


Malware Analysis 
Techniques

Tricks for the triage of adversarial software

Dylan Barker

BIRMINGHAM—MUMBAI



Malware Analysis Techniques

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, without the prior written permission of the publisher, except in the case of 
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express or 
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for 
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and 
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot 
guarantee the accuracy of this information.

Group Product Manager: Wilson Dsouza
Publishing Product Manager: Rahul Nair
Senior Editor: Arun Nadar
Content Development Editor: Sayali Pingale
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Aparna Bhagat

First published: May 2021

Production reference: 1200521

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-83921-227-7

www.packt.com

http://www.packt.com


Contributors

About the author
Dylan Barker is a technology professional with 10 years' experience in the information 
security space, in industries ranging from K12 and telecom to financial services. He 
has held many distinct roles, from security infrastructure engineering to vulnerability 
management. In the past, he has spoken at BSides events and has written articles for 
CrowdStrike, where he is currently employed as a senior analyst.



2
Static Analysis – 
Techniques and 

Tooling
Malware analysis is divided into two primary techniques: dynamic analysis, in which 
the malware is actually executed and observed on the system, and static analysis. Static 
analysis covers everything that can be gleaned from a sample without actually loading the 
program into executable memory space and observing its behavior.

Much like shaking a gift box to ascertain what we might expect when we open it, static 
analysis allows us to obtain a lot of information that may later provide context for behaviors 
we see in dynamic analysis, as well as static information that may later be weaponized 
against the malware.

In this chapter, we'll review several tools suited to this purpose, and several basic 
techniques for shaking the box that provide the best information possible. In addition, 
we'll take a look at two real-world examples of malware, and apply what we've learned to 
show how these skills and tools can be utilized practically to both understand and defeat 
adversarial software.



24     Static Analysis – Techniques and Tooling

In this chapter, we will cover the following topics:

• The basics – hashing

• Avoiding rediscovery of the wheel

• Getting fuzzy

• Picking up the pieces

Technical requirements
The technical requirements for this chapter are as follows:

• FLARE VM set up, which we covered in the previous chapter

• An internet connection

• .zip files containing tools and malware samples from https://github.com/
PacktPublishing/Malware-Analysis-Techniques

The basics – hashing
One of the most useful techniques an analyst has at their disposal is hashing. A hashing 
algorithm is a one-way function that generates a unique checksum for every file, much 
like a fingerprint of the file. 

That is to say, every unique file passed through the algorithm will have a unique hash,  
even if only a single bit differs between two files. For instance, in the previous chapter, we 
utilized SHA256 hashing to verify whether a file that was downloaded from VirtualBox 
was legitimate. 

Hashing algorithms
SHA256 is not the only hashing algorithm you're likely to come across as an analyst, though 
it is currently the most reliable in terms of balance of lack of collision and computational 
demand. The following table outlines hashing algorithms and their corresponding bits:

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques


The basics – hashing     25

Analysis Tip
In terms of hashing, collision is an occurrence where two different files have 
identical hashes. When a collision occurs, a hashing algorithm is considered 
broken and no longer reliable. Examples of such algorithms include MD5  
and SHA1.

Obtaining file hashes
There are many different tools that can be utilized to obtain hashes of files within 
FLARE VM, but the simplest, and often most useful, is built into Windows PowerShell. 
Get-FileHash is a command we can utilize that does exactly what it says—gets the 
hash of the file it is provided. We can view the usage of the cmdlet by typing Get-Help
Get-FileHash, as shown in the following screenshot: 

Figure 2.1 – Get-FileHash usage

Analysis Tip
This section and many sections going forward will require you to transfer files 
from your host PC or download them directly to your analysis virtual machine 
(VM). The simplest way to maintain isolation is to leave the network adapter 
on host-only and enable drag-and-drop or a shared clipboard via VirtualBox. 
Be sure to only do this on a clean machine, and disable it immediately when 
done via VirtualBox's Devices menu.



26     Static Analysis – Techniques and Tooling

In this instance, there are two files available at https://github.com/
PacktPublishing/Malware-Analysis-Techniques. These files are titled 
md5-1.exe and md5-2.exe. Once downloaded, Get-FileHash can be utilized on 
them, as shown in the next screenshot. In this instance, because there were the only two 
files in the directory, it was possible to use Get-ChildItem and pipe the output to 
Get-FileHash, as it accepts input from pipeline items.

Analysis Tip
Utilizing Get-ChildItem and piping the output to Get-FileHash is 
a great way to get the hashes of files in bulk and saves a great deal of time in 
triage, as opposed to manually providing each filename to Get-FileHash 
manually.

In the following screenshot, we can see that the files have the same MD5 hash! However, 
they also have the same size, so it's possible that these are, in fact, the same file:

Figure 2.2 – The matching MD5 sums for our files

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques


Avoiding rediscovery of the wheel     27

However, because MD5 is known to be broken, it may be best to utilize a different 
algorithm. Let's try again, this time with SHA256, as illustrated in the following screenshot: 

Figure 2.3 – The SHA256 sums for our files

The SHA256 hashes differ! This indicates without a doubt that these files, while the same 
size and with the same MD5 hash, are not the same file, and demonstrates the importance 
of choosing a strong one-way hashing algorithm.

Avoiding rediscovery of the wheel
We have already established a great way of gaining information about a file via 
cryptographic hashing—akin to a file's fingerprint. Utilizing this information, we can 
leverage other analysts' hard work to ensure we do not dive deeper into analysis and  
waste time if someone has already analyzed our malware sample.

Leveraging VirusTotal
A wonderful tool that is widely utilized by analysts is VirusTotal. VirusTotal is a scanning 
engine that scans possible malware samples against several antivirus (AV) engines and 
reports their findings.



28     Static Analysis – Techniques and Tooling

In addition to this functionality, it maintains a database that is free to search by hash. 
Navigating to https://virustotal.com/ will present this screen:

Figure 2.4 – The VirusTotal home page

In this instance, we'll use as an example a 275a021bbfb6489e54d471899f7db9d1
663fc695ec2fe2a2c4538aabf651fd0f SHA256 hash. Entering this hash into 
VirusTotal and clicking the Search button will yield results as shown in the following 
screenshot, because several thousand analysts have submitted this file previously:

https://virustotal.com/


Avoiding rediscovery of the wheel     29

Figure 2.5 – VirusTotal search results for EICAR's test file

Within this screen, we can see that several AV engines correctly identify this SHA256 hash 
as being the hash for the European Institute for Computer Antivirus Research (EICAR) 
test file, a file commonly utilized to test the efficacy of AV and endpoint detection and 
response (EDR) solutions.

It should be apparent that utilizing our hashes first to search VirusTotal may greatly assist 
in reducing triage time and confirm suspected attribution much more quickly than our 
own analysis may.

However, this may not always be an ideal solution. Let's take a look at another  
sample— 8888888.png. This file may be downloaded from https://github.com/
PacktPublishing/Malware-Analysis-Techniques.

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques


30     Static Analysis – Techniques and Tooling

Warning!
888888.png is live malware—a sample of the Qakbot (QBot) banking 
Trojan threat! Handle this sample with care!

Utilizing the previous section's lesson, obtain a hash of the Qakbot file provided. Once 
done, paste the discovered hash into VirusTotal and click the search icon, as illustrated in 
the following screenshot:

Figure 2.6 – Searching for the Qakbot hash yields no results!

It appears, based on the preceding screenshot, that this malware has an entirely unique 
hash. Unfortunately, it appears as though static cryptographic hashing algorithms will be 
of no use to our analysis and attribution of this file. This is becoming more common due 
to adversaries' implementation of a technique called hashbusting, which ensures each 
malware sample has a different static hash!

Analysis Tip
Hashbusting is quickly becoming a common technique among more advanced 
malware authors, such as the actor behind the EMOTET threat. Hashbusting 
implementations vary greatly, from adding in arbitrary snippets at compile-
time to more advanced, probabilistic control flow obfuscation—such as the 
case with EMOTET.



Getting fuzzy     31

Getting fuzzy
In the constant arms race of malware authoring and Digital Forensics and Incident 
Response (DFIR) analysts attempting to find solutions to common obfuscation 
techniques, hashbusting has also been addressed in the form of fuzzy hashing.

ssdeep is a fuzzy hashing algorithm that utilizes a similarity digest in order to create and 
output representations of files in the following format:

chunksize:chunk:double_chunk

While it is not necessary to understand the technical aspects of ssdeep for most analysts, 
a few key points should be understood that differentiate ssdeep and fuzzy hashing from 
standard cryptographic hashing methods such as MD5 and SHA256: changing small 
portions of a file will not significantly change the ssdeep hash of the file, whereas changing 
one bit will entirely change the cryptographic hash.

With this in mind, let's take a ssdeep hash of our 8888888.png sample. Unfortunately, 
ssdeep is not installed by default in FLARE VM, so we will require a secondary package. 
This can be downloaded from https://github.com/PacktPublishing/
Malware-Analysis-Techniques. Once the ssdeep binaries have been extracted to 
a folder, place the malware sample in the same folder, as shown in the following screenshot:

Figure 2.7 – Place the binary into the same folder as your ssdeep executable for ease of use

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques


32     Static Analysis – Techniques and Tooling

Next, we'll need to open a PowerShell window to this path. There's a quick way to do this 
in Windows—click in the path bar of Explorer, type powershell.exe, strike Enter, and 
Windows will helpfully open a PowerShell prompt at the current path! This is illustrated 
in the following screenshot:

Figure 2.8 – An easy shortcut to open a PowerShell prompt at the current folder's pathing

With PowerShell open at the current prompt, we can now utilize the following to obtain 
our ssdeep hash: .\ssdeep.exe .\8888888.png. This will then return the 
ssdeep fuzzy hash for our malware sample, as illustrated in the following screenshot:

Figure 2.9 – The ssdeep hash for our Qbot sample



Getting fuzzy     33

We can see that in this instance, the following fuzzy hash has been returned:

6144:JanAo3boaSrTBRc6nWF84LvSkgNSjEtIovH6DgJG3uhRtSUgnSt9BYbC 
38g/T4J:JaAKoRrTBHWC4LINSjA/EMGU/ShomaI

Unfortunately, at this time, the only reliable publicly available search engine for ssdeep 
hashes is VirusTotal, which requires an Enterprise membership. However, we'll walk 
through the process of searching VirusTotal for fuzzy hashes. In the VirusTotal Enterprise 
home page, ssdeep hashes can be searched with the following:

ssdeep:"<ssdeephashhere>"

Figure 2.10 – ssdeep search syntax on VirusTotal



34     Static Analysis – Techniques and Tooling

Because comparing fuzzy hashes requires more computational power than searching  
rows for fixed, matching cryptographic hashes, VirusTotal will take a few moments to 
load the results. However, once it does, you will be presented with the page shown in 
the following screenshot, containing a wealth of information, including a corresponding 
cryptographic hash, when the sample was seen, and engines detecting the file, which will 
assist with attribution:

Figure 2.11 – Fuzzy hash search results for our Qbot sample on VirusTotal



Picking up the pieces     35

Clicking one of the highly similar cryptographic hashes will load the VirusTotal scan results 
for the sample and show what our sample likely is, as illustrated in the following screenshot:

Figure 2.12 – Scan results of highly similar files that have been submitted to VirusTotal

If you do not have a VirusTotal Enterprise subscription, all is not lost in terms of fuzzy 
hashing, however. It is possible to build your own database or compare known samples of 
malware to the fuzzy hashes of new samples. For full usage of ssdeep, see their project 
page at https://ssdeep-project.github.io/ssdeep/usage.html.

Picking up the pieces
In addition to simple fingerprints of files, be they fuzzy or otherwise, a file can give us 
several other basic pieces of information about it without executing. Attackers have a few 
simple tricks that are frequently used to attempt to slow down analysis of malware.

https://ssdeep-project.github.io/ssdeep/usage.html


36     Static Analysis – Techniques and Tooling

Malware serotyping
Take, for instance, our current sample—888888.png; if we open this file as a .png 
image, it appears to be corrupt!

Adversaries frequently change the extension of files, sometimes excluding it altogether 
and sometimes creating double extensions, such as notmalware.doc.exe, in order to 
attempt to obfuscate their intentions, bypass EDR solutions, or utilize social engineering 
to entice a user into executing their payload.

Fortunately for malware analysts, changing a file's extension does not hide its true 
contents, and serves only as an aesthetic change in most regards. In computing, all files 
have a header that indicates to the operating system how to interpret the file. This header 
can be utilized to type a file, much like a crime forensic analyst would type a blood sample. 
See the following table for a list of common file headers related to malware:

Unix and Unix-like systems have a built-in utility for testing file types, called file. 
Unfortunately, Windows lacks this ability by default, and requires a secondary tool 
installation within FLARE. filetype.exe is a good choice for this and can be 
obtained from https://github.com/PacktPublishing/Malware-Analysis-
Techniques.

Once extracted, we can use filetype.exe -i 8888888.png to ascertain what the 
file really is. In this case, filetype returns that this is a Windows PE file, as illustrated in 
the following screenshot:

Figure 2.13 – Results from utilizing filetype.exe; our image is actually a Windows Portable Executable!

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques


Picking up the pieces     37

Analysis Tip
While tools exist to automatically ascertain the file type, such as Unix's FILE 
and FILETYPE for Windows, it's also possible to use a hexadecimal editor 
such as 010 Editor to simply examine the file's header and compare it to  
known samples.

Collecting strings
When an executable is compiled, certain ASCII- or Unicode-encoded strings used during 
development may be included in the binary.

The value of intelligence held by strings in an executable should not be underestimated. 
They can offer valuable insight into what a file may do upon execution, which command-
and-control servers are being utilized, or even who wrote it.

Continuing with our sample of QBot, a tool from Microsoft's Windows Sysinternals can 
be utilized to extract any strings located within the binary. First, let's take a look at some 
of the command-line switches that may assist in making the Strings tool as useful as 
possible, as illustrated in the following screenshot:

Figure 2.14 – Command-line options for the Strings utility 

As shown, ASCII and Unicode strings are both searched by default—this is ideal, as we'd 
like to include both in our search results to ensure we have the most intelligence possible 
related to our binary. The primary switch we are concerned with is -n, the minimum 
string length to return. It's generally recommended to utilize a value of 5 for this switch, 
otherwise garbage output may be encountered that may frustrate analysis.

Let's examine which strings our Qbot sample contains, with strings -n 5 8888888.
png > output.txt.



38     Static Analysis – Techniques and Tooling

Analysis Tip
The > operator on the Windows command line will redirect the terminal's 
standard output to a file or location of your choosing, handy if you don't want 
to scroll through the terminal or truncate output. Similarly, >> will append 
standard output to the end of an already existing file.

Once this command is issued, a new text document will be created. Taking a look at our 
text file, we can see several strings have been returned, including some of the Windows 
application programming interface (API) modules that are imported by this binary—
these may give a clue to some of the functionality the malware offers and are illustrated  
in the following screenshot:

Figures 2.15 – Output of strings showing modules imported from the Windows API, as well as 
information on which executable may have served as the basis of this payload



Picking up the pieces     39

Scrolling down to the end of the output, we can gain some information on which 
executable was backdoored or what the binary is masquerading as! This may prove useful 
both in tracking the operations of the campaign and tracking indicators of compromise 
(IOCs) for internal outbreaks. The information can be seen in the following screenshot:

Figures 2.16 – Output of strings showing modules imported from the Windows API, as well as 
information on which executable may have served as the basis of this payload

As you can see, information gained via this methodology may prove useful both in 
tracking the operations of the campaign and tracking IOCs for internal outbreaks.



40     Static Analysis – Techniques and Tooling

Challenges
The malware samples for these challenges can be found at https://github.com/
PacktPublishing/Malware-Analysis-Techniques.

Challenge 1
Attempt to answer the following questions utilizing what you've learned in this  
chapter—remembering that you are working with live malware. Do not execute 
the sample!

1. What is the SHA256 hash of the sample?

2. What is the ssdeep hash of the sample?

3. Can you attribute this sample to a particular malware family?

Challenge 2
In 2017, malware researcher Marcus Hutchins (@MalwareTechBlog) utilized the 
Strings utility to stop the global threat of WannaCry by identifying and sinkholing a 
kill-switch domain. 

Utilizing the second sample, can you correctly identify the kill-switch domain?

Summary
In this chapter, we've taken a look at some basic static analysis techniques, including 
generating static file fingerprints using hashing, fuzzy hashing when this is not enough, 
utilizing open source intelligence (OSINT) such as VirusTotal to avoid replicating work, 
and understanding strings that are present within a binary after compilation.

While basic, these techniques are powerful and comprise a base skillset required to  
be effective as a malware analyst, and we will build on each of these techniques in the 
coming chapters to perform more advanced analysis. To test your knowledge of the 
chapter, make sure you have gone through the Challenges section and seen how your static 
analysis skills stack up against real-world adversaries. In the next chapter, we'll be moving 
on from basic static analysis to dynamic analysis—actually executing our malware!

Further reading
ssdeep advanced usage: https://ssdeep-project.github.io/ssdeep/
usage.html

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://ssdeep-project.github.io/ssdeep/usage.html
https://ssdeep-project.github.io/ssdeep/usage.html

	Cover
	Copyright
	Contributors
	Chapter 2: Static Analysis – Techniques and Tooling
	Technical requirements
	The basics – hashing
	Hashing algorithms
	Obtaining file hashes

	Avoiding rediscovery of the wheel
	Leveraging VirusTotal

	Getting fuzzy
	Picking up the pieces
	Malware serotyping
	Collecting strings

	Challenges
	Challenge 1
	Challenge 2

	Summary
	Further reading




