Malware Analysis
Techniques

A T : ~ - Ve
7 — ; . %
i B E 1 i : ‘
3 . ,*g v % e d G . E
R o ot Yo il oty B
glyleddn g s 9y NI AR
B (el
,;{[%Q\g’*“ Lo :ax
gt

i oy exd
faons gt “m
s i
%’ vgk‘ g
= 8 - ¥ ' THA e
svgo) 3ot WS e ﬂ:"’
it i n . "
e 3 TR LA R
- ¢ 4 3 L g o g
LI T i
N N Rt '}"{ Q&"‘\‘x.,,"i
Bp+ By g N ~ gy ey hi
a - N
A T T
AR - . (:\m}
5 A ®
‘ Pt
. » y -
-t \"!‘d

Tricks for the triage of adversarial software

Dylan Barker

Sopt

Malware Analysis
Techniques

Tricks for the triage of adversarial software

Dylan Barker

Pack®

BIRMINGHAM—MUMBAI

Malware Analysis Techniques

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Wilson Dsouza
Publishing Product Manager: Rahul Nair
Senior Editor: Arun Nadar

Content Development Editor: Sayali Pingale
Technical Editor: Sarvesh Jaywant

Copy Editor: Safis Editing

Project Coordinator: Shagun Saini
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Aparna Bhagat

First published: May 2021

Production reference: 1200521

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

978-1-83921-227-7

www . packt .com

http://www.packt.com

Contributors

About the author

Dylan Barker is a technology professional with 10 years' experience in the information
security space, in industries ranging from K12 and telecom to financial services. He
has held many distinct roles, from security infrastructure engineering to vulnerability
management. In the past, he has spoken at BSides events and has written articles for
CrowdStrike, where he is currently employed as a senior analyst.

2

Static Analysis -
Techniques and
Tooling

Malware analysis is divided into two primary techniques: dynamic analysis, in which

the malware is actually executed and observed on the system, and static analysis. Static
analysis covers everything that can be gleaned from a sample without actually loading the
program into executable memory space and observing its behavior.

Much like shaking a gift box to ascertain what we might expect when we open it, static
analysis allows us to obtain a lot of information that may later provide context for behaviors
we see in dynamic analysis, as well as static information that may later be weaponized
against the malware.

In this chapter, we'll review several tools suited to this purpose, and several basic
techniques for shaking the box that provide the best information possible. In addition,
we'll take a look at two real-world examples of malware, and apply what we've learned to
show how these skills and tools can be utilized practically to both understand and defeat
adversarial software.

24 Static Analysis — Techniques and Tooling

In this chapter, we will cover the following topics:

o The basics - hashing

 Avoiding rediscovery of the wheel
 Getting fuzzy

o Picking up the pieces

Technical requirements

The technical requirements for this chapter are as follows:

« FLARE VM set up, which we covered in the previous chapter
o An internet connection

 .zip files containing tools and malware samples from https://github.com/
PacktPublishing/Malware-Analysis-Techniques

The basics - hashing

One of the most useful techniques an analyst has at their disposal is hashing. A hashing
algorithm is a one-way function that generates a unique checksum for every file, much
like a fingerprint of the file.

That is to say, every unique file passed through the algorithm will have a unique hash,
even if only a single bit differs between two files. For instance, in the previous chapter, we
utilized SHA256 hashing to verify whether a file that was downloaded from VirtualBox
was legitimate.

Hashing algorithms

SHAZ256 is not the only hashing algorithm you're likely to come across as an analyst, though
it is currently the most reliable in terms of balance of lack of collision and computational
demand. The following table outlines hashing algorithms and their corresponding bits:

Algorithm Output Bits Broken
MD5 128 Yes
SHAI1 160 Yes
SHA256 256 No
SHA512 512 No

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques

The basics - hashing 25

Analysis Tip

In terms of hashing, collision is an occurrence where two different files have
identical hashes. When a collision occurs, a hashing algorithm is considered
broken and no longer reliable. Examples of such algorithms include MD5
and SHA1.

Obtaining file hashes

There are many different tools that can be utilized to obtain hashes of files within
FLARE VM, but the simplest, and often most useful, is built into Windows PowerShell.
Get-FileHash is a command we can utilize that does exactly what it says—gets the
hash of the file it is provided. We can view the usage of the cmdlet by typing Get -Help
Get-FileHash, as shown in the following screenshot:

EN Windows PowerShell - X
FS C:\Users\Dylan\Downloads> Get-Help Get-Filehash

INAME
Get-FileHash

SYNTAX
Get-FileHash [-Path] <string[]> [-Algorithm {SHAL | SHA256 | SHA384 | SHA512 | MACTripleDES |
MD5 | RIPEMD160}] «CommonParameters:>]

Get-FileHash -LiteralPath <string [-Algorithm {SHAl | SHA256 | SHA384 | SHA512 |
MACTripleDES | MD5 | RIPEMD160}] [<CommonParameters:>]

Get-FileHash -InputStream <Stream> [-Algorithm {SHA1l | SHA256 | SHA384 | SHA512 | MACTripleDES
| MD5 | RIPEMD160}] [<CommonParameters:]

ALIASES
None

REMARKS
Get-Help cannot find the Help files for this cmdlet on this computer. It is displaying only
partial help.
-- To download and install Help files for the module that includes this cmdlet, use
Update-Help.
-- To view the He]p topic for this cmdlet online, typ "Get-Help Get-FileHash -0Online" or
go to https: o.microsoft.com/fwlink/?LinkId=517145.

Figure 2.1 - Get-FileHash usage

Analysis Tip

This section and many sections going forward will require you to transfer files
from your host PC or download them directly to your analysis virtual machine
(VM). The simplest way to maintain isolation is to leave the network adapter
on host-only and enable drag-and-drop or a shared clipboard via VirtualBox.
Be sure to only do this on a clean machine, and disable it immediately when
done via VirtualBox's Devices menu.

26 Static Analysis — Techniques and Tooling

In this instance, there are two files available at https://github.com/
PacktPublishing/Malware-Analysis-Techniques. These files are titled
md5-1.exe and md5-2 . exe. Once downloaded, Get -FileHash can be utilized on
them, as shown in the next screenshot. In this instance, because there were the only two
files in the directory, it was possible to use Get -ChildItem and pipe the output to
Get-FileHash, as it accepts input from pipeline items.

Analysis Tip
Utilizing Get -ChildItemand piping the output to Get -FileHash is
a great way to get the hashes of files in bulk and saves a great deal of time in

triage, as opposed to manually providing each filename to Get -FileHash
manually.

In the following screenshot, we can see that the files have the same MD5 hash! However,
they also have the same size, so it's possible that these are, in fact, the same file:

EN Windows PowerShell
PS C:\Users\Dylan\Downloads> Get-ChildItem

Directory: C:\Users\Dylan\Downloads

LastWriteTime Length Name @
29/2020 : 3 md5-1.exe
/2972020 5:17 PM 7168 md5-2.exe

PS C:\Users\Dylan\Downloads> Get-ChildItem | Get—FﬂeH

ATgorithm Hash

665FF1DD581F97B33AF9B7 FBIF695912
665FF1DD581F97B33AF9B7FBIF695912

PS C:\Users\Dylan\Downloads>

Figure 2.2 - The matching MD5 sums for our files

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques

Avoiding rediscovery of the wheel 27

However, because MD5 is known to be broken, it may be best to utilize a different
algorithm. Let's try again, this time with SHA256, as illustrated in the following screenshot:

E¥ Windows PowerShell - q
PS C:\Users\Dylan\Downloads> Get-ChildItem

Directory: C:\Users\Dylan\Downloads

LastwriteTime Length Name

29/2020 168 md5-1.exe ©
29/2020 = PM 7 8 md5-2.exe
PS C:\Users\Dylan\Downloads> Get-ChildItem | Get-FileHash SHA256 M

Algorithm

E16A3E/BEAGOAB2AATE49E31199791648C 14D1691935F25F 3BDAE94F 2F 34B
84AF18CFDO67DF107B790EDDE 3DBD23A037 9F 8FBBD191 3ABOCEA74C4378F4569

Figure 2.3 — The SHA256 sums for our files

The SHA256 hashes differ! This indicates without a doubt that these files, while the same
size and with the same MD5 hash, are not the same file, and demonstrates the importance
of choosing a strong one-way hashing algorithm.

Avoiding rediscovery of the wheel

We have already established a great way of gaining information about a file via
cryptographic hashing—akin to a file's fingerprint. Utilizing this information, we can
leverage other analysts' hard work to ensure we do not dive deeper into analysis and
waste time if someone has already analyzed our malware sample.

Leveraging VirusTotal

A wonderful tool that is widely utilized by analysts is VirusTotal. VirusTotal is a scanning
engine that scans possible malware samples against several antivirus (AV) engines and
reports their findings.

28 Static Analysis — Techniques and Tooling

In addition to this functionality, it maintains a database that is free to search by hash.
Navigating to https://virustotal.com/ will present this screen:

Intelligence Hunting ~ Graph API

>] VIRUSTOTAL

Analyze suspicious files and URALS to detect types of malware, automatically
share them with the security community

FILE URL SEARCH

Q

domain, or file hash Q

URL, IP addres

By submitting data above, you are agreeing to our Terms of Service and Privacy Policy, and to the
sharing of your Sample submission with the security community. Please do not submit any
personal information; VirusTotal is not responsible for the contents of your submission. Leam more.

(D) Want to automate submissions? Check our AP, free quota grants available for new file uploads

Figure 2.4 - The VirusTotal home page

In this instance, we'll use as an example a 275a021bbfb6489e543d471899£7db9d1l
663fc695ec2fe2a2c4538aabf651£d0f SHA256 hash. Entering this hash into
VirusTotal and clicking the Search button will yield results as shown in the following
screenshot, because several thousand analysts have submitted this file previously:

https://virustotal.com/

Avoiding rediscovery of the wheel = 29

Z 2752021bblbB489e54047189917db9d1663(c695ec2le2a2c4538aabl651dOrl o 8 sonin LD
(D) 64 engines detected this file (@ :iz
275a021bbfb6489e54d471899(7db9d1663Ic695ec2le2a2c4538aabi6511d0l 68.00B 2020-07-29 22:53:12 UTC _E
eicar.com-1937 Size 10 minutes ago TXT
attachment text via-tar
Gommunity
Score
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY @

Ad-Aware @ EICAR-Test-File (not A Virus) AegisLab @ Test.File.EICAR.y

AhnLab-V3 @ Virus/EICAR_Test_File Alibaba @ Trojan:MacOSieicar.com

AlYac @ Misc.Eicar-Test-File Antiy-AVL @ TestFile/Win32.EICAR

SecureAge APEX @ EICAR Anti-Virus Test File Arcabit @ EICAR-Test-File (not A Virus)

Avast () EICAR Tesl-NOT Virus!ll Avast-Mabile () Eicar

AVG @ EICAR Test-NOT Virus!!! Avira (no cloud) @ Eicar-Test-Signature

Baidu @ Win32.Test.Eicar.a BitDefender @ EICAR-Test-File (not A Virus)

BitDefenderTheta @ EICAR-Test-File (not A Virus) Bkav @ DOS.EiracA.Trojan

CAT-QuickHeal @ EICAR.TestFile ClamAv @ ‘Win.Test.EICAR_HDB-1

CMC @ Eicartestfile Comodo @ ApplicUnwnt@#29875xik8s2pq 1

Cynet (D Malicious (scare: 85) Cyren (D) EICAR_Test_File

Drieb (1) EICAR Test File (NOT A Virus!) Elastio (D Eicar

Emsisoft (D) EICAR-Test-File (not A Virus) (B) eScan (1) EICAR-Test-File @

Figure 2.5 - VirusTotal search results for EICAR's test file

Within this screen, we can see that several AV engines correctly identify this SHA256 hash
as being the hash for the European Institute for Computer Antivirus Research (EICAR)
test file, a file commonly utilized to test the efficacy of AV and endpoint detection and
response (EDR) solutions.

It should be apparent that utilizing our hashes first to search VirusTotal may greatly assist
in reducing triage time and confirm suspected attribution much more quickly than our
own analysis may.

However, this may not always be an ideal solution. Let's take a look at another
sample— 8888888 .png. This file may be downloaded from https://github.com/
PacktPublishing/Malware-Analysis-Techniques.

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques

30 Static Analysis — Techniques and Tooling

Warning!
888888 .png is live malware—a sample of the Qakbot (QBot) banking
Trojan threat! Handle this sample with care!

Utilizing the previous section's lesson, obtain a hash of the Qakbot file provided. Once
done, paste the discovered hash into VirusTotal and click the search icon, as illustrated in
the following screenshot:

2 AZ3EF053CCCFBA35FDAADCSF 1702BA99IATBEGI5107D3BASD1EABCIC258299E4 Q A~ 8 osonin LD

No matches found

Are you looking for advanced malware searching
capabilities? VT Intelligence can help, learn more.

Figure 2.6 - Searching for the Qakbot hash yields no results!

It appears, based on the preceding screenshot, that this malware has an entirely unique
hash. Unfortunately, it appears as though static cryptographic hashing algorithms will be
of no use to our analysis and attribution of this file. This is becoming more common due
to adversaries' implementation of a technique called hashbusting, which ensures each
malware sample has a different static hash!

Analysis Tip

Hashbusting is quickly becoming a common technique among more advanced
malware authors, such as the actor behind the EMOTET threat. Hashbusting
implementations vary greatly, from adding in arbitrary snippets at compile-
time to more advanced, probabilistic control flow obfuscation—such as the
case with EMOTET.

Getting fuzzy 31

Getting fuzzy

In the constant arms race of malware authoring and Digital Forensics and Incident
Response (DFIR) analysts attempting to find solutions to common obfuscation
techniques, hashbusting has also been addressed in the form of fuzzy hashing.

ssdeep is a fuzzy hashing algorithm that utilizes a similarity digest in order to create and
output representations of files in the following format:

chunksize:chunk:double chunk

While it is not necessary to understand the technical aspects of ssdeep for most analysts,
a few key points should be understood that differentiate ssdeep and fuzzy hashing from
standard cryptographic hashing methods such as MD5 and SHA256: changing small
portions of a file will not significantly change the ssdeep hash of the file, whereas changing
one bit will entirely change the cryptographic hash.

With this in mind, let's take a ssdeep hash of our 8888888 . png sample. Unfortunately,
ssdeep is not installed by default in FLARE VM, so we will require a secondary package.
This can be downloaded from https://github.com/PacktPublishing/
Malware-Analysis-Techniques. Once the ssdeep binaries have been extracted to
a folder, place the malware sample in the same folder, as shown in the following screenshot:

I ¥ = | ssdeep-2.14.1 - m] X
Home Share View o
T » ssdeep-2.14.1 v O Search ssdeep-2.14.1 y-l
~
MName Date modified Type Size
3+ Quick access)
I Desk =l APLTXT Text Document 4KB
eskto -
P |=| FILEFORMAT.TXT Text Document TKB
‘_’ Downloads [fuzzy.def DEF File 1KB
= Documents 4] fuzzy.dil Application extens. ., 26 KB
| Pictures [fuzzy.h H File 9KB
b Music 5 News.TxT Text Document 6KE
[Videos El READMETXT Text Document KB
[sample.c C File 4KB
& OneDrive [ssdeep.exe Application 836 KB
[This PC H 8388288.png PMG File 1,187 KB
¥ Network
*& Homegroup
10items 2items selected 1.97 MB |E| =

Figure 2.7 - Place the binary into the same folder as your ssdeep executable for ease of use

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques

32 Static Analysis — Techniques and Tooling

Next, we'll need to open a PowerShell window to this path. There's a quick way to do this
in Windows—click in the path bar of Explorer, type powershell. exe, strike Enter, and
Windows will helpfully open a PowerShell prompt at the current path! This is illustrated
in the following screenshot:

| || = | ssdeep-2.14.1

Share View

powershell.exe

v

3 Quick access
[Desktop
3 Downloads

@ OneDrive
[This PC
¥ Network

»§ Homegroup

10 items

Mame

E apLTxT

|=| FILEFORMAT.TXT
|| fuzzy.def

%] fuzzy.dil

|| fuzzy.h

] NEws.TXT

|=| README.TXT

| | sample.c

[:] ssdeep.exe

&d] 8388888.png

2 itemns selected 1.97 MB

Date modified

11/6

— O
- Search sso

Type
Text Document 4KB
Text Document 1KB
DEF File 1KB
Application extens... 26 KB
H File KB
Text Document 6 KB
Text Document TKB
CFile 4KB
Application 836 KB
PMG File 1,187 KB

Figure 2.8 - An easy shortcut to open a PowerShell prompt at the current folder's pathing

With PowerShell open at the current prompt, we can now utilize the following to obtain

our ssdeep hash: . \ssdeep.exe .\8888888.png. This will then return the

ssdeep fuzzy hash for our malware sample, as illustrated in the following screenshot:

BN Select Windows PowerShell

Figure 2.9 - The ssdeep hash for our Qbot sample

Getting fuzzy 33

We can see that in this instance, the following fuzzy hash has been returned:

6144 :JanAo3boaSrTBRc6nWF84LvSkgNSjEtIovH6DgJG3uhRtSUgNnSt9IBYbC
38g/T4J:JaAKOoRrTBHWC4LINSjA/EMGU/Shomal

Unfortunately, at this time, the only reliable publicly available search engine for ssdeep
hashes is VirusTotal, which requires an Enterprise membership. However, we'll walk
through the process of searching VirusTotal for fuzzy hashes. In the VirusTotal Enterprise
home page, ssdeep hashes can be searched with the following:

ssdeep: "<ssdeephashhere>"

Intelligence Hunting ~ Graph API 3@ (1) Dylan Barker 0

> | VTENTERPRISE

Analyze suspicious files and URLs to detect types of malware, automatically
share them with the security community

FILE URL SEARCH

Q -

ssdeep:"6144.JanAo3boaSrTBRcENWFB4LvSkgNS]EIovHBDgJG3uhRtSUgnSt = Help

There are over 50 search modifiers that you can use, get started with this wargame or waich a short
introduction

() Want to automate submissions? Check our AP, free quota grants available for new file uploads

Figure 2.10 — ssdeep search syntax on VirusTotal

34 Static Analysis — Techniques and Tooling

Because comparing fuzzy hashes requires more computational power than searching
rows for fixed, matching cryptographic hashes, VirusTotal will take a few moments to
load the results. However, once it does, you will be presented with the page shown in

the following screenshot, containing a wealth of information, including a corresponding
cryptographic hash, when the sample was seen, and engines detecting the file, which will
assist with attribution:

E URL, IP address, domain, file hash or paste multiple hashes S hep QA 88 (3D DylanBarker n
O\
[FlLES 20+ B N
Simiaity Detections Lastseen Submitters
C59267ECTF 4455262478 40987RER154429158318F TOD4EE5185D794DFCDD3ED
' [0 2efd9adi2ia577ee8846ch717528730D. 98% 44 [72 1.16 MB. 200607 20200607 1 k3
e settAtebrlTas s ° . . 105055 10:50:55 EXe
& poexe invalid-signature signed averlay
~ 2285FB84C C66101183 70
[. 2020-06-07 2020-06-07 o
[30ee82270726710a25500a840080472.virus 98% 44173 1.16 MB. 105024 105204 1 Eﬂ};
S peexe invalid-signature signed averlay &
=
&= ADSBL20B75ET0BA260322ER B 155FF2DO740701BFCACR41FABTDA3AY
[dae0a48sasataERbNOSSABSE220 S oas PRy 11518 2020-06-07 2020-06-07 s 2;':‘
B @ peexe overay runtime-madules signed direct-cpu-clock-access 10:50:54 10:50:54
invalid-signature
278103CAE3F63213CODBBREC 3EAAC5785614E2CCEFBCIO5IBFACEEB1EQBLAS3
[So9c9sReSSDIZI9RCE1 T4 AT - 41173 . 2020-06-07 2020-06-07 B zsz
& pooxe overiay. runtime-madules signed direct-cpu-clock-access 10:50:42 10:50:42
5 invalid-signature
o 64CECCA73F1ER2F178F23EFDEFBD2F50F 5 1CC7EB9B20EF7812780C8 4 1BA23LF
o W ppl i igeywuuiy - 50773 116 ME 2020-06-12 2020-06-12 s 9
& | peexe overlay runtime-madules signed direct-cpu-clock-access 00:16:06 00:16:06 EXE
Fe invaldsignature 2
N6CT272774CD4 384 65007634 200 BOGF 562412864326 ABBATED 1CORACRCEFATOE
o v pp i iy 03 w2173 11518 2020-06-07 2020-06-07 s 2;':‘
I @ peexe overay runtime-madules signed direct-cpu-clock-access 20:45:26 20:45:26
invalid-signature
207FRCBA5AC216284 11 AR2ESTOC79662235084E57951 6 158882 3COREBFA30
[TAPPDATA%microsofeisamaiL exe a2 21173 . 2020-06-04 2020-06-04 B E}E_
© pooxe ovariay runtime-madules signod direct-cpu-clogk-access 18:03:05 18:03:05
invald-signature executes-dropped-ile
795E155672C21662E 78233033314 EGGF91E638B31C716E2E167EBABS4 827BF9N
o o 064 064
*APPDATA\microsoftyxtwvbwiynmel.exe a2 &1/70 16 2020-06-08 2020-06-08 4
& peexe overiay. runtime-modules signed direct-cpu-clock-access 09:46:48 09:46:48
invalid-signature oxecutes-droppad-fils

Figure 2.11 - Fuzzy hash search results for our Qbot sample on VirusTotal

Picking up the pieces 35

Clicking one of the highly similar cryptographic hashes will load the VirusTotal scan results
for the sample and show what our sample likely is, as illustrated in the following screenshot:

~
Q

&

af

Avira (no eloud)

BitDefenderTheta

Cybereason

eGambit

Endgame

ESET-NOD32

FireEye

GData

K7AntiVirus

Kaspersky

MAX

Microsoft

Qihoo-360

Sangfor Engine Zero

Sophos AV

Trapmine

VBA32

Webroot

Acronis

Alibaba

ZI ©c59067ecTia45506247b4d9870e015a42915b310f1dd4e85185d794dfcdd3e2d

(D) TRKryplik cvsnd

(D) Gen:NN.ZexaF 34126.kv1 @a0@wOdpk
(D) Malicious.bc1a75

() PEHeur.InvalidSig

(D) Malicious (high Confidence)

(D) A Variant Of Win32/GenKryplik ELVG
() Generic.mg.2efd9adi2i4577ee

() Trojan.AgentERUJ

(1) Trojan (005680fc1 }

(D) Trojan.Win32.Zenpak.aepe
(D) Malware (ai Score=89)

(1) Trojan:Win32/Qbot. RAIMTE
(1) HEUR/QVM20.1.BEFC.Malware.Gen
(D Malware

(D) Troj/Qbot-FS

(D) Malicious.moderate.ml.scare

(1) BScope.Trojan.Inject

(D) wa2.Malware.gen

() Undetected

(V) Undetected

It

BitDefender

CrowdStrike Falcon

Cylance

Emsisoft

eScan

F-Secure

Fortinet

Ikarus

Malwarebytes

McAfee

Panda

Rising

SentinelOne (Static ML)

Symantec

TrendMicro

VIPRE

ZoneAlarm by Check Point

AegisLab

Avast-Mobile

Help

Q

e

)
o}

-/

-
)

)

=)
)

)

-
-/

=)

©

0]

G,

)

o~ 88 (0 DylanBarker n

Trojan.Agent ERUJ
Winimalicious_confidence_60% (W)

Unsafe

1) Trojan.Agent ERUJ (B)

Trojan.Agent ERUJ
Trojan. TR/Kryptik cvsnd

W32/GenKryptik ELTJtr

Trojan. Win32.Krypt

Trojan (005680fc1)

Backdoor.Qbot
Wa2/PinkSbot-GUI2EFDIA4F2F45
TrilGdSda.A

Trojan.GenKryptikia. AASS (TFE:dGZIOQ. ..
DF! - Malicious PE

ML Attribute. HighConfidence:
TROJ_GEN.RO11CODF720
Trojan.Win32.Generic!BT
Trojan.Win32.Zenpak.aepe

Undetected

Figure 2.12 — Scan results of highly similar files that have been submitted to VirusTotal

If you do not have a VirusTotal Enterprise subscription, all is not lost in terms of fuzzy
hashing, however. It is possible to build your own database or compare known samples of
malware to the fuzzy hashes of new samples. For full usage of ssdeep, see their project
page at https://ssdeep-project.github.io/ssdeep/usage.html.

Picking up the pieces

In addition to simple fingerprints of files, be they fuzzy or otherwise, a file can give us
several other basic pieces of information about it without executing. Attackers have a few
simple tricks that are frequently used to attempt to slow down analysis of malware.

https://ssdeep-project.github.io/ssdeep/usage.html

36 Static Analysis — Techniques and Tooling

Malware serotyping

Take, for instance, our current sample—888888 . png; if we open this file as a . png
image, it appears to be corrupt!

Adversaries frequently change the extension of files, sometimes excluding it altogether
and sometimes creating double extensions, such as notmalware.doc.exe, in order to
attempt to obfuscate their intentions, bypass EDR solutions, or utilize social engineering
to entice a user into executing their payload.

Fortunately for malware analysts, changing a file's extension does not hide its true
contents, and serves only as an aesthetic change in most regards. In computing, all files
have a header that indicates to the operating system how to interpret the file. This header
can be utilized to type a file, much like a crime forensic analyst would type a blood sample.
See the following table for a list of common file headers related to malware:

Header File Type

MZ Windows PE (.exe, .d11)

PK.. ZIP file formats (.zip, .docx, .apk, .jar)
Rar!.... WinRAR archives

.ELF Linux ELF executable

X.S.BB® Mac disk image file

%PDEF- PDF document

MSCF Microsoft cabinet files (. cab)

Unix and Unix-like systems have a built-in utility for testing file types, called file.
Unfortunately, Windows lacks this ability by default, and requires a secondary tool
installation within FLARE. filetype.exe is a good choice for this and can be
obtained from https://github.com/PacktPublishing/Malware-Analysis-
Techniques.

Once extracted, we can use filetype.exe -1 8888888 .png to ascertain what the
file really is. In this case, filetype returns that this is a Windows PE file, as illustrated in
the following screenshot:

E¥ Command Prompt - d X

Figure 2.13 - Results from utilizing filetype.exe; our image is actually a Windows Portable Executable!

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques

Picking up the pieces 37

Analysis Tip

While tools exist to automatically ascertain the file type, such as Unix's FILE
and FILETYPE for Windows, it's also possible to use a hexadecimal editor
such as 010 Editor to simply examine the file's header and compare it to
known samples.

Collecting strings

When an executable is compiled, certain ASCII- or Unicode-encoded strings used during
development may be included in the binary.

The value of intelligence held by strings in an executable should not be underestimated.
They can offer valuable insight into what a file may do upon execution, which command-
and-control servers are being utilized, or even who wrote it.

Continuing with our sample of QBot, a tool from Microsoft's Windows Sysinternals can
be utilized to extract any strings located within the binary. First, let's take a look at some
of the command-line switches that may assist in making the Strings tool as useful as
possible, as illustrated in the following screenshot:

-a] [-f offset] [-b bytes] [-n length] [-o] [-s] [-u] <file or di

Figure 2.14 - Command-line options for the Strings utility

As shown, ASCII and Unicode strings are both searched by default—this is ideal, as we'd
like to include both in our search results to ensure we have the most intelligence possible
related to our binary. The primary switch we are concerned with is -n, the minimum
string length to return. It's generally recommended to utilize a value of 5 for this switch,
otherwise garbage output may be encountered that may frustrate analysis.

Let's examine which strings our Qbot sample contains, with strings -n 5 8888888.
png > output.txt.

38 Static Analysis — Techniques and Tooling

Analysis Tip
The > operator on the Windows command line will redirect the terminal's
standard output to a file or location of your choosing, handy if you don't want

to scroll through the terminal or truncate output. Similarly, >> will append
standard output to the end of an already existing file.

Once this command is issued, a new text document will be created. Taking a look at our
text file, we can see several strings have been returned, including some of the Windows
application programming interface (API) modules that are imported by this binary—
these may give a clue to some of the functionality the malware offers and are illustrated
in the following screenshot:

7 outbit - Notepad - m] X
File Edit Format View Help

>

> out.txt

etCurrentProcessId|
FindNextFilel]

gs in binary images.

etSystemTimeAdjustment|
QueryPerformanceCounter|
FindFirstFilel]
lobalMemoryStatus
etCurrentThreadId|

EnterCriticalSection|
LeaveCriticalSection|

lideCharToMultiByte|
InterlockedIncrement|

R L© [0l @ GnuWindownload|S.. [&] Command Prompt M out.txt - Notepad A~ b 71 d) 1055AM []

Figures 2.15 - Output of strings showing modules imported from the Windows AP]I, as well as

information on which executable may have served as the basis of this payload

Picking up the pieces 39

Scrolling down to the end of the output, we can gain some information on which
executable was backdoored or what the binary is masquerading as! This may prove useful
both in tracking the operations of the campaign and tracking indicators of compromise
(IOC:s) for internal outbreaks. The information can be seen in the following screenshot:

out.bt - Notepad — a x

File Edit Format View Help
out.txt wmiPerformanceMonitor I ~
Active

PoolingInterval
PerfCounters
TImagelist

imglistMain

BkColor

clFuchsia

DrawingStyle
dsTransparent

Masked

Unicode strings in binary images.

rich

2008-2013 Lovelysoft. All rights reserved
LegalTrademarks

All trademarks are the property of their respective ouwners.
OriginalFilename

Producthame

AdminToys Suite

ProductVersion

Comments

VarFilelnfo

Translation

7@xe3

<<<0bsolete>>

PVENHMJAVNRFPSGGSTE

2805282011372

39123123595970

PVENHMIAVNRFPSGGSTE

PVENHMJAVNRFPSGGST

PVENHMJAVNRFPSGGST

ul:j:-

(AU

2 [@ GnuWin download | 5.. [&] Command Prompt 8 out.oct - Notepad ~ tm 7O Q) 1057aM (]

Figures 2.16 — Output of strings showing modules imported from the Windows API, as well as

information on which executable may have served as the basis of this payload

As you can see, information gained via this methodology may prove useful both in
tracking the operations of the campaign and tracking IOCs for internal outbreaks.

40 Static Analysis — Techniques and Tooling

Challenges

The malware samples for these challenges can be found at https: //github.com/
PacktPublishing/Malware-Analysis-Techniques.

Challenge 1

Attempt to answer the following questions utilizing what you've learned in this
chapter—remembering that you are working with live malware. Do not execute
the sample!

1. What is the SHA256 hash of the sample?

2. What is the ssdeep hash of the sample?

3. Can you attribute this sample to a particular malware family?

Challenge 2

In 2017, malware researcher Marcus Hutchins (eMalwareTechBlog) utilized the
Strings utility to stop the global threat of WannaCry by identifying and sinkholing a
kill-switch domain.

Utilizing the second sample, can you correctly identify the kill-switch domain?

Ssummary

In this chapter, we've taken a look at some basic static analysis techniques, including
generating static file fingerprints using hashing, fuzzy hashing when this is not enough,
utilizing open source intelligence (OSINT) such as VirusTotal to avoid replicating work,
and understanding strings that are present within a binary after compilation.

While basic, these techniques are powerful and comprise a base skillset required to

be effective as a malware analyst, and we will build on each of these techniques in the
coming chapters to perform more advanced analysis. To test your knowledge of the
chapter, make sure you have gone through the Challenges section and seen how your static
analysis skills stack up against real-world adversaries. In the next chapter, we'll be moving
on from basic static analysis to dynamic analysis—actually executing our malware!

Further reading

ssdeep advanced usage: https://ssdeep-project.github.io/ssdeep/
usage.html

https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://github.com/PacktPublishing/Malware-Analysis-Techniques
https://ssdeep-project.github.io/ssdeep/usage.html
https://ssdeep-project.github.io/ssdeep/usage.html

	Cover
	Copyright
	Contributors
	Chapter 2: Static Analysis – Techniques and Tooling
	Technical requirements
	The basics – hashing
	Hashing algorithms
	Obtaining file hashes

	Avoiding rediscovery of the wheel
	Leveraging VirusTotal

	Getting fuzzy
	Picking up the pieces
	Malware serotyping
	Collecting strings

	Challenges
	Challenge 1
	Challenge 2

	Summary
	Further reading

