the legacy Cisco management suite, we would have to call it “Cisco Opti-
mus Prime”! Most would agree that’s a bit unrealistic. Even building an uber-modular frame-
work to allow the specific selection of desired functions and device support would increase 
complexity.

So is there an answer? Most providers enable their tools with APIs. If you pick the tools and 
apps you need based on function, need, cost, and preference, then you can obtain a converged 
operational perspective by using orchestration to collect the key health indicators from the 
individual tools and controllers. The orchestrator’s workflow would also include activities to 
create dashboards and portals unifying the information into converged operational portals 
that direct your attention to the domain-specific management tools, as necessary.

Is this possible? It’s not provided out of the box, again due to the variety of device types and 
functions, but it is doable. Consider the portal developed for the CiscoLive NOC in Figure
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10-14. This example represents, essentially, a mashup of key health metrics from several tools: 
Prime Infrastructure, DNA Center, vCenter, Prime Network Registrar, Hyperflex, and so on.

Figure 10-14 NOC Dashboard

So what does the technology-agnostic part of Cross-Domain, Technology-Agnostic Orches-
tration (CDTAO) entail? It’s a wonderful concept to glue together network IT services in 
a cross-domain perspective. What about some out-of-the-box thinking that also brings in 
non-networking IT? From Figure 10-14, you can observe collaboration, digital signage, and 
NetApp storage. What other network-connected technology (think IoT) can be accessed and 
operational insight retrieved?

What industry do you work in?

■ Healthcare: Pull in network-connected systems, such as blood-pressure cuffs, pulse ox
monitors, and crash carts.

■ Financial: Pull in ATM (cash, not legacy networking!), vault/deposit box status.

■ Retail: Fork lifts, credit card and point-of-sale terminals.

■ Education: Digital projector status, teacher location/availability, bus/parking lot,
camera status.

If you add “business care-abouts” to the network IT perspectives, does that allow you to see 
contribution and impact of the supporting infrastructure to the broader company? Sure, it 
does!

Impact to IT Service Management and Security
This section is a continuation and amplification of the earlier “Software-Defined Networking 
(SDN)” section mentioning the impact of other nontraditional entities influencing the net-
work. In a traditional networking case, you probably wrapped security around your change 
management and provisioning of the network devices, even if performed manually. SSH was 
enabled; access lists permitting only NOC or other specific personnel and network ranges 
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were configured; logging and accounting were enabled; possibly two-factor or multifactor 
authentication was provisioned. In any case, security was given a strong consideration.

So now that network devices, management applications, and controllers have program-
matic interfaces to extract and change functions of networks, are you continuing the same 
scrutiny? Are you the main source of API integration, or were other people with strong 
programming experience brought in to beef up automation? Do they have strong network-
ing experience in concert with their programming skills? Are they keeping in touch with you 
about changes? Oh no! Did that network segment go down?

Okay, enough of the histrionic “what if” scenario. You just need to make sure the same rigor 
applied to traditional network engineering and operations is also being applied to newer, 
SDN, and programmatic environments.

What are the leading practices related to programmable networks? First, consider your risk. 
What devices and services are managed through controllers? They should be secured first 
because they have the broadest scope of impact with multiple devices in a fabric. Enable all 
the security features the controller provides with the least amount of privileges necessary to 
the fewest number of individuals (and other automated systems). If the controller has limited 
security options, consider front-ending it with access lists or firewall services to limit access 
and content. Remember to implement logging and accounting; then review it periodically.

The next order of business should be high-priority equipment where the loss of availability 
has direct service, revenue, or brand recognition impact. It’s the same activity: tighten up 
access controls to the newer programmatic interfaces and telemetry.

Finally, go after the regular and low-priority equipment to shore up their direct device man-
agement interfaces in a similar fashion.

Exam Preparation Tasks
As mentioned in the section “How to Use This Book” in the Introduction, you have a couple 
of choices for exam preparation: the exercises here, Chapter 17, “Final Preparation,” and the 
exam simulation questions in the Pearson Test Prep Software Online. 

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topic icon in the outer 
margin of the page. Table 10-6 lists a reference of these key topics and the page numbers on 
which each is found.

Table 10-6 Key Topics for Chapter 10

Key Topic Element Description Page 
Number

Figure 10-3 Agile Methodology 318
Paragraph SDN concepts 329
Table 10-4 Contributing Protocols and Solutions to SDN 333
Table 10-5 REST API Operation Types 336
Paragraph XML description 338
Paragraph JSON description 340
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Complete Tables and Lists from Memory
Print a copy of Appendix C, “Memory Tables” (found on the companion website), or at least 
the section for this chapter, and complete the tables and lists from memory. Appendix D, 
“Memory Tables Answer Key,” also on the companion website, includes completed tables 
and lists to check your work.

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

JavaScript Object Notation (JSON), Network Configuration Protocol (NETCONF), REST, 
Extensible Markup Language (XML), YANG

References
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