
A D A M W O O D B E C K

N E T W O R K
P R O G R A M M I N G

W I T H G O
C O D E S E C U R E A N D R E L I A B L E

N E T W O R K S E R V I C E S F R O M S C R A T C H

N E T W O R K
P R O G R A M M I N G

W I T H G O

C o d e S e c u r e a n d R e l i a b l e
N e t w o r k S e r v i c e s f r o m S c r a t c h

Adam Woodbeck

San Francisco

NETWORK PROGRAMMING WITH GO. © 2021 by Adam Woodbeck

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0088-4 (print)
ISBN-13: 978-1-7185-0089-1 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Kate Kaminski
Developmental Editor: Frances Saux
Cover Illustration: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Jeremy Bowers
Copyeditor: Sharon Wilkey
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Paula L. Fleming

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2020943331

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

About the Author
Adam Woodbeck is a senior software engineer at Barracuda Networks,
where he implemented a distributed cloud environment in Go to supplant
the previous cloud infrastructure, profoundly increasing its scalability and
performance. He’s since served as the architect for many network-based
services in Go.

About the Technical Reviewer
Jeremy Bowers is a distinguished software architect in the Office of CTO at
Barracuda Networks. Equipped with many years of lead developer experi-
ence at Barracuda and security startups, especially in network engineering,
Jeremy has successfully designed and implemented services that efficiently
serve hundreds of thousands of customers worldwide. He holds a bachelor’s
and a master’s degree in computer science from Michigan State University.

13
L O G G I N G A N D M E T R I C S

In an ideal world, our code would be free
of bugs from the outset. Our network ser-

vices would exceed our expectations for
performance and capacity, and they would be

robust enough to adapt to unexpected input without
our intervention. But in the real world, we need to
worry about unexpected and potentially malicious
input, hardware degradation, network outages, and
outright bugs in our code.

Monitoring our applications, no matter whether they are on premises
or in the cloud, is vital to providing resilient, functional services to our
users. Comprehensive logging allows us to receive timely details about
errors, anomalies, or other actionable events, and metrics give us insight
into the current state of our services, as well as help us identify bottlenecks.
Taken together, logging and metrics allow us to manage service issues and
focus our development efforts to avoid future failures.

296 Chapter 13

You’ve used Go’s log and fmt packages to give you feedback in previous
chapters, but this chapter will take a deeper dive into logging and instru-
menting your services. You will learn how to use log levels to increase or
decrease the verbosity of your logs and when to use each log level. You’ll
learn how to add structure to your log entries so software can help you
make better sense of log entries and zero in on relevant logs. I’ll introduce
you to the concept of wide event logging, which will help you maintain a
handle on the amount of data you log as your services scale. You’ll learn
techniques for dynamically enabling debug logging and managing log file
rotation from your code.

This chapter will also introduce you to Go kit’s metrics package. Per Go
kit’s documentation, the metrics package “provides a set of uniform interfaces
for service instrumentation.” You’ll learn how to instrument your services by
using counters, gauges, and histograms.

By the end of this chapter, you should have a handle on how to approach
logging, how to manage log files to prevent them from consuming too much
hard drive space, and how to instrument your services to gain insight into
their current state.

Event Logging
Logging is hard. Even experienced developers struggle to get it right. It’s
tough to anticipate what questions you’ll need your logs to answer in the
future, when your service fails—yet you should resist the urge to log every-
thing just in case. You need to strike a balance in order to log the right
information to answer those questions without overwhelming yourself with
irrelevant log lines. Overzealous logging may suit you fine in development,
where you control the scale of testing and overall entropy of your service,
but it will quickly degrade your ability to find the needle in the haystack
when you need to diagnose production failures.

In addition to figuring out what to log, you need to consider that logging
isn’t free. It consumes CPU and I/O time your application could otherwise
use. A log entry added to a busy for loop while in development may help you
understand what your service is doing. But it may become a bottleneck in
production, insidiously adding latency to your service.

Instead, sampling these log entries, or logging on demand, may provide
suitable compromises between log output and overhead. You might find it
helpful to use wide event log entries, which summarize a transaction. For
example, a service in development may log half a dozen entries about a
request, any intermediate steps, and a response. In production, a single wide
event log entry providing these details scales better. You’ll learn more about
wide event log entries in “Scaling Up with Wide Event Logging” on page 312.

Lastly, logging is subjective. An anomaly may be inconsequential in
my application but indicative of a larger issue in your application. Whereas
I could ignore the anomaly, you’d likely want to know about it. For this

Logging and Metrics 297

reason, it’s best if we discuss logging in terms of best practices. These
practices are a good baseline approach, but you should tailor them to each
application.

The log Package
You have superficial experience using Go’s log package, in earlier chapters,
for basic logging needs, like timestamping log entries and optionally exit-
ing your application with log.Fatal. But it has a few more features we have
yet to explore. These require us to go beyond the package-level logger and
instantiate our own *log.Logger instance. You can do this using the log.New
function:

func New(out io.Writer, prefix string, flag int) *Logger

The log.New function accepts an io.Writer, a string prefix to use on each
log line, and a set of flags that modify the logger’s output. Accepting an io.
Writer means the logger can write to anything that satisfies that interface,
including an in-memory buffer or a network socket.

The default logger writes its output to os.Stderr, standard error. Let’s
look at an example logger in Listing 13-1 that writes to os.Stdout, standard
output.

func Example_log() {
 l := log.New(1os.Stdout, 2"example: ", 3log.Lshortfile)
 l.Print("logging to standard output")

 // Output:
 // example: 4log_test.go:12: logging to standard output
}

Listing 13-1: Writing a log entry to standard output (log_test.go)

You create a new *log.Logger instance that writes to standard output 1.
The logger prefixes each line with the string example: 2. The flags of the
default logger are log.Ldate and log.Ltime, collectively log.LstdFlags, which
print the timestamp of each log entry. Since you want to simplify the out-
put for testing purposes when you run the example on the command line,
you omit the timestamp and configure the logger to write the source code
filename and line of each log entry 3. The l.Print function on line 12 of
the log_test.go file results in the output of those values 4. This behavior can
help with development and debugging, allowing you to zero in on the exact
file and line of an interesting log entry.

Recognizing that the logger accepts an io.Writer, you may realize this
allows you to use multiple writers, such as a log file and standard output
or an in-memory ring buffer and a centralized logging server over a net-
work. Unfortunately, the io.MultiWriter is not ideal for use in logging. An
io.MultiWriter writes to each of its writers in sequence, aborting if it
receives an error from any Write call. This means that if you configure

298 Chapter 13

your io.MultiWriter to write to a log file and standard output in that order,
standard output will never receive the log entry if an error occurred when
writing to the log file.

Fear not. It’s an easy problem to solve. Let’s create our own io.MultiWriter
implementation, starting in Listing 13-2, that sustains writes across its writers
and accumulates any errors it encounters.

package ch13

import (
 "io"

 "go.uber.org/multierr"
)

type sustainedMultiWriter struct {
 writers []io.Writer
}

func (s *sustainedMultiWriter) 1Write(p []byte) (n int, err error) {
 for _, w := range s.writers {
 i, wErr := 2w.Write(p)
 n += i
 err = 3multierr.Append(err, wErr)
 }

 return n, err
}

Listing 13-2: A multiwriter that sustains writing even after receiving an error (writer.go)

As with io.MultiWriter, you’ll use a struct that contains a slice of io.Writer
instances for your sustained multiwriter. Your multiwriter implements the
io.Writer interface 1, so you can pass it into your logger. It calls each writer’s
Write method 2, accumulating any errors with the help of Uber’s multierr
package 3, before ultimately returning the total written bytes and cumula-
tive error.

Listing 13-3 adds a function to initialize a new sustained multiwriter
from one or more writers.

--snip--

func SustainedMultiWriter(writers ...io.Writer) io.Writer {
 mw := &sustainedMultiWriter{writers: 1make([]io.Writer, 0, len(writers))}

 for _, w := range writers {
 if m, ok := 2w.(*sustainedMultiWriter); ok {
 mw.writers = 3append(mw.writers, m.writers...)
 continue
 }

 mw.writers = 4append(mw.writers, w)

Logging and Metrics 299

 }

 return mw
}

Listing 13-3: Creating a sustained multiwriter (writer.go)

First, you instantiate a new *sustainedMultiWriter, initialize its writers
slice 1, and cap it to the expected length of writers. You then loop through
the given writers and append them to the slice 4. If a given writer is itself
a *sustainedMultiWriter 2, you instead append its writers 3. Finally, you
return the pointer to the initialized sustainedMultiWriter.

You can now put your sustained multiwriter to good use in Listing 13-4.

package ch13

import (
 "bytes"
 "fmt"
 "log"
 "os"
)

func Example_logMultiWriter() {
 logFile := new(bytes.Buffer)
 w := 1SustainedMultiWriter(os.Stdout, logFile)
 l := log.New(w, "example: ", 2log.Lshortfile|log.Lmsgprefix)

 fmt.Println("standard output:")
 l.Print("Canada is south of Detroit")

 fmt.Print("\nlog file contents:\n", logFile.String())

 // Output:
 // standard output:
 // log_test.go:24: example: Canada is south of Detroit
 //
 // log file contents:
 // log_test.go:24: example: Canada is south of Detroit
}

Listing 13-4: Logging simultaneously to a log file and standard output (log_test.go)

You create a new sustained multiwriter 1, writing to standard output,
and a bytes.Buffer meant to act as a log file in this example. Next, you create
a new logger using your sustained multiwriter, the prefix example:, and two
flags 2 to modify the logger’s behavior. The addition of the log.Lmsgprefix
flag (first available in Go 1.14) tells the logger to locate the prefix just before
the log message. You can see the effect this has on the log entries in the
example output. When you run this example, you see that the logger writes
the log entry to the sustained multiwriter, which in turn writes the log entry
to both standard output and the log file.

300 Chapter 13

Leveled Log Entries
I wrote earlier in the chapter that verbose logging may be inefficient in
production and can overwhelm you with the sheer number of log entries as
your service scales up. One way to avoid this is by instituting logging levels,
which assign a priority to each kind of event, enabling you to always log
high-priority errors but conditionally log low-priority entries more suited
for debugging and development purposes. For example, you’d always want
to know if your service is unable to connect to its database, but you may
care to log only details about individual connections while in development
or when diagnosing a failure.

I recommend you create just a few log levels to begin with. In my expe-
rience, you can address most use cases with just an error level and a debug
level, maybe even an info level on occasion. Error log entries should accom-
pany some sort of alert, since these entries indicate a condition that needs
your attention. Info log entries typically log non-error information. For
example, it may be appropriate for your use case to log a successful data-
base connection or to add a log entry when a listener is ready for incoming
connections on a network socket. Debug log entries should be verbose and
serve to help you diagnose failures, as well as aid development by helping
you reason about the workflow.

Go’s ecosystem offers several logging packages, most of which support
numerous log levels. Although Go’s log package does not have inherent
support for leveled log entries, you can add similar functionality by creating
separate loggers for each log level you need. Listing 13-5 does this: it writes
log entries to a log file, but it also writes debug logs to standard output.

--snip--

func Example_logLevels() {
 lDebug := log.New(os.Stdout, 1"DEBUG: ", log.Lshortfile)
 logFile := new(bytes.Buffer)
 w := SustainedMultiWriter(logFile, 2lDebug.Writer())
 lError := log.New(w, 3"ERROR: ", log.Lshortfile)

 fmt.Println("standard output:")
 lError.Print("cannot communicate with the database")
 lDebug.Print("you cannot hum while holding your nose")

 fmt.Print("\nlog file contents:\n", logFile.String())

 // Output:
 // standard output:
 // ERROR: log_test.go:43: cannot communicate with the database
 // DEBUG: log_test.go:44: you cannot hum while holding your nose
 //
 // log file contents:
 // ERROR: log_test.go:43: cannot communicate with the database
}

Listing 13-5: Writing debug entries to standard output and errors to both the log file and
standard output (log_test.go)

Logging and Metrics 301

First, you create a debug logger that writes to standard output and uses
the DEBUG: prefix 1. Next, you create a *bytes.Buffer to masquerade as a log
file for this example and instantiate a sustained multiwriter. The sustained
multiwriter writes to both the log file and the debug logger’s io.Writer 2.
Then, you create an error logger that writes to the sustained multiwriter by
using the prefix ERROR: 3 to differentiate its log entries from the debug
logger. Finally, you use each logger and verify that they output what you
expect. Standard output should display log entries from both loggers,
whereas the log file should contain only error log entries.

As an exercise, figure out how to make the debug logger conditional
without wrapping its Print call in a conditional. If you need a hint, you’ll
find a suitable writer in the io/ioutil package that will let you discard its
output.

This section is meant to demonstrate additional uses of the log package
beyond what you’ve used so far in this book. Although it’s possible to use
this technique to log at different levels, you’d be better served by a logger
with inherent support for log levels, like the Zap logger described in the
next section.

Structured Logging
The log entries made by the code you’ve written so far are meant for human
consumption. They are easy for you to read, since each log entry is little
more than a message. This means that finding log lines relevant to an issue
involves liberal use of the grep command or, at worst, manually skimming
log entries. But this could become more challenging if the number of log
entries increases. You may find yourself looking for a needle in a haystack.
Remember, logging is useful only if you can quickly find the information
you need.

A common approach to solving this problem is to add metadata to your
log entries and then parse the metadata with software to help you organize
them. This type of logging is called structured logging. Creating structured log
entries involves adding key-value pairs to each log entry. In these, you may
include the time at which you logged the entry, the part of your application
that made the log entry, the log level, the hostname or IP address of the
node that created the log entry, and other bits of metadata that you can
use for indexing and filtering. Most structured loggers encode log entries
as JSON before writing them to log files or shipping them to centralized
logging servers. Structured logging makes the whole process of collecting
logs in a centralized server easy, since the additional metadata associated
with each log entry allows the server to organize and collate log entries
across services. Once they’re indexed, you can query the log server for
specific log entries to better find timely answers to your questions.

Using the Zap Logger

Discussing specific centralized logging solutions is beyond the scope of this
book. If you’re interested in learning more, I suggest you initially investigate

302 Chapter 13

Elasticsearch or Apache Solr. Instead, this section focuses on implementing
the logger itself. You’ll use the Zap logger from Uber, found at https://pkg.go
.dev/go.uber.org/zap/, which allows you to integrate log file rotation.

Log file rotation is the process of closing the current log file, renaming it,
and then opening a new log file after the current log file reaches a specific
age or size threshold. Rotating log files is a good practice to prevent them
from filling up your available hard drive space. Plus, searching through
smaller, date-delimited log files is more efficient than searching through
a single, monolithic log file. For example, you may want to rotate your log
files every week and keep only eight weeks’ worth of rotated log files. If you
wanted to look at log entries for an event that occurred last week, you could
limit your search to a single log file. Also, you can compress the rotated log
files to further save hard drive space.

I’ve used other structured loggers on large projects, and in my experi-
ence, Zap causes the least overhead; I can use it in busy bits of code without
a noticeable performance hit, unlike other heavyweight structured loggers.
But your mileage may vary, so I encourage you to find what works best for
you. You can apply the structured logging principles and log file manage-
ment techniques described here to other structured loggers.

The Zap logger includes zap.Core and its options. The zap.Core has three
components: a log-level threshold, an output, and an encoder. The log-level
threshold sets the minimum log level that Zap will log; Zap will simply ignore
any log entry below that level, allowing you to leave debug logging in your
code and configure Zap to conditionally ignore it. Zap’s output is a zapcore
.WriteSyncer, which is an io.Writer with an additional Sync method. Zap can
write log entries to any object that implements this interface. And the encoder
can encode the log entry before writing it to the output.

Writing the Encoder

Although Zap provides a few helper functions, such as zap.NewProduction or
zap.NewDevelopment, to quickly create production and development loggers,
you’ll create one from scratch, starting with the encoder configuration in
Listing 13-6.

package ch13

import (
 "bytes"
 "fmt"
 "io/ioutil"
 "log"
 "os"
 "path/filepath"
 "runtime"
 "testing"
 "time"

 "go.uber.org/zap"
 "go.uber.org/zap/zapcore"
 "gopkg.in/fsnotify.v1"

https://pkg.go.dev/go.uber.org/zap/
https://pkg.go.dev/go.uber.org/zap/

Logging and Metrics 303

 "gopkg.in/natefinch/lumberjack.v2"
)

var encoderCfg = zapcore.EncoderConfig{
 MessageKey: 1"msg",
 NameKey: 2"name",

 LevelKey: "level",
 EncodeLevel: 3zapcore.LowercaseLevelEncoder,

 CallerKey: "caller",
 EncodeCaller: 4zapcore.ShortCallerEncoder,

 5 // TimeKey: "time",
 // EncodeTime: zapcore.ISO8601TimeEncoder,
}

Listing 13-6: The encoder configuration for your Zap logger (zap_test.go)

The encoder configuration is independent of the encoder itself in that
you can use the same encoder configuration no matter whether you’re
passing it to a JSON encoder or a console encoder. The encoder will use your
configuration to dictate its output format. Here, your encoder configuration
dictates that the encoder use the key msg 1 for the log message and the
key name 2 for the logger’s name in the log entry. Likewise, the encoder
configuration tells the encoder to use the key level for the logging level
and encode the level name using all lowercase characters 3. If the logger
is configured to add caller details, you want the encoder to associate these
details with the caller key and encode the details in an abbreviated format 4.

Since you need to keep the output of the following examples consistent,
you’ll omit the time key 5 so it won’t show up in the output. In practice, you’d
want to uncomment these two fields.

Creating the Logger and Its Options

Now that you’ve defined the encoder configuration, let’s use it in
Listing 13-7 by instantiating a Zap logger.

--snip--

func Example_zapJSON() {
 zl := zap.New(
 1 zapcore.NewCore(
 2 zapcore.NewJSONEncoder(encoderCfg),
 3 zapcore.Lock(os.Stdout),
 4 zapcore.DebugLevel,
),
 5 zap.AddCaller(),
 zap.Fields(
 6 zap.String("version", runtime.Version()),
),
)
 defer func() { _ = 7zl.Sync() }()

304 Chapter 13

 example := 8zl.Named("example")
 example.Debug("test debug message")
 example.Info("test info message")

 // Output:
 9 // {"level":"debug","name":"example","caller":"ch13/zap_test.go:49",
"msg":"test debug message","version":"ago1.15.5"}
 // {"level":"info","name":"example","caller":"ch13/zap_test.go:50",
"msg":"test info message","version":"go1.15.5"}
}

Listing 13-7: Instantiating a new logger from the encoder configuration and logging to
JSON (zap_test.go)

The zap.New function accepts a zap.Core 1 and zero or more zap.Options.
In this example, you’re passing the zap.AddCaller option 5, which instructs
the logger to include the caller information in each log entry, and a field 6
named version that inserts the runtime version in each log entry.

The zap.Core consists of a JSON encoder using your encoder configura-
tion 2, a zapcore.WriteSyncer 3, and the logging threshold 4. If the zapcore
.WriteSyncer isn’t safe for concurrent use, you can use zapcore.Lock to make it
concurrency safe, as in this example.

The Zap logger includes seven log levels, in increasing severity: DebugLevel,
InfoLevel, WarnLevel, ErrorLevel, DPanicLevel, PanicLevel, and FatalLevel. The
InfoLevel is the default. DPanicLevel and PanicLevel entries will cause Zap to log
the entry and then panic. An entry logged at the FatalLevel will cause Zap to
call os.Exit(1) after writing the log entry. Since your logger is using DebugLevel,
it will log all entries.

I recommend you restrict the use of DPanicLevel and PanicLevel to
development and FatalLevel to production, and only then for catastrophic
startup errors, such as a failure to connect to the database. Otherwise,
you’re asking for trouble. As mentioned earlier, you can get a lot of mileage
out of DebugLevel, ErrorLevel, and on occasion, InfoLevel.

Before you start using the logger, you want to make sure you defer a call
to its Sync method 7 to ensure all buffered data is written to the output.

You can also assign the logger a name by calling its Named method 8
and using the returned logger. By default, a logger has no name. A named
logger will include a name key in the log entry, provided you defined one in
the encoder configuration.

The log entries 9 now include metadata around the log message,
so much so that the log line output exceeds the width of this book. It’s
also important to mention that the Go version a in the example out-
put is dependent on the version of Go you’re using to test this example.
Although you’re encoding each log entry in JSON, you can still read the
additional metadata you’re including in the logs. You could ingest this
JSON into something like Elasticsearch and run queries on it, letting
Elasticsearch do the heavy lifting of returning only those log lines that
are relevant to your query.

Logging and Metrics 305

Using the Console Encoder

The preceding example included a bunch of functionality in relatively little
code. Let’s instead assume you want to log something a bit more human-
readable, yet that has structure. Zap includes a console encoder that’s
essentially a drop-in replacement for its JSON encoder. Listing 13-8 uses
the console encoder to write structured log entries to standard output.

--snip--

func Example_zapConsole() {
 zl := zap.New(
 zapcore.NewCore(
 1 zapcore.NewConsoleEncoder(encoderCfg),
 zapcore.Lock(os.Stdout),
 2 zapcore.InfoLevel,
),
)
 defer func() { _ = zl.Sync() }()

 console := 3zl.Named("[console]")
 console.Info("this is logged by the logger")
 4 console.Debug("this is below the logger's threshold and won't log")
 console.Error("this is also logged by the logger")

 // Output:
 5 // info [console] this is logged by the logger
 // error [console] this is also logged by the logger
}

Listing 13-8: Writing structured logs using console encoding (zap_test.go)

The console encoder 1 uses tabs to separate fields. It takes instruction
from your encoder configuration to determine which fields to include and
how to format each.

Notice you don’t pass the zap.AddCaller and zap.Fields options to the
logger in this example. As a result, the log entries won’t have caller and
version fields. Log entries will include the caller field only if the logger
has the zap.AddCaller option and the encoder configuration defines its
CallerKey, as in Listing 13-6.

You name the logger 3 and write three log entries, each with a dif-
ferent log level. Since the logger’s threshold is the info level 2, the debug
log entry 4 does not appear in the output because debug is below the info
threshold.

The output 5 lacks key names but includes the field values delimited
by a tab character. Although not obvious in print, there’s a tab character
between the log level, the log name, and the log message. If you type this
into your editor, be mindful to add tab characters between those elements
lest the example fail when you run it.

306 Chapter 13

Logging with Different Outputs and Encodings

Zap includes useful functions that allow you to concurrently log to differ-
ent outputs, using different encodings, at different log levels. Listing 13-9
creates a logger that writes JSON to a log file and console encoding to stan-
dard output. The logger writes only the debug log entries to the console.

--snip--

func Example_zapInfoFileDebugConsole() {
 logFile := 1new(bytes.Buffer)
 zl := zap.New(
 zapcore.NewCore(
 zapcore.NewJSONEncoder(encoderCfg),
 zapcore.Lock(2zapcore.AddSync(logFile)),
 zapcore.InfoLevel,
),
)
 defer func() { _ = zl.Sync() }()

 3 zl.Debug("this is below the logger's threshold and won't log")
 zl.Error("this is logged by the logger")

Listing 13-9: Using *bytes.Buffer as the log output and logging JSON to it (zap_test.go)

You’re using *bytes.Buffer 1 to act as a mock log file. The only problem
with this is that *bytes.Buffer does not have a Sync method and does not imple-
ment the zapcore.WriteSyncer interface. Thankfully, Zap includes a helper
function named zapcore.AddSync 2 that intelligently adds a no-op Sync method
to an io.Writer. Aside from the use of this function, the rest of the logger
implementation should be familiar to you. It’s logging JSON to the log file
and excluding any log entries below the info level. As a result, the first log
entry 3 should not appear in the log file at all.

Now that you have a logger writing JSON to a log file, let’s experiment
with Zap and create a new logger in Listing 13-10 that can simultaneously
write JSON log entries to a log file and console log entries to standard output.

--snip--

 zl = 1zl.WithOptions(
 2 zap.WrapCore(
 func(c zapcore.Core) zapcore.Core {
 ucEncoderCfg := encoderCfg
 3 ucEncoderCfg.EncodeLevel = zapcore.CapitalLevelEncoder
 return 4zapcore.NewTee(
 c,
 5 zapcore.NewCore(
 zapcore.NewConsoleEncoder(ucEncoderCfg),
 zapcore.Lock(os.Stdout),
 zapcore.DebugLevel,
),
)
 },
),

Logging and Metrics 307

)

 fmt.Println("standard output:")
 6 zl.Debug("this is only logged as console encoding")
 zl.Info("this is logged as console encoding and JSON")

 fmt.Print("\nlog file contents:\n", logFile.String())

 // Output:
 // standard output:
 // DEBUG this is only logged as console encoding
 // INFO this is logged as console encoding and JSON
 //
 // log file contents:
 // {"level":"error","msg":"this is logged by the logger"}
 // {"level":"info","msg":"this is logged as console encoding and JSON"}
}

Listing 13-10: Extending the logger to log to multiple outputs (zap_test.go)

Zap’s WithOptions method 1 clones the existing logger and configures
the clone with the given options. You can use the zap.WrapCore function 2
to modify the underlying zap.Core of the cloned logger. To mix things up,
you make a copy of the encoder configuration and tweak it to instruct the
encoder to output the level using all capital letters 3. Lastly, you use the
zapcore.NewTee function, which is like the io.MultiWriter function, to return
a zap.Core that writes to multiple cores 4. In this example, you’re passing
in the existing core and a new core 5 that writes debug-level log entries to
standard output.

When you use the cloned logger, both the log file and standard output
receive any log entry at the info level or above, whereas only standard out-
put receives debugging log entries 6.

Sampling Log Entries

One of my warnings to you with regard to logging is to consider how it
impacts your application from a CPU and I/O perspective. You don’t want
logging to become your application’s bottleneck. This normally means
taking special care when logging in the busy parts of your application.

One method to mitigate the logging overhead in critical code paths,
such as a loop, is to sample log entries. It may not be necessary to log each
entry, especially if your logger is outputting many duplicate log entries.
Instead, try logging every nth occurrence of a duplicate entry.

Conveniently, Zap has a logger that does just that. Listing 13-11 creates
a logger that will constrain its CPU and I/O overhead by logging a subset of
log entries.

--snip--

func Example_zapSampling() {
 zl := zap.New(
 1 zapcore.NewSamplerWithOptions(

308 Chapter 13

 zapcore.NewCore(
 zapcore.NewJSONEncoder(encoderCfg),
 zapcore.Lock(os.Stdout),
 zapcore.DebugLevel,
),
 2time.Second, 31, 43,
),
)
 defer func() { _ = zl.Sync() }()

 for i := 0; i < 10; i++ {
 if i == 5 {
 5 time.Sleep(time.Second)
 }
 6 zl.Debug(fmt.Sprintf("%d", i))
 7 zl.Debug("debug message")
 }

 // 8Output:
 // {"level":"debug","msg":"0"}
 // {"level":"debug","msg":"debug message"}
 // {"level":"debug","msg":"1"}
 // {"level":"debug","msg":"2"}
 // {"level":"debug","msg":"3"}
 // {"level":"debug","msg":"debug message"}
 // {"level":"debug","msg":"4"}
 // {"level":"debug","msg":"5"}
 // {"level":"debug","msg":"debug message"}
 // {"level":"debug","msg":"6"}
 // {"level":"debug","msg":"7"}
 // {"level":"debug","msg":"8"}
 // {"level":"debug","msg":"debug message"}
 // {"level":"debug","msg":"9"}
}

Listing 13-11: Logging a subset of log entries to limit CPU and I/O overhead (zap_test.go)

The NewSamplerWithOptions function 1 wraps zap.Core with sampling
functionality. It requires three additional arguments: a sampling interval 2,
the number of initial duplicate log entries to record 3, and an integer 4
representing the nth duplicate log entry to record after that point. In this
example, you are logging the first log entry, and then every third duplicate
log entry that the logger receives in a one-second interval. Once the interval
elapses, the logger starts over and logs the first entry, then every third dupli-
cate for the remainder of the one-second interval.

Let’s look at this in action. You make 10 iterations around a loop. Each
iteration logs both the counter 6 and a generic debug message 7, which
stays the same for each iteration. On the sixth iteration, the example sleeps
for one second 5 to ensure that the sample logger starts logging anew dur-
ing the next one-second interval.

Examining the output 8, you see that the debug message prints dur-
ing the first iteration and not again until the logger encounters the third
duplicate debug message during the fourth loop iteration. But on the sixth

Logging and Metrics 309

iteration, the example sleeps, and the sample logger ticks over to the next
one-second interval, starting the logging over. It logs the first debug mes-
sage of the interval in the sixth loop iteration and the third duplicate debug
message in the ninth iteration of the loop.

Granted, this is a contrived example, but one that illustrates how to use
this log-sampling technique as a compromise in CPU- and I/O-sensitive
portions of your code. One place this technique may be applicable is when
sending work to worker goroutines. Although you may send work as fast as
the workers can handle it, you might want periodic updates on each work-
er’s progress without having to incur too much logging overhead. The sam-
ple logger allows you to temper the log output and strike a balance between
timely updates and minimal overhead.

Performing On-Demand Debug Logging

If debug logging introduces an unacceptable burden on your application
under normal operation, or if the sheer amount of debug log data over-
whelms your available storage space, you might want the ability to enable
debug logging on demand. One technique is to use a semaphore file to
enable debug logging. A semaphore file is an empty file whose existence is
meant as a signal to the logger to change its behavior. If the semaphore file
is present, the logger outputs debug-level logs. Once you remove the sema-
phore file, the logger reverts to its previous log level.

Let’s use the fsnotify package to allow your application to watch for file-
system notifications. In addition to the standard library, the fsnotify pack-
age uses the x/sys package. Before you start writing code, let’s make sure
our x/sys package is current:

$ go get -u golang.org/x/sys/...

Not all logging packages provide safe methods to asynchronously mod-
ify log levels. Be aware that you may introduce a race condition if you attempt
to modify a logger’s level at the same time that the logger is reading the
log level. The Zap logger allows you to retrieve a sync/atomic-based leveler
to dynamically modify a logger’s level while avoiding race conditions. You’ll
pass the atomic leveler to the zapcore.NewCore function in place of a log level,
as you’ve previously done.

The zap.AtomicLevel struct implements the http.Handler interface. You
can integrate it into an API and dynamically change the log level over
HTTP instead of using a semaphore.

Listing 13-12 begins an example of dynamic logging using a semaphore
file. You’ll implement this example over the next few listings.

--snip--

func Example_zapDynamicDebugging() {
 tempDir, err := ioutil.TempDir("", "")
 if err != nil {
 log.Fatal(err)
 }

310 Chapter 13

 defer func() { _ = os.RemoveAll(tempDir) }()

 debugLevelFile := 1filepath.Join(tempDir, "level.debug")
 atomicLevel := 2zap.NewAtomicLevel()

 zl := zap.New(
 zapcore.NewCore(
 zapcore.NewJSONEncoder(encoderCfg),
 zapcore.Lock(os.Stdout),
 3 atomicLevel,
),
)
 defer func() { _ = zl.Sync() }()

Listing 13-12: Creating a new logger using an atomic leveler (zap_test.go)

Your code will watch for the level.debug file 1 in the temporary directory.
When the file is present, you’ll dynamically change the logger’s level to debug.
To do that, you need a new atomic leveler 2. By default, the atomic leveler
uses the info level, which suits this example just fine. You pass in the atomic
leveler 3 when creating the core as opposed to specifying a log level itself.

Now that you have an atomic leveler and a place to store your sema-
phore file, let’s write the code that will watch for semaphore file changes in
Listing 13-13.

--snip--

 watcher, err := 1fsnotify.NewWatcher()
 if err != nil {
 log.Fatal(err)
 }
 defer func() { _ = watcher.Close() }()

 err = 2watcher.Add(tempDir)
 if err != nil {
 log.Fatal(err)
 }

 ready := make(chan struct{})
 go func() {
 defer close(ready)

 originalLevel := 3atomicLevel.Level()

 for {
 select {
 case event, ok := 4<-watcher.Events:
 if !ok {
 return
 }
 if event.Name == 5debugLevelFile {
 switch {
 case event.Op&fsnotify.Create == 6fsnotify.Create:
 atomicLevel.SetLevel(zapcore.DebugLevel)

Logging and Metrics 311

 ready <- struct{}{}
 case event.Op&fsnotify.Remove == 7fsnotify.Remove:
 atomicLevel.SetLevel(originalLevel)
 ready <- struct{}{}
 }
 }
 case err, ok := 8<-watcher.Errors:
 if !ok {
 return
 }
 zl.Error(err.Error())
 }
 }
 }()

Listing 13-13: Watching for any changes to the semaphore file (zap_test.go)

First, you create a filesystem watcher 1, which you’ll use to watch the
temporary directory 2. The watcher will notify you of any changes to or
within that directory. You also want to capture the current log level 3 so
that you can revert to it when you remove the semaphore file.

Next, you listen for events from the watcher 4. Since you’re watching a
directory, you filter out any event unrelated to the semaphore file 5 itself.
Even then, you’re interested in only the creation of the semaphore file or
its removal. If the event indicates the creation of the semaphore file 6, you
change the atomic leveler’s level to debug. If you receive a semaphore file
removal event 7, you set the atomic leveler’s level back to its original level.

If you receive an error from the watcher 8 at any point, you log it at the
error level.

Let’s see how this works in practice. Listing 13-14 tests the logger with
and without the semaphore file present.

--snip--

 1 zl.Debug("this is below the logger's threshold")

 df, err := 2os.Create(debugLevelFile)
 if err != nil {
 log.Fatal(err)
 }
 err = df.Close()
 if err != nil {
 log.Fatal(err)
 }
 <-ready

 3 zl.Debug("this is now at the logger's threshold")

 err = 4os.Remove(debugLevelFile)
 if err != nil {
 log.Fatal(err)
 }
 <-ready

312 Chapter 13

 5 zl.Debug("this is below the logger's threshold again")
 6 zl.Info("this is at the logger's current threshold")

 // Output:
 // {"level":"debug","msg":"this is now at the logger's threshold"}
 // {"level":"info","msg":"this is at the logger's current threshold"}
}

Listing 13-14: Testing the logger’s use of the semaphore file (zap_test.go)

The logger’s current log level via the atomic leveler is info. Therefore,
the logger does not write the initial debug log entry 1 to standard output.
But if you create the semaphore file 2, the code in Listing 13-13 should
dynamically change the logger’s level to debug. If you add another debug
log entry 3, the logger should write it to standard output. You then remove
the semaphore file 4 and write both a debug log entry 5 and an info log
entry 6. Since the semaphore file no longer exists, the logger should write
only the info log entry to standard output.

Scaling Up with Wide Event Logging
Wide event logging is a technique that creates a single, structured log entry
per event to summarize the transaction, instead of logging numerous entries
as the transaction progresses. This technique is most applicable to request-
response loops, such as API calls, but it can be adapted to other use cases.
When you summarize transactions in a structured log entry, you reduce the
logging overhead while conserving the ability to index and search for trans-
action details.

One approach to wide event logging is to wrap an API handler in mid-
dleware. But first, since the http.ResponseWriter is a bit stingy with its output,
you need to create your own response writer type (Listing 13-15) to collect
and log the response code and length.

package ch13

import (
 "io"
 "io/ioutil"
 "net"
 "net/http"
 "net/http/httptest"
 "os"

 "go.uber.org/zap"
 "go.uber.org/zap/zapcore"
)

type wideResponseWriter struct {
 1 http.ResponseWriter
 length, status int
}

Logging and Metrics 313

func (w *wideResponseWriter) 2WriteHeader(status int) {
 w.ResponseWriter.WriteHeader(status)
 w.status = status
}

func (w *wideResponseWriter) 3Write(b []byte) (int, error) {
 n, err := w.ResponseWriter.Write(b)
 w.length += n

 if w.status == 0 {
 w.status = 4http.StatusOK
 }

 return n, err
}

Listing 13-15: Creating a ResponseWriter to capture the response status code and length
(wide_test.go)

The new type embeds an object that implements the http.ResponseWriter
interface 1. In addition, you add length and status fields, since those values
are ultimately what you want to log from the response. You override the
WriteHeader method 2 to easily capture the status code. Likewise, you over-
ride the Write method 3 to keep an accurate accounting of the number of
written bytes and optionally set the status code 4 should the caller execute
Write before WriteHeader.

Listing 13-16 uses your new type in wide event logging middleware.

--snip--

func WideEventLog(logger *zap.Logger, next http.Handler) http.Handler {
 return http.HandlerFunc(
 func(w http.ResponseWriter, r *http.Request) {
 wideWriter := 1&wideResponseWriter{ResponseWriter: w}

 2 next.ServeHTTP(wideWriter, r)

 addr, _, _ := net.SplitHostPort(r.RemoteAddr)
 3 logger.Info("example wide event",
 zap.Int("status_code", wideWriter.status),
 zap.Int("response_length", wideWriter.length),
 zap.Int64("content_length", r.ContentLength),
 zap.String("method", r.Method),
 zap.String("proto", r.Proto),
 zap.String("remote_addr", addr),
 zap.String("uri", r.RequestURI),
 zap.String("user_agent", r.UserAgent()),
)
 },
)
}

Listing 13-16: Implementing wide event logging middleware (wide_test.go)

314 Chapter 13

The wide event logging middleware accepts both a *zap.Logger and an
http.Handler and returns an http.Handler. If this pattern is unfamiliar to you,
please read “Handlers” on page 193.

First, you embed the http.ResponseWriter in a new instance of your wide
event logging–aware response writer 1. Then, you call the ServeHTTP method
of the next http.Handler 2, passing in your response writer. Finally, you make
a single log entry 3 with various bits of data about the request and response.

Keep in mind that I’m taking care here to omit values that would change
with each execution and break the example output, like call duration. You
would likely have to write code to deal with these in a real implementation.

Listing 13-17 puts the middleware into action and demonstrates the
expected output.

--snip--

func Example_wideLogEntry() {
 zl := zap.New(
 zapcore.NewCore(
 zapcore.NewJSONEncoder(encoderCfg),
 zapcore.Lock(os.Stdout),
 zapcore.DebugLevel,
),
)
 defer func() { _ = zl.Sync() }()

 ts := httptest.NewServer(
 1 WideEventLog(zl, http.HandlerFunc(
 func(w http.ResponseWriter, r *http.Request) {
 defer func(r io.ReadCloser) {
 _, _ = io.Copy(ioutil.Discard, r)
 _ = r.Close()
 }(r.Body)
 _, _ = 2w.Write([]byte("Hello!"))
 },
)),
)
 defer ts.Close()

 resp, err := 3http.Get(ts.URL + "/test")
 if err != nil {
 4 zl.Fatal(err.Error())
 }
 _ = resp.Body.Close()

 // 5Output:
 // {"level":"info","msg":"example wide event","status_code":200,
"response_length":6,"content_length":0,"method":"GET","proto":"HTTP/1.1",
"remote_addr":"127.0.0.1","uri":"/test","user_agent":"Go-http-client/1.1"}
}

Listing 13-17: Using the wide event logging middleware to log the details of a GET call
(wide_test.go)

Logging and Metrics 315

As in Chapter 9, you use the httptest server with your WideEventLog
middleware 1. You pass *zap.Logger into the middleware as the first argu-
ment and http.Handler as the second argument. The handler writes a simple
Hello! to the response 2 so the response length is nonzero. That way, you
can prove that your response writer works. The logger writes the log entry
immediately before you receive the response to your GET request 3. As
before, I must wrap the JSON output 5 for printing in this book, but it con-
sumes a single line otherwise.

Since this is just an example, I elected to use the logger’s Fatal method 4,
which writes the error message to the log file and calls os.Exit(1) to terminate
the application. You shouldn’t use this in code that is supposed to keep run-
ning in the event of an error.

Log Rotation with Lumberjack
If you elect to output log entries to a file, you could leverage an application
like logrotate to keep them from consuming all available hard drive space.
The downside to using a third-party application to manage log files is that
the third-party application will need to signal to your application to reopen
its log file handle lest your application keep writing to the rotated log file.

A less invasive and more reliable option is to add log file management
directly to your logger by using a library like Lumberjack. Lumberjack handles
log rotation in a way that is transparent to the logger, because your logger
treats Lumberjack as any other io.Writer. Meanwhile, Lumberjack keeps track
of the log entry accounting and file rotation for you.

Listing 13-18 adds log rotation to a typical Zap logger implementation.

--snip--

func TestZapLogRotation(t *testing.T) {
 tempDir, err := ioutil.TempDir("", "")
 if err != nil {
 t.Fatal(err)
 }
 defer func() { _ = os.RemoveAll(tempDir) }()

 zl := zap.New(
 zapcore.NewCore(
 zapcore.NewJSONEncoder(encoderCfg),
 1 zapcore.AddSync(
 2 &lumberjack.Logger{
 Filename: 3filepath.Join(tempDir, "debug.log"),
 Compress: 4true,
 LocalTime: 5true,
 MaxAge: 67,
 MaxBackups: 75,
 MaxSize: 8100,
 },
),
 zapcore.DebugLevel,
),
)

316 Chapter 13

 defer func() { _ = zl.Sync() }()

 zl.Debug("debug message written to the log file")
}

Listing 13-18: Adding log rotation to the Zap logger using Lumberjack (zap_test.go)

Like the *bytes.Buffer in Listing 13-9, *lumberjack.Logger 2 does not
implement the zapcore.WriteSyncer. It, too, lacks a Sync method. Therefore,
you need to wrap it in a call to zapcore.AddSync 1.

Lumberjack includes several fields to configure its behavior, though
its defaults are sensible. It uses a log filename in the format <processname>
-lumberjack.log, saved in the temporary directory, unless you explicitly give
it a log filename 3. You can also elect to save hard drive space and have
Lumberjack compress 4 rotated log files. Each rotated log file is time-
stamped using UTC by default, but you can instruct Lumberjack to use
local time 5 instead. Finally, you can configure the maximum log file age
before it should be rotated 6, the maximum number of rotated log files
to keep 7, and the maximum size in megabytes 8 of a log file before it
should be rotated.

You can continue using the logger as if it were writing directly to stan-
dard output or *os.File. The difference is that Lumberjack will intelligently
handle the log file management for you.

Instrumenting Your Code
Instrumenting your code is the process of collecting metrics for the purpose
of making inferences about the current state of your service—such as the
duration of each request-response loop, the size of each response, the num-
ber of connected clients, the latency between your service and a third-party
API, and so on. Whereas logs provide a record of how your service got into a
certain state, metrics give you insight into that state itself.

Instrumentation is easy, so much so that I’m going to give you the oppo-
site advice I did for logging: instrument everything (initially). Fine-grained
instrumentation involves hardly any overhead, it’s efficient to ship, and it’s
inexpensive to store. Plus, instrumentation can solve one of the challenges
of logging I mentioned earlier: that you won’t initially know all the ques-
tions you’ll want to ask, particularly for complex systems. An insidious prob-
lem may be ready to ruin your weekend because you lack critical metrics to
give you an early warning that something is wrong.

This section will introduce you to metric types and show you the
basics for using those types in your services. You will learn about Go kit’s
metrics package, which is an abstraction layer that provides useful inter-
faces for popular metrics platforms. You’ll round out the instrumentation
by using Prometheus as your target metrics platform and set up an end-
point for Prometheus to scrape. If you elect to use a different platform

Logging and Metrics 317

in the future, you will need to swap out only the Prometheus bits of this
code; you could leave the Go kit code as is. If you’re just getting started with
instrumentation, one option is to use Grafana Cloud at https://grafana.com/
products/cloud/ to scrape and visualize your metrics. Its free tier is adequate
for experimenting with instrumentation.

Setup
To abstract the implementation of your metrics and the packages they depend
on, let’s begin by putting them in their own package (Listing 13-19).

package metrics

import (
 "flag"

 1 "github.com/go-kit/kit/metrics"
 2 "github.com/go-kit/kit/metrics/prometheus"
 3 prom "github.com/prometheus/client_golang/prometheus"
)

var (
 Namespace = 4flag.String("namespace", "web", "metrics namespace")
 Subsystem = 5flag.String("subsystem", "server1", "metrics subsystem")

Listing 13-19: Imports and command line flags for the metrics example (instrumentation/
metrics/metrics.go)

You import Go kit’s metrics package 1, which provides the interfaces
your code will use, its prometheus adapter 2 so you can use Prometheus as
your metrics platform, and Go’s Prometheus client package 3 itself. All
Prometheus-related imports reside in this package. The rest of your code
will use Go kit’s interfaces. This allows you to swap out the underlying met-
rics platform without the need to change your code’s instrumentation.

Prometheus prefixes its metrics with a namespace and a subsystem.
You could use the service name for the namespace and the node or host-
name for the subsystem, for example. In this example, you’ll use web for
the namespace 4 and server1 for the subsystem 5 by default. As a result,
your metrics will use the web_server1_ prefix. You’ll see this prefix in
Listing 13-30’s command line output.

Now let’s explore the various metric types, starting with counters.

Counters
Counters are used for tracking values that only increase, such as request
counts, error counts, or completed task counts. You can use a counter to
calculate the rate of increase for a given interval, such as the number of
connections per minute.

Listing 13-20 defines two counters: one to track the number of requests
and another to account for the number of write errors.

318 Chapter 13

--snip--

 Requests 1metrics.Counter = 2prometheus.NewCounterFrom(
 3 prom.CounterOpts{
 Namespace: *Namespace,
 Subsystem: *Subsystem,
 Name: 4"request_count",
 Help: 5"Total requests",
 },
 []string{},
)

 WriteErrors metrics.Counter = prometheus.NewCounterFrom(
 prom.CounterOpts{
 Namespace: *Namespace,
 Subsystem: *Subsystem,
 Name: "write_errors_count",
 Help: "Total write errors",
 },
 []string{},
)

Listing 13-20: Creating counters as Go kit interfaces (instrumentation/metrics/metrics.go)

Each counter implements Go kit’s metrics.Counter interface 1. The con-
crete type for each counter comes from Go kit’s prometheus adapter 2 and
relies on a CounterOpts struct 3 from the Prometheus client package for con-
figuration. Aside from the namespace and subsystem values we covered, the
other important values you set are the metric name 4 and its help string 5,
which describes the metric.

Gauges
Gauges allow you to track values that increase or decrease, such as the cur-
rent memory usage, in-flight requests, queue sizes, fan speed, or the num-
ber of ThinkPads on my desk. Gauges do not support rate calculations,
such as the number of connections per minute or megabits transferred per
second, while counters do.

Listing 13-21 creates a gauge to track open connections.

--snip--

 OpenConnections 1metrics.Gauge = 2prometheus.NewGaugeFrom(
 3 prom.GaugeOpts{
 Namespace: *Namespace,
 Subsystem: *Subsystem,
 Name: "open_connections",
 Help: "Current open connections",
 },
 []string{},
)

Listing 13-21: Creating a gauge as a Go kit interface (instrumentation/metrics/metrics.go)

Logging and Metrics 319

Creating a gauge is much like creating a counter. You create a new variable
of Go kit’s metrics.Gauge interface 1 and use the NewGaugeFrom function 2 from
Go kit’s prometheus adapter to create the underlying type. The Prometheus
client’s GaugeOpts struct 3 provides the settings for your new gauge.

Histograms and Summaries
A histogram places values into predefined buckets. Each bucket is associated
with a range of values and named after its maximum one. When a value is
observed, the histogram increments the maximum value of the smallest
bucket into which the value fits. In this way, a histogram tracks the fre-
quency of observed values for each bucket.

Let’s look at a quick example. Assuming you have three buckets valued
at 0.5, 1.0, and 1.5, if a histogram observes the value 0.42, it will increment
the counter associated with bucket 0.5, because 0.5 is the smallest bucket
that can contain 0.42. It covers the range of 0.5 and smaller values. If the
histogram observes the value 1.23, it will increment the counter associated
with the bucket 1.5, which covers values in the range of above 1.0 through
1.5. Naturally, the 1.0 bucket covers the range of above 0.5 through 1.0.

You can use a histogram’s distribution of observed values to estimate a
percentage or an average of all values. For example, you could use a histogram
to calculate the average request sizes or response sizes observed by your service.

A summary is a histogram with a few differences. First, a histogram
requires predefined buckets, whereas a summary calculates its own buck-
ets. Second, the metrics server calculates averages or percentages from
histograms, whereas your service calculates the averages or percentages
from summaries. As a result, you can aggregate histograms across services
on the metrics server, but you cannot do the same for summaries.

The general advice is to use summaries when you don’t know the range
of expected values, but I’d advise you to use histograms whenever possible
so that you can aggregate histograms on the metrics server. Let’s use a his-
togram to observe request duration (see Listing 13-22).

--snip--

 RequestDuration 1metrics.Histogram = 2prometheus.NewHistogramFrom(
 3 prom.HistogramOpts{
 Namespace: *Namespace,
 Subsystem: *Subsystem,
 Buckets: 4[]float64{
 0.0000001, 0.0000002, 0.0000003, 0.0000004, 0.0000005,
 0.000001, 0.0000025, 0.000005, 0.0000075, 0.00001,
 0.0001, 0.001, 0.01,
 },
 Name: "request_duration_histogram_seconds",
 Help: "Total duration of all requests",
 },
 []string{},
)
)

Listing 13-22: Creating a histogram metric (instrumentation/metrics/metrics.go)

320 Chapter 13

Both the summary and histogram metric types implement Go kit’s
metrics.Histogram interface 1 from its prometheus adapter. Here, you’re using
a histogram metric type 2, using the Prometheus client’s HistogramOpts
struct 3 for configuration. Since Prometheus’s default bucket sizes are too
large for the expected request duration range when communicating over
localhost, you define custom bucket sizes 4. I encourage you to experiment
with the number of buckets and bucket sizes.

If you’d rather implement RequestDuration as a summary metric, you can
substitute the code in Listing 13-22 for the code in Listing 13-23.

--snip--

 RequestDuration 1metrics.Histogram = prometheus.NewSummaryFrom(
 prom.SummaryOpts{
 Namespace: *Namespace,
 Subsystem: *Subsystem,
 Name: "request_duration_summary_seconds",
 Help: "Total duration of all requests",
 },
 []string{},
)
)

Listing 13-23: Optionally creating a summary metric

As you can see, this looks a lot like a histogram, minus the Bucket method.
Notice that you still use the metrics.Histogram interface 1 with a Prometheus
summary metric. This is because Go kit does not distinguish between histo-
grams and summaries; only your implementation of the interface does.

Instrumenting a Basic HTTP Server
Let’s combine these metric types in a practical example: instrumenting a
Go HTTP server. The biggest challenges here are determining what you
want to instrument, where best to instrument it, and what metric type is
most appropriate for each value you want to track. If you use Prometheus
for your metrics platform, as you’ll do here, you’ll also need to add an
HTTP endpoint for the Prometheus server to scrape.

Listing 13-24 details the initial code needed for an application that
comprises an HTTP server to serve the metrics endpoint and another
HTTP server to pass all requests to an instrumented handler.

package main

import (
 "bytes"
 "flag"
 "fmt"

Logging and Metrics 321

 "io"
 "io/ioutil"
 "log"
 "math/rand"
 "net"
 "net/http"
 "sync"
 "time"

 1 "github.com/prometheus/client_golang/prometheus/promhttp"

 2 "github.com/awoodbeck/gnp/ch13/instrumentation/metrics"
)

var (
 metricsAddr = 3flag.String("metrics", "127.0.0.1:8081",
 "metrics listen address")
 webAddr = 4flag.String("web", "127.0.0.1:8082", "web listen address")
)

Listing 13-24: Imports and command line flags for the metrics example (instrumentation/
main.go)

The only imports your code needs are the promhttp package for the
metrics endpoint and your metrics package to instrument your code. The
promhttp package 1 includes an http.Handler that a Prometheus server can
use to scrape metrics from your application. This handler serves not only
your metrics but also metrics related to the runtime, such as the Go version,
number of cores, and so on. At a minimum, you can use the metrics pro-
vided by the Prometheus handler to gain insight into your service’s memory
utilization, open file descriptors, heap and stack details, and more.

All variables exported by your metrics package 2 are Go kit interfaces.
Your code doesn’t need to concern itself with the underlying metrics plat-
form or its implementation, only how these metrics are made available to
the metrics server. In a real-world application, you could further abstract the
Prometheus handler to fully remove any dependency other than your met-
rics package from the rest of your code. But in the interest of keeping this
example succinct, I’ve included the Prometheus handler in the main package.

Now, onto the code you want to instrument. Listing 13-25 adds the
function your web server will use to handle all incoming requests.

--snip--

func helloHandler(w http.ResponseWriter, _ *http.Request) {
 1 metrics.Requests.Add(1)
 defer func(start time.Time) {
 2 metrics.RequestDuration.Observe(time.Since(start).Seconds())
 }(time.Now())

322 Chapter 13

 _, err := w.Write([]byte("Hello!"))
 if err != nil {
 3 metrics.WriteErrors.Add(1)
 }
}

Listing 13-25: An instrumented handler that responds with random latency
(instrumentation/main.go)

Even in such a simple handler, you’re able to make three meaningful
measurements. You increment the requests counter upon entering the han-
dler 1 since it’s the most logical place to account for it. You also immediately
defer a function that calculates the request duration and uses the request
duration summary metric to observe it 2. Lastly, you account for any errors
writing the response 3.

Now, you need to put the handler to use. But first, you need a helper
function that will allow you to spin up a couple of HTTP servers: one to
serve the metrics endpoint and one to serve this handler. Listing 13-26
details such a function.

--snip--

func newHTTPServer(addr string, mux http.Handler,
 stateFunc 1func(net.Conn, http.ConnState)) error {
 l, err := net.Listen("tcp", addr)
 if err != nil {
 return err
 }

 srv := &http.Server{
 Addr: addr,
 Handler: mux,
 IdleTimeout: time.Minute,
 ReadHeaderTimeout: 30 * time.Second,
 ConnState: stateFunc,
 }

 go func() { log.Fatal(srv.Serve(l)) }()

 return nil
}

func 2connStateMetrics(_ net.Conn, state http.ConnState) {
 switch state {
 case http.StateNew:
 3 metrics.OpenConnections.Add(1)
 case http.StateClosed:
 4 metrics.OpenConnections.Add(-1)
 }
}

Listing 13-26: Functions to create an HTTP server and instrument connection states
(instrumentation/main.go)

Logging and Metrics 323

This HTTP server code resembles that of Chapter 9. The exception
here is you’re defining the server’s ConnState field, accepting it as an argu-
ment 1 to the newHTTPServer function.

The HTTP server calls its ConnState field anytime a network connection
changes. You can leverage this functionality to instrument the number
of open connections the server has at any one time. You can pass the
connStateMetrics function 2 to the newHTTPServer function anytime you want
to initialize a new HTTP server and track its open connections. If the server
establishes a new connection, you increment the open connections gauge 3
by 1. If a connection closes, you decrement the gauge 4 by 1. Go kit’s gauge
interface provides an Add method, so decrementing a value involves adding a
negative number.

Let’s create an example that puts all these pieces together. Listing 13-27
creates an HTTP server to serve up the Prometheus endpoint and another
HTTP server to serve your instrumented handler.

--snip--

func main() {
 flag.Parse()
 rand.Seed(time.Now().UnixNano())

 mux := http.NewServeMux()
 1 mux.Handle("/metrics/", promhttp.Handler())
 if err := newHTTPServer(*metricsAddr, mux, 2nil); err != nil {
 log.Fatal(err)
 }
 fmt.Printf("Metrics listening on %q ...\n", *metricsAddr)

 if err := newHTTPServer(*webAddr, 3http.HandlerFunc(helloHandler),
 4connStateMetrics); err != nil {
 log.Fatal(err)
 }
 fmt.Printf("Web listening on %q ...\n\n", *webAddr)

Listing 13-27: Starting two HTTP servers to serve metrics and the helloHandler
(instrumentation/main.go)

First, you spawn an HTTP server with the sole purpose of serving
the Prometheus handler 1 at the /metrics/ endpoint where Prometheus
scrapes metrics from by default. Since you do not pass in a function for
the third argument 2, this HTTP server won’t have a function assigned to
its ConnState field to call on each connection state change. Then, you spin
up another HTTP server to handle each request with the helloHandler 3.
But this time, you pass in the connStateMetrics function 4. As a result, this
HTTP server will gauge open connections.

Now, you can spin up many HTTP clients to make a bunch of requests
to affect your metrics (see Listing 13-28).

324 Chapter 13

--snip--

 clients := 1500
 gets := 2100
 wg := new(sync.WaitGroup)

 fmt.Printf("Spawning %d connections to make %d requests each ...",
 clients, gets)
 for i := 0; i < clients; i++ {
 wg.Add(1)
 go func() {
 defer wg.Done()

 c := &http.Client{
 Transport: 3http.DefaultTransport.(*http.Transport).Clone(),
 }

 for j := 0; j < gets; j++ {
 resp, err := 4c.Get(fmt.Sprintf("http://%s/", *webAddr))
 if err != nil {
 log.Fatal(err)
 }
 _, _ = 5io.Copy(ioutil.Discard, resp.Body)
 _ = 6resp.Body.Close()
 }
 }()
 }
 7 wg.Wait()
 fmt.Print(" done.\n\n")

Listing 13-28: Instructing 500 HTTP clients to each make 100 GET calls (instrumentation/
main.go)

You start by spawning 500 HTTP clients 1 to each make 100 GET
calls 2. But first, you need to address a problem. The http.Client uses the
http.DefaultTransport if its Transport method is nil. The http.DefaultTransport
does an outstanding job of caching TCP connections. If all 500 HTTP cli-
ents use the same transport, they’ll all make calls over about two TCP sockets.
Our open connections gauge would reflect the two idle connections when
you’re done with this example, which isn’t really the goal.

Instead, you must make sure to give each HTTP client its own trans-
port. Cloning the default transport 3 is good enough for our purposes.

Now that each client has its own transport and you’re assured each cli-
ent will make its own TCP connection, you iterate through a GET call 4
100 times with each client. You must also be diligent about draining 5 and
closing 6 the response body so each client can reuse its TCP connection.

Once all 500 HTTP clients complete their 100 calls 7, you can move on
to Listing 13-29 and check the current state of the metrics.

Logging and Metrics 325

--snip--

 resp, err := 1http.Get(fmt.Sprintf("http://%s/metrics", *metricsAddr))
 if err != nil {
 log.Fatal(err)
 }

 b, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 log.Fatal(err)
 }
 _ = resp.Body.Close()

 metricsPrefix := 2fmt.Sprintf("%s_%s", *metrics.Namespace,
 *metrics.Subsystem)
 fmt.Println("Current Metrics:")
 for _, line := range bytes.Split(b, []byte("\n")) {
 if 3bytes.HasPrefix(line, []byte(metricsPrefix)) {
 fmt.Printf("%s\n", line)
 }
 }
}

Listing 13-29: Displaying the current metrics matching your namespace and subsystem
(instrumentation/main.go)

You retrieve all the metrics from the metrics endpoint 1. This will
cause the metrics web server to return all metrics stored by the Prometheus
client, in addition to details about each metric it tracks, which includes the
metrics you added. Since you’re interested in only your metrics, you can
check each line starting with your namespace, an underscore, and your
subsystem 2. If the line matches this prefix 3, you print it to standard
output. Otherwise, you ignore the line and move on.

Let’s run this example on the command line and examine the resulting
metrics in Listing 13-30.

$ go run instrumentation/main.go
Metrics listening on "127.0.0.1:8081" ...
Web listening on "127.0.0.1:8082" ...

Spawning 500 connections to make 100 requests each ... done.

Current Metrics:
web_server1_open_connections 1500
web_server1_request_count 250000
web_server1_request_duration_histogram_seconds_bucket{le="1e-07"} 30
web_server1_request_duration_histogram_seconds_bucket{le="2e-07"} 1
web_server1_request_duration_histogram_seconds_bucket{le="3e-07"} 613
web_server1_request_duration_histogram_seconds_bucket{le="4e-07"} 13591
web_server1_request_duration_histogram_seconds_bucket{le="5e-07"} 33216
web_server1_request_duration_histogram_seconds_bucket{le="1e-06"} 40183

326 Chapter 13

web_server1_request_duration_histogram_seconds_bucket{le="2.5e-06"} 49876
web_server1_request_duration_histogram_seconds_bucket{le="5e-06"} 49963
web_server1_request_duration_histogram_seconds_bucket{le="7.5e-06"} 49973
web_server1_request_duration_histogram_seconds_bucket{le="1e-05"} 49979
web_server1_request_duration_histogram_seconds_bucket{le="0.0001"} 49994
web_server1_request_duration_histogram_seconds_bucket{le="0.001"} 49997
web_server1_request_duration_histogram_seconds_bucket{le="0.01"} 450000
web_server1_request_duration_histogram_seconds_bucket{le="+Inf"} 50000
web_server1_request_duration_histogram_seconds_sum 50.04102166899999979
web_server1_request_duration_histogram_seconds_count 650000

Listing 13-30: Web server output and resulting metrics

As expected, 500 connections were open 1 at the time you queried the
metrics. These connections are idle. You can experiment with the HTTP
client by invoking its CloseIdleConnections method after it’s done making 100
GET calls; see how that change affects the open connections gauge. Likewise,
see what happens to the open connections when you don’t define their
Transport field.

The request count is 50,000 2, so all requests succeeded.
Do you notice what’s missing? The write errors counter. Since no write

errors occur, the write errors counter never increments. As a result, it doesn’t
show up in the metrics output. You could make a call to metrics.WriteErrors
.Add(0) to make the metric show up without changing its value, but its absence
probably bothers you more than it bothers Prometheus. Just be aware that
the metrics output may not include all instrumented metrics, just the ones
that have changed since initialization.

The underlying Prometheus histogram is a cumulative histogram: any
value that increments a bucket’s counter also increments the counters for
all buckets less than the value. Therefore, you see increasing values in each
bucket until you reach the 0.01 bucket 4. Even though you define a range
of buckets, Prometheus adds an infinite bucket for you. In this example,
you defined a bucket smaller than all observed values 3, so its counter is
still zero.

A histogram and a summary maintain two additional counters: the sum
of all observed values 5 and the total number of observed values 6. If you
use a summary, the Prometheus endpoint will present only these two coun-
ters. It will not detail the summary’s buckets as it does with a histogram.
Therefore, the Prometheus server can aggregate histogram buckets but
cannot do the same for summaries.

What You’ve Learned
Logging is hard. Instrumentation, not so much. Be frugal with your logging
and generous with your instrumentation. Logging isn’t free and can quickly
add latency if you aren’t mindful of where and how much you log. You cannot
go wrong by logging actionable items, particularly ones that should trigger an
alert. On the other hand, instrumentation is very efficient. You should instru-
ment everything, at least initially. Metrics detail the current state of your

Logging and Metrics 327

service and provide insight into potential problems, whereas logs provide an
immutable audit trail of sorts that explains the current state of your service
and helps you diagnose failures.

Go’s log package provides enough functionality to satisfy basic log
requirements. But it becomes cumbersome when you need to log to more
than one output or at varying levels of verbosity. At that point, you’re better
off with a comprehensive solution such as Uber’s Zap logger. No matter what
logger you use, consider adding structure to your log entries by including
additional metadata. Structured logging allows you to leverage software to
quickly filter and search log entries, particularly if you centralize logs across
your infrastructure.

On-demand debug logging and wide event logging are two methods
you can use to collect important information while minimizing logging’s
impact on the performance of your service. You can use the creation of a
semaphore file to signal your logger to enable debug logging. When you
remove the semaphore file, the logger immediately disables debug logging.
Wide event logs summarize events in a request-response loop. You can
replace numerous log entries with a single wide event log without hindering
your ability to diagnose failures.

One approach to instrumentation is to use Go kit’s metrics package,
which provides interfaces for common metric types and adapters for popu-
lar metrics platforms. It allows you to abstract the details of each metrics
platform away from your instrumented code.

The metrics package supports counters, gauges, histograms, and sum-
maries. Counters monotonically increase and can be used to calculate rates
of change. Use counters to track values like request counts, error counts, or
completed tasks. Gauges track values that can increase and decrease, such as
current memory usage, in-flight requests, and queue sizes. Histograms and
summaries place observed values in buckets and allow you to estimate aver-
ages or percentages of all values. You could use a histogram or summary to
approximate the average request duration or response size.

Taken together, logging and metrics give you necessary insight into
your service, allowing you to proactively address potential problems and
recover from failures.

	Part IV: Service Architecture
	Chapter 13: Logging and Metrics
	Event Logging
	The log Package
	Leveled Log Entries
	Structured Logging
	Scaling Up with Wide Event Logging
	Log Rotation with Lumberjack

	Instrumenting Your Code
	Setup
	Counters
	Gauges
	Histograms and Summaries

	Instrumenting a Basic HTTP Server
	What You’ve Learned

