

Nmap Network
Exploration and
Security Auditing
Cookbook
Third Edition

Network discovery and security scanning
at your fingertips

Paulino Calderon

BIRMINGHAM—MUMBAI

Nmap Network Exploration and Security
Auditing Cookbook
Third Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Rahul Nair
Senior Editor: Arun Nadar
Content Development Editor: Mrudgandha Kulkarni
Technical Editor: Shruthi Shetty
Copy Editor: Safis Editing
Project Coordinator: Ajesh Devavaram
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Vijay Kamble

First published: November 2012
Second edition: May 2017
Third edition: August 2021

Production reference: 1200721

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-935-7

www.packt.com

http://www.packt.com

Contributors

About the author
Paulino Calderon (@calderpwn on Twitter) is a published author and international
speaker with over 10 years of professional experience in network and application security.
He cofounded Websec in 2011, a consulting firm securing applications, networks, and
digital assets operating in North America. When he isn't traveling to security conferences
or consulting for Fortune 500 companies with Websec, he spends peaceful days enjoying
the beach in Cozumel, Mexico. His contributions have reached millions of users through
Nmap, Metasploit, OWASP Mobile Security Testing Guide (MSTG), OWASP Juice Shop,
and OWASP IoT Goat.

To my father, Dr. Paulino Calderon Medina, who taught me that our only
limitations are the ones we set up in our minds, and my mother, Edith Pale

Perez, who supported me unconditionally and always believed in me.

About the reviewer
Nikhil Kumar has more than 7 years of experience in cyber security with national and
multinational companies. His core expertise and passions are information security,
vulnerability assessment, penetration testing on network/infrastructure, and DAST/SAST/
IAST on web and mobile applications.

He is an avid blogger and regular speaker on cyber-related topics at many colleges and
private and government firms.

To reach his blogs or LinkedIn, visit the following sites:

https://www.linkedin.com/in/nikhil-kumar-bb7a0590

https://blogs4all2017.blogspot.com

https://iot4all2017.blogspot.com

He is a postgraduate in computer science and holds numerous cyber certifications,
including Certified Ethical Hacker from the EC Council, ISO 27001 Lead Auditor from
the IRCA, Certified 365 Security Administrator from Microsoft, Certified Azure Security
Engineer Associate from Microsoft, Cyber Crime Intervention Officer from ISAC India,
and Network Security Expert from FORTINET.

I would like to thank my family, who have always motivated me to grow
in my life and career. I would like to thank my friends and employers, who

have always stood by me. My friends, Aphin Alexander, Rajdeep Gogoi,
Prafull Kurekar, and Kanchan Jhangiani, have always been there for me.
I would also like to thank Anubhav Kumar Lal and Ravali Vangala for

giving me a reason to continue learning and growing.

https://www.linkedin.com/in/nikhil-kumar-bb7a0590
https://blogs4all2017.blogspot.com
https://iot4all2017.blogspot.com

1
Nmap Fundamentals
Network Mapper (Nmap) was originally released by Gordon Lyon, known on the
internet as Fyodor, in the infamous Phrack magazine Vol. 7 Issue 51 (https://nmap.
org/p51-11.html). It is still acclaimed today as one of the best tools for network
reconnaissance and security auditing in cybersecurity. The first public version was
introduced as an advanced port scanner along with a paper describing research on novel
techniques for port discovery, but since then, it has gone down a long road and become
so much more. The Nmap project itself evolved into a family of advanced networking
tools that includes amazing projects such as Ncrack, Ncat, Nping, Zenmap, and, built into
Nmap itself, the Nmap Scripting Engine (NSE). Fyodor's own description on the official
website is as follows:

"Nmap (Network Mapper) is a free and open source (license) utility for
network discovery and security auditing. Many systems and network
administrators also find it useful for tasks such as network inventory,
managing service upgrade schedules, and monitoring host or service

uptime. Nmap uses raw IP packets in novel ways to determine what hosts
are available on the network, what services (application name and version)
those hosts are offering, what operating systems (and OS versions) they are

running, what type of packet filters/firewalls are in use, and dozens
of other characteristics. It was designed to rapidly scan large networks, but

works fine against single hosts. Nmap runs on all major computer operating
systems, and official binary packages are available for Linux, Windows,

and Mac OS X."

https://nmap.org/p51-11.html
https://nmap.org/p51-11.html

2 Nmap Fundamentals

Nmap's community is very active, so I encourage you to always keep up with the
latest stable releases and patches. Announcements and discussions take place on the
development mailing list, so if you would like to contribute to the project, I recommend
you subscribe to the mailing list at https://nmap.org/mailman/listinfo/dev.
These days, you will also find a GitHub repository serving as the official mirror from the
Subversion code repository. For issues and pull requests, it is recommended to create them
on GitHub and send a friendly reminder to the mailing list so they are easier to track and
to avoid them getting lost in all the noise.

This first chapter is for newcomers to Nmap and its projects. It aims to give you a general
overview of the main capabilities of the Nmap project. Starting with building Nmap
projects from source code, you will become familiar with all the tools of the Nmap project.
In just the initial recipes, you will learn how flexible and powerful the Nmap tools are,
but as we move through the chapters, you will go deep into the internals to learn how to
not only use the tools for a wide range of tasks useful in the cybersecurity field but also
extend them and create new functionality by writing your own modules in Lua or C.
The practical tasks chosen for this chapter will get you started with Nmap and the most
common options and features to start scanning targets and customizing scans.

In this chapter, we will cover the following recipes:

• Building Nmap's source code

• Finding online hosts

• Listing open ports on a target

• Fingerprinting OSes and services running on a target

• Using NSE scripts against a target host

• Scanning random targets on the internet

• Collecting signatures of web servers

• Scanning with Rainmap Lite

Technical requirements
The following tools are officially part of the Nmap project and were created to accomplish
common tasks for network diagnostics and security scanning:

• Nping (https://nmap.org/nping/) specializes in custom network packet
crafting for diagnostics and troubleshooting.

• Ncrack (https://nmap.org/ncrack/) focuses on network authentication
cracking, supporting the most popular applications and protocols.

https://nmap.org/mailman/listinfo/dev
https://nmap.org/nping/
https://nmap.org/ncrack/

Building Nmap's source code 3

• Ncat (https://nmap.org/ncat/) is an enhanced version of Netcat that
supports encryption out of the box and is extensible using Lua scripts.

• Zenmap (https://nmap.org/zenmap/) is a cross-platform GUI for
Nmap focused on usability.

• NSE (https://nmap.org/book/nse.html) takes information obtained
from scanned targets and provides an interface for users to script additional tasks
using Lua.

Building Nmap's source code
Throughout this book, you will use all the tools from the Nmap project, so it is a good
idea to start by installing the latest versions now. We will not work with pre-built binaries
as mere mortals but build them from the latest source code available in the official
repository. This recipe will show how to download the latest copy of the source code from
the development repositories and compile and install Nmap and related tools in your
Unix-based system.

We always prefer working with the very latest snapshot of the repository because
precompiled packages take time to prepare and we will often miss important patches
or new NSE scripts. The following recipe will show the process of downloading the source
code and configuring, building, installing, and maintaining an up-to-date copy of the
Nmap project in your arsenal.

Getting ready
Before continuing, you need to have installed the Subversion client. Unix-based platforms
come with a command-line client named Subversion (svn). To check whether it's already
installed on your system, just open a terminal and type the following command:

$ svn

If the command was not found, install svn using your favorite package manager or build
it from source code. The instructions to build svn from source code are out of the scope
of this book, but they are widely documented online. Use your favorite search engine to
find specific instructions for your system.

When building Nmap, we will also need additional libraries such as the development
definitions from OpenSSL or the make command. In Debian-based systems, try the
following command to install the missing dependencies:

#apt-get install libssl-dev autoconf make g++ subversion

https://nmap.org/ncat/
https://nmap.org/zenmap/
https://nmap.org/book/nse.html

4 Nmap Fundamentals

Note that OpenSSL is optional, and Nmap can be built without it; however, without it,
Nmap will be crippled as it uses it for functions related to integers, hashing, and encoding/
decoding SSL requests for service detection and NSE.

How to do it...
1. Start by grabbing a copy of the source code from the official Subversion repository.

To download the latest development branch, use the svn checkout command.
This command can also be used through the co alias:

$svn co https://svn.nmap.org/nmap

2. This command will start downloading and listing the files and when it finishes,
the Checked out revision <Revision number> message will be shown. A new
directory containing the source code is now available in your current working
directory. At this point, you should have installed all the required dependencies
and you will be ready to compile Nmap with the standard Unix compilation
procedure by running configure, make, and make install. Enter the
directory containing the source code and start with the configure command:

$./configure

3. If the configuration process completes successfully, you should also see the
configuration options applied:

Configured with: ndiff zenmap nping openssl zlib libssh2
lua ncat
Configured without: localdirs nmap-update
Type make (or gmake on some *BSD machines) to compile.

4. Compile Nmap with make:

$make

5. When it finishes building Nmap and the other tools, you will be able to find the
nmap binary in your current working directory. Finally, make it available system-
wide by installing Nmap on the system:

#make install

Building Nmap's source code 5

After installing the application, you should see the NMAP SUCCESSFULLY
INSTALLED message and now you can run Nmap from any path on the system.
Test your Nmap installation and learn about the supported scanning techniques
and options with the help command:

$nmap -h

How it works...
The svn repository, hosted at https://svn.nmap.org/nmap, contains the latest
development version of Nmap and has world read access that allows anyone to grab a copy
of the source code. We built the project from scratch to get the latest patches and features.
The installation process described in this recipe also installed Ncat, Zenmap, Ndiff,
and Nping.

There's more...
The process of compiling Nmap is similar to compiling other Unix-based applications, but
there are several compile-time variables that can be adjusted to configure the installation.
Precompiled binaries are recommended for users who can't compile Nmap from source
code. Unix-based systems are recommended because of some Windows limitations that
affect performance, described at https://nmap.org/book/inst-windows.html.

Experimental branches
If you want to try the latest creations of the development team, there is a folder named
nmap-exp that contains several experimental branches of the project. The code stored
in this folder is not guaranteed to work all the time as it is used as a sandbox by
developers, although some hidden gems can be found there from time to time.
These branches are located at https://svn.nmap.org/nmap-exp/.

Updating your local working copy
The Nmap project is quite active, especially during summer because of Google Summer
of Code, so do not forget to update your installed copy regularly. If you keep a working
copy of the svn repository, https://svn.nmap.org/nmap, you could update it with
the following commands inside your svn working directory:

$svn up
$make -j4
#make install

https://svn.nmap.org/nmap
https://nmap.org/book/inst-windows.﻿ht﻿ml
https://svn.nmap.org/nmap-e﻿﻿xp/
https://svn.nmap.org/nmap

6 Nmap Fundamentals

Customizing the building process
If you do not need the other Nmap utilities, such as Nping, Ncat, Ndiff, or Zenmap,
you may use different configure directives to omit their installation during the
configuration step:

./configure --without-ndiff

./configure –without-ncat

./configure --without-zenmap

./configure --without-nping

For a complete list of configuration directives, use the --help command argument:

$./configure --help

Precompiled packages
Precompiled Nmap packages can be found for all major platforms at https://nmap.
org/download.html for those who do not feel like setting up the build environment.
When working with precompiled packages, just make sure that you grab the latest version
to avoid missing important fixes or enhancements. This is especially important with
Windows and the Npcap driver, which has gone through some serious improvements.

Finding online hosts
Finding online hosts in networks or on the internet is a common task among penetration
testers and system administrators. Nmap offers better host detection as it sends more
probes than the ICMP echo request sent by the traditional ping utility.

This recipe describes how to determine whether a host is online with Nmap.

How to do it...
Launch a ping scan against a target to determine whether it is online using the
following command:

#nmap -sn <target>

https://nmap.org/download.html
https://nmap.org/download.html

Finding online hosts 7

The results will include all hosts that responded to any of the packets sent by Nmap during
the ping scan, that is, the active machines on the target network segment or the internet.
Nmap takes as a target any option not recognized and it supports IPv4/IPv6 addresses,
hostnames, and network ranges that can be defined using wildcards and Classless
Inter-Domain Routing (CIDR) notation. For example, to scan the local network,
192.168.0.1/24, you can run the following command:

#nmap -sn 192.168.0.1/24
Nmap scan report for 192.168.0.1 Host is up (0.0025s latency).
MAC Address: F4:B7:E2:0A:DA:18 (Hon Hai Precision Ind.) Nmap
scan report for 192.168.0.2
Host is up (0.0065s latency).
MAC Address: 00:18:F5:0F:AD:01 (Shenzhen Streaming Video
Technology Company Limited)
Nmap scan report for 192.168.0.3 Host is up (0.00015s latency).
MAC Address: 9C:2A:70:10:84:BF (Hon Hai Precision Ind.) Nmap
scan report for 192.168.0.8
Host is up (0.029s latency).
MAC Address: C8:02:10:39:54:D2 (LG Innotek) Nmap scan report
for 192.168.0.10
Host is up (0.0072s latency).
MAC Address: 90:F6:52:EE:77:E9 (Tp-link Technologies) Nmap scan
report for 192.168.0.11
Host is up (0.030s latency).
MAC Address: 80:D2:1D:2C:20:55 (AzureWave Technology) Nmap scan
report for 192.168.0.18
Host is up (-0.054s latency).
MAC Address: 78:31:C1:C1:9C:0A (Apple)
Nmap scan report for 192.168.0.22 Host is up (0.030s latency).
MAC Address: F0:25:B7:EB:DD:21 (Samsung Electro Mechanics) Nmap
scan report for 192.168.0.5
Host is up.
Nmap done: 256 IP addresses (9 hosts up) scanned in 27.86
seconds

Ping scans in Nmap may also identify MAC addresses and vendors based on the MAC
address identifier if executed as a privileged user on local Ethernet networks.

8 Nmap Fundamentals

How it works...
The Nmap -sn option disables port scanning, leaving only the host discovery phase
enabled, which makes Nmap perform a ping scan or ping sweep. Depending on the
privileges, Nmap by default uses different techniques: sending a TCP SYN packet to
port 443, a TCP ACK packet to port 80, and an ICMP echo and timestamp requests
if executed as a privileged user. If the user running Nmap can't send raw packets,
it sends a SYN packet to ports 80 and 443 via connect() syscall. ARP/Neighbor
Discovery is also enabled when scanning local Ethernet networks as privileged users.
MAC addresses and vendors are identified from the ARP requests sent during the ARP/
Neighbor Discovery phase.

There's more...
Nmap supports several host and port discovery techniques, and probes can be customized
to scan hosts effectively even in the most restricted environments. It is important that
we grasp how these network scanning techniques work. Let's learn more about host
discovery with Nmap.

Tracing routes
Ping scans allow including traceroute information of the targets. Use the Nmap
--traceroute option to trace the route from the scanning machine to the target host:

$ nmap -sn --traceroute google.com microsoft.com
Nmap scan report for google.com (216.58.193.46) Host is up
(0.16s latency).
Other addresses for google.com (not scanned):
2607:f8b0:4012:805::200e
rDNS record for 216.58.193.46: qro01s13-in-f14.1e100.net

TRACEROUTE (using port 443/tcp) HOP RTT ADDRESS
1 1.28 ms 192.168.0.1
2 ...
3 158.85 ms 10.165.1.9
4 ... 5
6 165.50 ms 10.244.158.13
7 171.18 ms 10.162.0.254
8 175.33 ms 200.79.231.81.static.cableonline.com.mx
(200.79.231.81)
9 183.16 ms 10.19.132.97
10 218.60 ms 72.14.203.70
11 223.35 ms 209.85.240.177

Finding online hosts 9

12 242.60 ms 209.85.142.47
13 ...
14 234.79 ms 72.14.233.237
15 235.17 ms qro01s13-in-f14.1e100.net (216.58.193.46)
Nmap scan report for microsoft.com (23.96.52.53) Host is up
(0.27s latency).
Other addresses for microsoft.com (not scanned): 23.100.122.175
104.40.211.35 104.43.195.251 191.239.213.197
TRACEROUTE (using port 443/tcp) HOP RTT ADDRESS
- Hops 1-9 are the same as for 216.58.193.46 10
183.27 ms 10.19.132.30
11 231.26 ms 206.41.108.25
12 236.77 ms ae5-0.atb-96cbe-1c.ntwk.msn.net (104.44.224.230)
13 226.22 ms be-3-0.ibr01.bn1.ntwk.msn.net (104.44.4.49)
14 226.89 ms be-1-0.ibr02.bn1.ntwk.msn.net (104.44.4.63)
15 213.92 ms be-3-0.ibr02.was05.ntwk.msn.net (104.44.4.26)
16 251.91 ms ae71-0.bl2-96c-1b.ntwk.msn.net (104.44.8.173)
17 ... 19
20 220.70 ms 23.96.52.53
Nmap done: 2 IP addresses (2 hosts up) scanned in 67.85 seconds

Running NSE during host discovery
NSE can be enabled during the host discovery phase to obtain additional information
about a target. As with any other NSE script, its execution will depend on the hostrule
specified. To execute an NSE script without port scanning our targets, we skip port
scanning with -sn and use --script <file,folder,category> to select the
desired script:

$ nmap -sn --script dns-brute websec.mx
Nmap scan report for websec.mx (54.210.49.18) Host is up.
rDNS record for 54.210.49.18: ec2-54-210-49-18.compute-
1.amazonaws.com

Host script results:
| dns-brute:
| DNS Brute-force hostnames:
| ipv6.websec.mx - 54.210.49.18
| web.websec.mx - 198.58.116.134
| www.websec.mx - 54.210.49.18
|_ beta.websec.mx - 54.210.49.18

10 Nmap Fundamentals

An interesting NSE script to try when discovering online hosts in networks is the
broadcast-ping script, which uses a broadcast ping request to attempt to discover
online hosts:

$ nmap -sn --script broadcast-ping 192.168.0.1/24
Pre-scan script results:
| broadcast-ping:
| IP: 192.168.0.11 MAC: 80:d2:1d:2c:20:55
| IP: 192.168.0.18 MAC: 78:31:c1:c1:9c:0a
|_ Use --script-args=newtargets to add the results as
targets

Exploring more host discovery scanning techniques
Nmap supports several host discovery scanning techniques using different protocols. By
default, the host discovery phase (nmap -sn <target>) only scans as a privileged user
internally executes Nmap with the -PS443 -PA80 -PE -PP options corresponding to
TCP SYN to port 443, TCP ACK to port 80, and ICMP echo and timestamps requests.

In Chapter 3, Network Scanning, you will learn more about the following ping scanning
techniques supported by Nmap:

• -PS/PA/PU/PY [portlist]: TCP SYN/ACK, UDP, or SCTP discovery
to given ports

• -PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes

• -PO [protocol list]: IP protocol ping

Listing open ports on a target
This recipe describes how to use Nmap to determine the port states of a target, a process
used to identify running services commonly referred to as port scanning. This is one of
the tasks Nmap excels at, so it is important to learn about the essential Nmap options
related to port scanning.

How to do it...
To launch a default scan, the bare minimum you need is a target. A target can be an
IP address, a hostname, or a network range:

$ nmap scanme.nmap.org

Listing open ports on a target 11

The scan results will show all the host information obtained, such as the IPv4 (and IPv6 if
available) address, reverse DNS name, and interesting ports with service names. All listed
ports have a state. Ports marked as open or filtered are of special interest as they represent
services running on the target host:

Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.16s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 995 closed ports PORT STATE SERVICE
22/tcp open ssh 25/tcp filtered smtp 80/tcp open http
9929/tcp open nping-echo 31337/tcp open Elite
Nmap done: 1 IP address (1 host up) scanned in 333.35 seconds

How it works...
The default Nmap scan returns a list of ports. In addition, it returns a service name from
a database distributed with Nmap and the port state for each of the listed ports.

Nmap categorizes ports into the following states:

• Open: Open indicates that a service is listening for connections on this port.

• Closed: Closed indicates that the probes were received, but it was concluded that
there was no service running on this port.

• Filtered: Filtered indicates that there were no signs that the probes were received
and the state could not be established. This could indicate that the probes are being
dropped by some kind of filtering.

• Unfiltered: Unfiltered indicates that the probes were received but a state could not
be established.

• Open/Filtered: This indicates that the port was filtered or open but the state could
not be established.

• Closed/Filtered: This indicates that the port was filtered or closed but the state
could not be established.

Even for this simple port scan, Nmap does many things in the background that can be
configured as well. Nmap begins by converting the hostname to an IPv4 address using
DNS name resolution. If you wish to use a different DNS server, use --dns-servers
<serv1[,serv2],...>, or use -n if you wish to skip this step, as follows:

$ nmap --dns-servers 8.8.8.8,8.8.4.4 scanme.nmap.org

12 Nmap Fundamentals

Afterward, it performs the host discovery process to check whether the target is online
(see the Finding online hosts recipe). To skip this step, use the no ping option, -Pn:

$ nmap -Pn scanme.nmap.org

Nmap then converts the IPv4 or IPv6 address back to a hostname using a reverse
DNS query. Use -n to skip this step as well if you do not need that information:

$ nmap -n scanme.nmap.org

The previous command will launch either a SYN stealth scan or a TCP connect scan
depending on the privileges of the user running Nmap.

There's more...
Port scanning is one of the most powerful features available, and it is important that
we understand the different techniques and options that affect the scan behavior of Nmap.

Privileged versus unprivileged
Running the simplest port scan command, nmap <target>, as a privileged user by
default launches a SYN stealth scan, whereas unprivileged users that cannot create
raw packets use the TCP connect scan technique. The difference between these two
techniques is that a TCP connect scan uses the high-level connect() system call to
obtain the port state information, meaning that each TCP connection is fully completed
and therefore slower. SYN stealth scans use raw packets to send specially crafted TCP
packets to detect port states with a technique known as half-open.

Scanning specific port ranges
Setting port ranges correctly during your scans is a task you often need to do when
running Nmap scans. You can also use this to filter machines that run a service on
a specific port, for example, finding all the SMB servers open in port 445. Narrowing
down the port list also optimizes performance, which is very important when scanning
multiple targets.

There are several ways of using the Nmap -p option:

• Port list separated by commas: $ nmap -p80,443 localhost

• Port range denoted with hyphens: $ nmap -p1-100 localhost

• Alias for all ports from 1 to 65535: # nmap -p- localhost

• Specific ports by protocol: # nmap -pT:25,U:53 <target>

Listing open ports on a target 13

• Service name: # nmap -p smtp <target>

• Service name with wildcards: # nmap -p smtp* <target>

• Only ports registered in the Nmap services database: # nmap
-p[1-65535] <target>

Selecting a network interface
Nmap attempts to automatically detect your active network interface; however, there are
some situations where it will fail or perhaps you will need to select a different interface in
order to test networking issues. To force Nmap to scan using a different network interface,
use the -e argument:

#nmap -e <interface> <target>
#nmap -e eth2 scanme.nmap.org

This is only necessary if you have problems with broadcast scripts or see the WARNING:
Unable to find appropriate interface for system route to message.

More port scanning techniques
In this recipe, we talked about the two default scanning methods used in Nmap: SYN
stealth scan and TCP connect scan. However, Nmap supports several more advanced port
scanning techniques. Use nmap -h or visit https://nmap.org/book/man-port-
scanning-techniques.html to learn more about them as Fyodor has done
a fantastic job describing how they work in depth.

Target specification
Nmap supports several target formats that allow users to work with IP address ranges.
The most common type is when we specify the target's IP or host, but it also supports the
reading of targets from files and ranges, and we can even generate a list of random targets
as we will see later.

Any arguments that are not valid options are read as targets by Nmap. This means that
we can tell Nmap to scan more than one range in a single command, as shown in the
following command:

nmap -p25,80 -O -T4 192.168.1.1/24 scanme.nmap.org/24

https://nmap.org/book/man-port-scanning-techniques.html
https://nmap.org/book/man-port-scanning-techniques.html

14 Nmap Fundamentals

There are several ways that we can handle IP ranges in Nmap:

• Multiple host specification

• Octet range addressing (they also support wildcards)

• CIDR notation

To scan the 192.168.1.1, 192.168.1.2, and 192.168.1.3 IP addresses,
the following command can be used:

$ nmap 192.168.1.1 192.168.1.2 192.168.1.3

We can also specify octet ranges using -. For example, to scan hosts 192.168.1.1,
192.168.1.2, and 192.168.1.3, we could use the expression 192.168.1.1-3,
as shown in the following command:

$ nmap 192.168.1.1-3

Octet range notation also supports wildcards, so we could scan from 192.168.1.0
to 192.168.1.255 with the expression 192.168.1.*:

$ nmap 192.168.1.*

Excluding hosts from scans
In addition, you may exclude hosts from the ranges by specifying the --exclude option,
as shown next:

$ nmap 192.168.1.1-255 --exclude 192.168.1.1
$ nmap 192.168.1.1-255 --exclude 192.168.1.1,192.168.1.2

Otherwise, you can write your exclusion list in a file using the --exclude-file option:

$ cat dontscan.txt
192.168.1.1
192.168.1.254
$ nmap --exclude-file dontscan.txt 192.168.1.1-255

CIDR notation for targets
The CIDR notation (pronounced cider) is a compact method for specifying IP addresses
and their routing suffixes. This notation gained popularity due to its granularity when
compared with classful addressing because it allows subnet masks of variable length.

Listing open ports on a target 15

The CIDR notation is specified by an IP address and network suffix. The network or IP
suffix represents the number of network bits. IPv4 addresses are 32-bit, so the network
can be between 0 and 32. The most common suffixes are /8, /16, /24, and /32.

To visualize it, take a look at the following CIDR-to-netmask conversions:

• /8: 255.0.0.0

• /16: 255.255.0.0

• /24: 255.255.255.0

• /32: 255.255.255.255

For example, 192.168.1.0/24 represents the 256 IP addresses from 192.168.1.0
to 192.168.1.255. 50.116.1.121/8 represents all the IP addresses between 50.0-
255.0-255.0-255. The /32 network suffix is also valid and represents a single
IP address.

The CIDR notation can also be used when specifying targets. To scan the 256 hosts
in 192.168.1.0-255 using the CIDR notation, you will need the /24 suffix:

$ nmap 192.168.1.0/24

Working with target lists
Many times, we will need to work with multiple targets, but having to type a list of targets
in the command line is not very practical. Fortunately, Nmap supports the loading of
targets from an external file. Enter the list of targets into a file, each separated by a new
line, tab, or space(s):

$cat targets.txt
192.168.1.23
192.168.1.12

To load the targets from the targets.txt file, use the Nmap -iL <filename> option:

$ nmap -iL targets.txt

Important note
This feature can be combined with any scan option or method, except
for exclusion rules set by --exclude or --exclude-file. The
--exclude and --exclude-file options will be ignored when -iL
is used.

16 Nmap Fundamentals

You can also use different target formats in the same file. In the following file, we specify
an IP address and an IP range inside the same file:

$ cat targets.txt
192.168.1.1
192.168.1.20-30

You can enter comments in your target list by starting the new line with the # character:

$ cat targets.txt
FTP servers 192.168.10.3
192.168.10.7
192.168.10.11

Fingerprinting OSes and services running
on a target
Version detection and OS detection are two of the most important features of Nmap.
Nmap is known for having the most comprehensive OS and service fingerprint databases,
contributed to over the years by millions of users. Knowing the OS and the exact software
version of a service is highly valuable for people looking for security vulnerabilities
or monitoring their networks for any unauthorized changes. Fingerprinting services may
also reveal additional information about a target, such as available modules, last time
of update, database version, and sometimes additional protocol information.

This recipe shows how to fingerprint the OS and running services of a remote host
using Nmap.

How to do it...
1. To enable service detection, add the Nmap -sV option to your port scan command:

$ nmap -sV <target>

2. The -sV option adds an additional column named VERSION that displays the
specific software version. Additional information can be found enclosed
in parentheses:

$ nmap -sV scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156) Host
is up (1.4s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f

Fingerprinting OSes and services running on a target 17

Not shown: 994 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu
2ubuntu2.3
(Ubuntu Linux; protocol 2.0) 25/tcp filtered smtp
80/tcp open http Apache httpd 2.4.7 ((Ubuntu)) 514/
tcp filtered shell
9929/tcp open nping-echo Nping echo 31337/tcp open
tcpwrapped
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect
results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 137.71
seconds

3. To enable OS detection, add the Nmap -O option to your scan command. Note that
OS detection requires Nmap to be run as a privileged user:

nmap -O <target>

4. The result will now include OS information at the bottom of the port list:

nmap -O scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.25s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 994 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http
514/tcp filtered shell
9929/tcp open nping-echo
31337/tcp open Elite
Device type: WAP|general purpose|storage-misc
Running (JUST GUESSING): Actiontec embedded (99%), Linux
2.4.X|3.X (99%), Microsoft Windows 7|2012|XP (96%),
BlueArc embedded (91%)
OS CPE: cpe:/h:actiontec:mi424wr-gen3i cpe:/
o:linux:linux_kernel cpe:/o:linux:linux_kernel:2.4.37
cpe:/o:linux:linux_kernel:3.2 cpe:/o:microsoft:windows_7
cpe:/o:microsoft:windows_server_2012

18 Nmap Fundamentals

cpe:/o:microsoft:windows_xp::sp3 cpe:/
h:bluearc:titan_2100 Aggressive OS guesses: Actiontec
MI424WR-GEN3I WAP (99%), DD-WRT v24-sp2 (Linux 2.4.37)
(98%), Linux 3.2 (98%), Microsoft Windows
7 or Windows Server 2012 (96%), Microsoft Windows XP SP3
(96%),
BlueArc Titan 2100 NAS device (91%)
No exact OS matches for host (test conditions non-ideal).
OS detection performed. Please report any incorrect
results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 114.03
seconds

How it works...
The Nmap -sV option enables service detection, which returns additional service and
version information. Service detection is one of the most loved features of Nmap because
it is very useful in many situations, such as when identifying security vulnerabilities,
making sure a service is running on a given port, or checking whether a patch or update
pack has been applied successfully.

This feature works by sending several probes defined in the nmap-service-probes
file to the list of detected open ports. The probes are selected based on how likely it is
they can be used to identify a service based on the port number and a score that
determines the rareness of the service.

Important note
If you are interested in the inner workings, you can find very detailed
documentation on how service detection mode works and how the file formats
are used at https://nmap.org/book/vscan.html.

Similarly, the -O option tells Nmap to attempt OS detection by sending several probes
to the TCP, UDP, and ICMP protocols against opened and closed ports. OS detection
mode is very powerful due to Nmap's user community, which contributes fingerprints
that identify a wide variety of systems, including residential routers, IP webcams, OSes,
and many other hardware devices. It is important to note that OS detection requires raw
packets, so Nmap needs to be run in privileged mode.

https://nmap.org/book/vscan.html

Fingerprinting OSes and services running on a target 19

Important note
The complete documentation of the tests and probes sent during OS detection
can be found at https://nmap.org/book/osdetect-methods.
html.

Nmap uses Common Platform Enumeration (CPE) as the naming scheme for service
and OS detection. This convention is used in the information security industry to identify
packages, platforms, and systems.

There's more...
OS and version detection scan options can be customized thoroughly and are very
powerful when tuning performance. Let's learn about some additional Nmap options
related to these scan modes.

Increasing version detection intensity to detect odd services
You can increase or decrease the probes that get sent during version detection by changing
the version detection intensity level of the scan with the –version-intensity
<level from 0 to 9> parameter:

$ nmap -sV --version-intensity 9 <target>

This Nmap option is incredibly effective against services running on non-default ports
due to configuration changes or services that are very rare and are likely to be skipped
during a scan.

Aggressive detection mode
Nmap has the special -A parameter to activate aggressive detection mode. Aggressive
mode enables OS detection (-O), version detection (-sV), script scanning (-sC), and
traceroute (--traceroute). This mode sends a lot of specially crafted probes, and it is
more likely to be detected, but provides a lot of valuable target information. You can try
aggressive detection with the following command:

nmap -A <target>
Nmap scan report for scanme.nmap.org (45.33.32.156) Host is up
(0.071s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 994 closed ports
PORT STATE SERVICE VERSION

https://nmap.org/book/osdetect-methods.html
https://nmap.org/book/osdetect-methods.html

20 Nmap Fundamentals

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.3 (Ubuntu
Linux; protocol 2.0)
| ssh-hostkey:
| 1024 ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:97:6b:75 (DSA)
| 2048 20:3d:2d:44:62:2a:b0:5a:9d:b5:b3:05:14:c2:a6:b2 (RSA)
|_ 256 96:02:bb:5e:57:54:1c:4e:45:2f:56:4c:4a:24:b2:57
(ECDSA)
25/tcp filtered smtp
80/tcp open http Apache httpd 2.4.7 ((Ubuntu))
|_http-server-header: Apache/2.4.7 (Ubuntu)
|_http-title: Go ahead and ScanMe! 514/tcp filtered shell
9929/tcp open nping-echo Nping echo 31337/tcp open
tcpwrapped
Device type: WAP|general purpose|storage-misc
Running (JUST GUESSING): Actiontec embedded (98%), Linux
2.4.X|3.X (98%), Microsoft Windows 7|2012|XP (96%), BlueArc
embedded (91%) OS CPE: cpe:/h:actiontec:mi424wr-gen3i cpe:/
o:linux:linux_kernel cpe:/o:linux:linux_kernel:2.4.37 cpe:/
o:linux:linux_kernel:3.2 cpe:/o:microsoft:windows_7 cpe:/
o:microsoft:windows_server_2012
cpe:/o:microsoft:windows_xp::sp3 cpe:/h:bluearc:titan_2100
Aggressive OS guesses: Actiontec MI424WR-GEN3I WAP (98%),
DD-WRT v24-sp2 (Linux 2.4.37) (98%), Linux 3.2 (98%), Microsoft
Windows 7 or Windows Server 2012 (96%), Microsoft Windows XP
SP3 (96%), BlueArc Titan 2100 NAS device (91%)
No exact OS matches for host (test conditions non-ideal).
Network Distance: 2 hops
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
TRACEROUTE (using port 80/tcp)
HOP RTT ADDRESS
1 0.08 ms 192.168.254.2
2 0.03 ms scanme.nmap.org (45.33.32.156)
OS and Service detection performed. Please report any incorrect
results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 208.05 seconds

Configuring OS detection
If OS detection fails, you can use --osscan-guess to force Nmap to guess the OS:

nmap -O --osscan-guess <target>

Fingerprinting OSes and services running on a target 21

To launch OS detection only when the scan conditions are ideal, use --osscan-limit:

nmap -O --osscan-limit <target>

OS detection in verbose mode
Try OS detection in verbose mode to see additional target information, such as the TCP
and IP ID sequence number values:

nmap -O -v <target>

The IP ID sequence number can be found under the IP ID Sequence Generation
label. Note that incremental IP ID sequence numbers can be abused by port scanning
techniques such as idle scan, which will use this value to predict whether a service is open
or not when spoofing the real connection origin:

nmap -O -v 192.168.0.1
Initiating Ping Scan at 11:14 Scanning 192.168.0.1 [4 ports]
Completed Ping Scan at 11:14, 0.00s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 11:14
Completed Parallel DNS resolution of 1 host. at 11:14, 0.02s
elapsed
Initiating SYN Stealth Scan at 11:14 Scanning 192.168.0.1 [1000
ports] Discovered open port 80/tcp on 192.168.0.1
Completed SYN Stealth Scan at 11:14, 13.80s elapsed (1000 total
ports)
Initiating OS detection (try #1) against 192.168.0.1 Retrying
OS detection (try #2) against 192.168.0.1 Nmap scan report for
192.168.0.1
Host is up (0.11s latency). Not shown: 998 closed ports PORT
STATE SERVICE
80/tcp open http 514/tcp filtered shell
Device type: WAP|general purpose|storage-misc
Running (JUST GUESSING): Actiontec embedded (99%), Linux
2.4.X|3.X (99%), Microsoft Windows 7|2012|XP (96%), BlueArc
embedded (91%) OS CPE: cpe:/h:actiontec:mi424wr-gen3i
cpe:/o:linux:linux_kernel cpe:/o:linux:linux_kernel:2.4.37
cpe:/o:linux:linux_kernel:3.2 cpe:/o:microsoft:windows_7
cpe:/o:microsoft:windows_server_2012 cpe:/o:microsoft:windows_
xp::sp3 cpe:/h:bluearc:titan_2100 Aggressive OS guesses:
Actiontec MI424WR-GEN3I WAP (99%), DD-WRT v24-sp2 (Linux
2.4.37) (98%), Linux 3.2 (97%),
Microsoft Windows 7 or Windows Server 2012 (96%), Microsoft
Windows XP SP3 (96%),

22 Nmap Fundamentals

BlueArc Titan 2100 NAS device (91%)
No exact OS matches for host (test conditions non-ideal). TCP
Sequence Prediction: Difficulty=259 (Good luck!)
IP ID Sequence Generation: Incremental

Read data files from: /usr/local/bin/../share/nmap
OS detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 32.40 seconds
Raw packets sent: 1281 (59.676KB) | Rcvd: 1249 (50.520KB)

Submitting new fingerprints for OS and service detection
Nmap's result accuracy comes from a database that has been collected over the years
through user submissions. It is very important that we help keep this database up to date.
Nmap will let you know when it encounters an unknown signature and will kindly ask
you to contribute to the project by submitting an unidentified OS, device, or service.

Please take the time to submit your contributions, as Nmap's detection capabilities come
directly from these databases. Visit https://nmap.org/cgi-bin/submit.cgi?
to submit new fingerprints or corrections.

Using NSE scripts against a target host
The Nmap project introduced a feature named the Nmap Scripting Engine that allows
users to extend the capabilities of Nmap via Lua scripts. NSE scripts are very powerful
and have become one of Nmap's main strengths, performing tasks from advanced version
detection to vulnerability exploitation. At the moment, there are more than 600 scripts
helping users perform a wide range of tasks using the target information obtained from
the executed scan. Using host and port rules, they can even be configured to run without
port scanning a target, something that is really useful during reconnaissance tasks.

This recipe describes how to run NSE scripts, and the different options available to
configure their execution.

https://nmap.org/cgi-bin/submit.cgi?

Using NSE scripts against a target host 23

How to do it...
Enable script scan using the Nmap -sC option. This mode will select all NSE scripts
belonging to the default category and execute them against our targets based on their host
and port rules:

$ nmap -sC <target>
$ nmap -sC scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.14s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 995 closed ports
PORT STATE SERVICE
22/tcp open ssh
| ssh-hostkey:
| 1024 ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:97:6b:75
(DSA)
| 2048 20:3d:2d:44:62:2a:b0:5a:9d:b5:b3:05:14:c2:a6:b2
(RSA)
|_ 256 96:02:bb:5e:57:54:1c:4e:45:2f:56:4c:4a:24:b2:57
(ECDSA)
25/tcp filtered smtp 80/tcp open http
|_http-title: Go ahead and ScanMe! 9929/tcp open nping-echo
31337/tcp open Elite
Nmap done: 1 IP address (1 host up) scanned in 24.42 seconds

In this case, the results included the output of the ssh-hostkey and http-title
scripts. When the script runs and finds additional information, it will include the results
in the output. Nmap will likely run more scripts than the output shows but NSE scripts are
only shown when they obtain results.

How it works...
The Nmap -sC option enables script scan mode, which tells Nmap to select the default
scripts and execute them if the host or port rule matches.

NSE scripts are divided into the following categories:

• auth: This category is for scripts related to user authentication.

• broadcast: This is a very interesting category of scripts that use broadcast petitions
to gather information.

24 Nmap Fundamentals

• brute: This category is for scripts that conduct brute-force password
auditing attacks.

• default: This category is for scripts that are executed when a script scan is executed
(-sC). Scripts in this category are considered safe and non-intrusive.

• discovery: This category is for scripts related to host and service discovery.

• dos: This category is for scripts related to denial-of-service attacks.

• exploit: This category is for scripts that exploit security vulnerabilities.

• external: This category is for scripts that depend on a third-party service.

• fuzzer: This category is for NSE scripts that are focused on fuzzing.

• intrusive: This category is for scripts that might crash something or generate a lot
of network noise; scripts that system administrators may consider intrusive belong
to this category.

• malware: This category is for scripts related to malware detection.

• safe: This category is for scripts that are considered safe in all situations.

• version: This category is for scripts that are used for the advanced versioning
of services.

• vuln: This category is for scripts related to security vulnerabilities.

There's more...
Let's learn about some Nmap options that are required to customize NSE. Some scripts
require being configured correctly, so it is important that we are familiar with all the
NSE options.

NSE script arguments
The Nmap --script-args parameter is used to set the arguments of NSE scripts.
For example, if you would like to set the useragent HTTP library argument, add the
following argument:

$ nmap --script http-title --script-args http.
useragent="Mozilla 4.20" <target>

Using NSE scripts against a target host 25

A feature that is not very well known is script argument aliases. You can use aliases
when setting the arguments for NSE scripts. For example, say you were setting the script
argument path as follows:

$ nmap -p80 --script http-trace --script-args http-trace.path
<target>

You could instead just write the following:

$ nmap -p80 --script http-trace --script-args path <target>

While in this particular example you don't save yourself from typing that much, it really
helps in longer and more complex commands.

Script selection
Users may select specific scripts when scanning using the Nmap --script <filename
or path/folder/category/expression> option:

$nmap --script <filename or path/folder/category/expression>
<target>

For example, the command to run the dns-brute NSE script is as follows:

$nmap --script dns-brute <target>

NSE also supports the execution of multiple scripts simultaneously simply by separating
them with commas:

$ nmap --script http-headers,http-title scanme.nmap.org
Nmap scan report for scanme.nmap.org (74.207.244.221) Host is
up (0.096s latency).
Not shown: 995 closed ports PORT STATE SERVICE
22/tcp open ssh 25/tcp filtered smtp 80/tcp open http
| http-headers:
| Date: Mon, 24 Oct 2011 07:12:09 GMT
| Server: Apache/2.2.14 (Ubuntu)
| Accept-Ranges: bytes
| Vary: Accept-Encoding
| Connection: close
| Content-Type: text/html
|
|_ (Request type: HEAD)
|_http-title: Go ahead and ScanMe! 646/tcp filtered ldp
9929/tcp open nping-echo

26 Nmap Fundamentals

In addition, NSE scripts can be selected by category, expression, or folder. For example,
you can do the following:

• Run all the scripts in the vuln category with the following command:

$ nmap -sV --script vuln <target>

• Run all scripts in the version or discovery categories with a category list
separated by commas, as follows:

$ nmap -sV --script="version,discovery" <target>

• You can also apply negative selections such as running all the scripts except for the
ones in the exploit category with the not expression:

$ nmap -sV --script "not exploit" <target>

• Run all HTTP scripts that are named http-<something> except http-brute
and http-slowloris with the help of the * wildcard character and the and,
or, and not expressions:

$ nmap -sV --script "(http-*) and not(http-slowloris or
http- brute)" <target>

Expressions are very handy as they allow fine-grained script selection, as shown in the
preceding example.

Debugging NSE scripts
To debug NSE scripts, use --script-trace. This enables a stack trace of the
executed script that will help you in debugging. Remember that sometimes you may
need to increase the debugging level with the -d[1-9] option to get to the bottom
of the problem:

$ nmap -sC --script-trace <target>
$ nmap --script http-headers --script-trace scanme.nmap.org
NSOCK INFO [18.7370s] nsock_trace_handler_callback(): Callback:
CONNECT SUCCESS for EID 8 [45.33.32.156:80]
NSE: TCP 192.168.0.5:47478 > 45.33.32.156:80 | CONNECT NSE: TCP
192.168.0.5:47478 > 45.33.32.156:80 | 00000000:
48 45 41 44 20 2f 20 48 54 54 50 2f 31 2e 31 0d HEAD / HTTP/1.1
00000010: 0a 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 63 6c 6f
Connection: clo
00000020: 73 65 0d 0a 55 73 65 72 2d 41 67 65 6e 74 3a 20 se
User- Agent:

Using NSE scripts against a target host 27

00000030: 4d 6f 7a 69 6c 6c 61 2f 35 2e 30 20 28 63 6f 6d
Mozilla/5.0 (com
00000040: 70 61 74 69 62 6c 65 3b 20 4e 6d 61 70 20 53 63
patible;
Nmap Sc
00000050: 72 69 70 74 69 6e 67 20 45 6e 67 69 6e 65 3b 20
ripting
Engine;
00000060: 68 74 74 70 73 3a 2f 2f 6e 6d 61 70 2e 6f 72 67
https://nmap.org
00000070: 2f 62 6f 6f 6b 2f 6e 73 65 2e 68 74 6d 6c 29 0d
/book/nse.html)
00000080: 0a 48 6f 73 74 3a 20 73 63 61 6e 6d 65 2e 6e 6d
Host:
scanme.nm
00000090: 61 70 2e 6f 72 67 0d 0a 0d 0a ap.org [Output
removed to save space]Nmap scan report for scanme.nmap.org
(45.33.32.156)
Host is up (0.14s latency).
Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 995 closed ports PORT STATE SERVICE
22/tcp open ssh 25/tcp filtered smtp 80/tcp open http
| http-headers:
| Date: Sun, 24 Apr 2016 19:52:13 GMT
| Server: Apache/2.4.7 (Ubuntu)
| Accept-Ranges: bytes
| Vary: Accept-Encoding
| Connection: close
| Content-Type: text/html
|
|_ (Request type: HEAD) 9929/tcp open nping-echo 31337/
tcp open Elite

Nmap done: 1 IP address (1 host up) scanned in 18.89 seconds

Adding new scripts
Often, you will want to try scripts not included officially with Nmap. To test new scripts,
you simply need to copy them to your script folder inside your Nmap directory and run
the following command to update the script database:

nmap --script-updatedb

28 Nmap Fundamentals

After updating the script database, you simply need to select them, as you would normally
do, with the --script option. In addition, you may execute scripts without including
them in the database by setting a relative or absolute script path as the argument:

nmap --script /root/loot/non-official.nse <target>

I have created a GitHub repository at https://github.com/cldrn/nmap-nse-
scripts to attempt to track all unofficial NSE scripts that for different reasons are not
included officially with Nmap. There are scripts for all types of software and devices.
Having scripts not included officially doesn't necessarily mean they don't work. I highly
recommend you grab a copy to keep additional scripts in your arsenal.

Scanning random targets on the internet
Nmap supports a very interesting feature that allows us to run scans against random
targets on the internet for research reasons. Although it is not recommended (and not
legal in some countries) to do aggressive scans blindly, you could generate a sample
of random hosts when conducting research about hosts facing the internet.

This recipe shows you how to generate random hosts as targets for your Nmap scans.

How to do it...
1. To generate a random target list of n hosts, use the following Nmap command:

$ nmap -iR <n>

For example, to generate a list of 100 hosts, use the following:
$ nmap -iR 100

2. Now, let's check how common ICMP is in remote servers. Let's launch host
discovery against three random targets:

$ nmap -sn -iR 3
Nmap scan report for host86-190-227-45.wlms-broadband.com
(86.190.227.45)
Host is up (0.000072s latency).
Nmap scan report for 126.182.245.207
Host is up (0.00023s latency).
Nmap scan report for 158.sub-75-225-31.myvzw.com
(75.225.31.158) Host is up (0.00017s latency).
Nmap done: 3 IP addresses (3 hosts up) scanned in 0.78
seconds

https://github.com/cldrn/nmap-nse-scripts
https://github.com/cldrn/nmap-nse-scripts

Scanning random targets on the internet 29

How it works...
The -iR 3 option tells Nmap to generate three external IP addresses and use them
as targets in the scan. This target assignment can be used with any combination of the
regular scan options.

While this is a useful feature for conducting internet research, I recommend that you
be careful with this flag. Nmap does not have control over the external IP addresses
it generates; this means that inside the generated list could be a critical machine that
is being heavily monitored. To avoid getting into trouble, use this feature wisely.

There's more...
Use Nmap to generate an unlimited number of IPs and run indefinitely with
the -iR 0 option:

$ nmap -iR 0

For example, to find random NFS shares online, you could use the following command:

$ nmap -p2049 --open -iR 0

Legal issues with port scanning
Port scanning without permission is not very welcome, and it is even illegal in some
countries. I recommend you research your local laws to find out what you are permitted
to do and whether port scanning is frowned upon in your country. You also need to
consult with your ISP as they may have their own rules on the subject.

The official documentation of Nmap has an amazing write-up about the legal issues
involved with port scanning, available at https://nmap.org/book/legal-
issues.html. I recommend that everyone considering doing internet-wide research
scanning reads it. While nowadays it is normal and even expected to be scanned from the
internet, you should take all considerations when conducting research.

https://nmap.org/book/legal-issues.html
https://nmap.org/book/legal-issues.html

30 Nmap Fundamentals

Collecting signatures of web servers
Nmap is an amazing tool for information gathering, and the variety of tasks that can be
done with NSE is simply remarkable. The popular service ShodanHQ (https://www.
shodan.io/) offers a database with a nice GUI of HTTP banners, which is useful for
analyzing the impact of vulnerabilities. Its users can find out the number of devices that
are online by country, which are identified by their service banners and IP geolocation.
ShodanHQ uses its own built-in house tools to gather its data, but Nmap can easily be
used for this task and take advantage of NSE.

In this recipe, we will see how to scan indefinitely for web servers and collect their HTTP
headers with Nmap.

How to do it...
Open your terminal and enter the following command:

$ nmap -p80,443 -Pn -T4 --open --script http-headers,http-
title,ssl-cert --script-args http.useragent="A friendly web
crawler (http://calderonpale.com)",http-headers.useget -oX
random-webservers.xml -iR 0

This command will launch an instance of Nmap that will generate targets indefinitely,
looking for web servers in ports 80 and 443, and then it will save the output into the
random-webservers.xml file. Each host with port 80 or 443 open will return
something similar to the following:

Nmap scan report for XXXX Host is up (0.23s latency). PORT
STATE SERVICE
80/tcp open http
|_http-title: Protected Object
| http-headers:
| WWW-Authenticate: Basic realm="TD-8840T"
| Content-Type: text/html
| Transfer-Encoding: chunked
| Server: RomPager/4.07 UPnP/1.0
| Connection: close
| EXT:
|
|_ (Request type: GET)

https://www.shodan.io/
https://www.shodan.io/

Collecting signatures of web servers 31

How it works...
The following command will tell Nmap to only check port 80 or 443 (-p80,443),
skip the host discovery phase (-Pn), and use the aggressive timing template as we have
plenty of servers to scan (-T4). If either port 80 or 443 is open, Nmap will run the NSE
http-title, http-headers, and ssl-cert (--script http-headers,http-
title,ssl-cert) scripts to collect server headers and the web server title; if HTTPS
is detected, we will also extract information from SSL certificates:

$nmap -p80 -Pn -T4 --open --script http-headers,http-title
--script-args http.useragent="A friendly web crawler
(http://calderonpale.com)",http-headers.useget -oX random-
webservers.xml -iR 0

The script arguments that are passed set the HTTP user agent in the requests
(--script-args http.useragent="A friendly web crawler (http://
calderonpale.com)") and use a GET HTTP request to retrieve the headers (--
script-args http-headers.useget).

Finally, the Nmap -iR 0 argument generates external IP addresses indefinitely and saves
the results in a file in XML format (-oX random-webservers.xml).

There's more...
Nmap's HTTP library has cache support, but if you are planning to scan many hosts,
you need to think about its size. The cache is stored in a temporary file that grows with
each new request. If this file starts to get too big, cache lookups start to take a considerable
amount of time.

You can disable the cache system of the HTTP library by setting the http-max-cache-
size library argument, as shown in the following command:

$ nmap -p80 --script http-headers --script-args http-max-cache-
size=0 -iR 0

Important note
The HTTP NSE library is highly configurable. Read Appendix A, HTTP, HTTP
Pipelining, and Web Crawling Configuration Options, to learn more about the
advanced options available.

32 Nmap Fundamentals

Scanning with Rainmap Lite
Rainmap Lite is a web application designed for running Nmap scans from any web
browser. It was designed to be light and to depend on as few dependencies as possible.
It is perfect for installing on a remote server and then just logging in from your phone
and scheduling scans when you are on the road.

In this recipe, you will learn how to launch a Nmap scan using Rainmap Lite.

Getting ready
To run Rainmap Lite, we need to download the code and run the application as follows:

1. Grab the latest stable version of Rainmap Lite:

$git clone https://github.com/cldrn/rainmap-lite.git

2. Install Django and the only project dependency, lxml:

$ pip install Django
$ pip install lxml

3. Change your working directory to the newly created folder and create the
database schema:

$python manage.py migrate

4. Load the default scanning profiles:

$python manage.py loaddata nmapprofiles

5. Locate the nmaper-cronjob.py file and update it, and also adjust the
notification settings. The minimum configuration variables that need to update are
BASE_URL, SMTP_SERVER, SMTP_USER, SMTP_PASS, and SMTP_PORT, if you
would like to receive email notifications.

6. Run the application:

#python manage.py runserver 127.0.0.1:8080

7. Add a cron task that executes the agent periodically:

*/5 * * * * cd <App path> && /usr/bin/python nmaper-
cronjob.py >> /var/log/nmaper.log 2>&1

Scanning with Rainmap Lite 33

8. Finally, don't forget to add an administrative user to be able to log in to the
web interface to schedule your scans:

$ python manage.py createsuperuser

How to do it...
Point your favorite web browser to the URL where Rainmap Lite is running. If you
followed the steps described previously, it should be running on port 8080.

The interface was designed to require as little typing as possible. Just fill in the field for the
target, select a scan profile from the drop-down list, and enter the email address where
you would like to receive the report. Hit SCAN when you are ready to add your scan to
the queue:

Figure 1.1 – Rainmap Lite's web interface

How it works...
Rainmap Lite is a simple Django application that allows users to schedule and run Nmap
scans from any web browser. The application was designed to be easy to install on any
server, and it is great for installing on a remote Virtual Private Server (VPS) and using
the interface to schedule scans and share the results with your team easily.

34 Nmap Fundamentals

An important aspect is that it is based on a standard cron agent to reduce the number
of dependencies.

It started as a personal project that I decided to share at Black Hat US Arsenal 2016.
Feel free to send any bug reports or suggestions to the project's GitHub page directly:
https://github.com/cldrn/rainmap-lite.

There's more...
Scan profiles can be customized from the management console. The scanning profiles are
updated in every version, and you are invited to contribute your own to the project's wiki
at https://github.com/cldrn/rainmap-lite/wiki/Scanning-profiles.

Custom arguments
Custom arguments may be added on the fly without accessing the administration console
by checking the box with the Custom Nmap arguments option:

Figure 1.2 – Customizing scan options in Rainmap Lite

There are additional checkboxes in the interface to disable DNS resolution and enable/
disable the host discovery phase. Any other combination of options will need to be added
using the Custom Nmap arguments option.

https://github.com/cldrn/rainmap-lite
https://github.com/cldrn/rainmap-lite/wiki/Scanning-profiles

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Chapter 1: Nmap Fundamentals
	Technical requirements
	Building Nmap's source code
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding online hosts
	How to do it...
	How it works...
	There's more...

	Listing open ports on a target
	How to do it...
	How it works...
	There's more...

	Fingerprinting OSes and services running
on a target
	How to do it...
	How it works...
	There's more...

	Using NSE scripts against a target host
	How to do it...
	How it works...
	There's more...

	Scanning random targets on the internet
	How to do it...
	How it works...
	There's more...

	Collecting signatures of web servers
	How to do it...
	How it works...
	There's more...

	Scanning with Rainmap Lite
	Getting ready
	How to do it...
	How it works...
	There's more...

