
en

nnec
ACTION

Prabath Siriwardena

/II MANNING

MEAP Edition
Manning Early Access Program

OpenID Connect in Action
Version 6

Copyright 2021 Manning Publications

For more information on this and other Manning titles go to

manning.com

https://www.manning.com/
https://livebook.manning.com/book/openid-connect-in-action/discussion

Securing access to a single-page
application

This chapter covers

• OpenID Connect authentication flows and how they differ from OAuth 2.0 grant types
• How implicit authentication flow works with a single-page application
• How authorization code flow works with a single-page application
• Why you need to pick authorization code flow over implicit flow
• Securing a React-based single-page application with OpenID Connect

With the heavy adoption of APIs, over time, single-page applications (SPA) have become one
of the most popular options for building client applications on the web. If you are new to
single-page application architecture, we recommend you first go through the book SPA
Design and Architecture: Understanding Single Page Web Applications by Emmit Scott
(Manning Publication, 2015). Also in this chapter we assume you have a good knowledge of
OAuth 2.0, which is the fundamental building block of OpenID Connect. In case you don’t,
please go through chapter 2 before following the rest of the chapter.

Under OAuth 2.0 terminology, a SPA is identified as a public client application.1 In
principle, a public client application is unable to hide any secrets from the users of it. Most of
the time a SPA is an application written in JavaScript that runs on the browser; so, anything
on the browser is visible to the users of that application. This is a key-deciding factor on how
you want to use OpenID Connect to secure a SPA.

In this chapter we’ll teach you what OpenID Connect authentication flows are and how
different OpenID Connect authentication flows work with a SPA. You will also learn how to
build a SPA using React and then log in to it via OpenID Connect. React is the most popular

1 In chapter 2, under the section 2.4 we discuss OAuth 2.0 client types and their characteristics.

52

3

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

JavaScript library for developing user interfaces. If you are new to React, please go through
appendix A first.

3.1 Authentication flows define the communications between a
client application and an OpenID provider

In this section you’ll learn what is an authentication flow in OpenID Connect and different
types of authentication flows.

In chapter 1, you learnt that OpenID Connect defines a schema for a token (which is a
JSON Web Token (JWT)) to exchange information between an OpenID provider and a client
application; and a set of processing rules around it. The OpenID Connect specification
identifies this token, as the ID token, which we will briefly discuss in this chapter and in
detail in chapter 4.

Figure 3.1: OpenID authentication flows define how the client application communicates with the OpenID
provider to authenticate an end user. Some communications happen via the web browser and some happens
directly between the client application and the OpenID provider.

In addition to the ID token, OpenID Connect specification also introduces a transport binding,
which defines how to transport an ID token from an OpenID provider to a client application
(figure 3.1). In OpenID Connect, we use the term authentication flows to define multiple
ways by which you can transport an ID token from an OpenID provider to a client
application.

OpenID Connect defines three authentication flows:

• authorization code flow,
• implicit flow, and
• hybrid flow.

53

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

©Manning Publications Co. To comment go to liveBook

In section 3.3 you learn how implicit flow works and in section 3.9 how authorization code
flow works. We’ll discuss hybrid flow in detail in chapter 6.

3.2 Authentication flows vs. grant types
The OAuth 2.0 core specification (RFC 6749) introduced four grant types, which we discussed
in chapter 2 in detail2. In this section you’ll learn how an OpenID Connect authentication flow
relates to a grant type as well as the differences.

A grant type in OAuth 2.0 defines a protocol how a client application can obtain an access
token from an authorization server. Typically, a grant type defines four key components
(please see section 2.3 for the details): authorization request, authorization response,
access token request and access token response.

An authentication flow in OpenID Connect uses grant types, but an authentication flow is
more than a grant type (table 3.1). Typically, an authentication flow in OpenID Connect
defines four key components, quite similar to an OAuth 2.0 grant type, but not exactly the
same: authentication request, authentication response, token request and token
response. You might have already noticed the differences; in a grant type we have an
authorization request/response, while in an authentication flow we have an authentication
request/response, also in a grant type we have an access token request/response, while in
an authentication flow we have a token/request response.

Table 3.1: The differences in the terminology, OAuth 2.0 vs. OpenID Connect

OAuth 2.0 OpenID Connect

Authorization request: Initiated from the from client
application to the authorization server. The scope and
redirect_uri are optional parameters in the
authorization request.

Authentication request: Initiated from the client
application to the OpenID provider. The scope and
redirect_uri are requred parameters in the
authorization request.

Authorization response: Initiated from the
authorization server to the client application

Authorization response: from the OpenID provider to
the client application

Access token request: Initiated from the client
application to the authorization server

ID token request: from the client application to the
OpenID provider

Access token response: Initiated from the client
application to the authorization server

ID token response: from the OpenID provider to the
client application

The OpenID Connect specification defines the authentication flows in a self-contained manner
in itself. So we should not confuse the OAuth 2.0 grant types with OpenID Connect
authentication flows. The authorization code flow in OpenID Connect is not as same as the
authorization code grant type in OAuth 2.0, and the implicit flow in OpenID Connect is not as
same as the implicit grant type in OAuth 2.0.

2 The RFC 6749 in fact introduced five grant types. However, the behavior of refresh token grant type is quite different from other four: authorization code,
implicit, password and client credentials. When we say OAuth 2.0 defines four grant types, we refer to those four core grant types. As discussed in
chapter 2, OAuth 2.1 has removed implicit and password grant types from the specification.

54

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

3.3 How does implicit flow work?
In this section you’ll learn how an OpenID provider transports an ID token to a client
application using the implicit flow. The sequence of events or steps happens during this flow,
as well as the messages being passed in each step is clearly defined in the OpenID Connect
specification.

3.3.1 The flow of events in the implicit authentication flow
Figure 3.2 shows the sequence of events happens between the OpenID provider, the client
application, and the user. The client application in figure 3.2 can be any type of an
application, but here our discussion mostly focuses on a SPA. Also, the implicit flow is more
popular among SPAs than any other application type. In the following sections we discuss in
detail what happens in each step in figure 3.2.

Figure 3.2: The client application uses implicit authentication flow to communicate with the OpenID provider
to authenticate the user.

THE CLIENT APPLICATION INITIATES A LOGIN REQUEST VIA THE BROWSER

In the step 1 of figure 3.2, the user clicks on the login link and the client application initiates
a login request via the browser. In the case of a SPA, we can expect that the user clicks on a
login link on the web page of the client application, and browser does an HTTP GET to the
authorize endpoint of the OpenID provider.

The authorize endpoint of the OpenID provider is a well-known endpoint and the client
applications can find it by going through the OpenID provider documentation or else using
OpenID Connect discovery protocol, which we discuss in detail in chapter 12. If you use
Google as your OpenID provider, then this is the authorize endpoint of Google, which you
can find from their documentation: https://accounts.google.com/o/oauth2/v2/auth.

55

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://accounts.google.com/o/oauth2/v2/auth

The request the client application generates in step 1 of figure 3.2 is called an
authentication request. You may recall from the chapter 2, in OAuth 2.0 the request
initiated from the client application to the OAuth 2.0 authorization server is called an
authorization request.

The following listing shows an example of an authentication request. This is in fact a URL
constructed by the client application, which takes the user to the authorize endpoint of the
OpenID provider, when the user clicks on the login link.

Listing 3.1: Authentication request generated by the client application

https://accounts.google.com/o/oauth2/v2/auth?
 client_id=424911365001.apps.googleusercontent.com&
 redirect_uri=https%3A//app.example.com/redirect_uri&
 scope=openid email&. #A
 login_hint=jdoe@example.com&
 response_type=id_token token&. #B
 state=Xd2u73hgj59435&
 nonce=0394852-3190485-2490358

#A The scope values are separated by a space. However, when you type this on the browser, the browser will URL
encode the space, so the space will be replaced by %20.

#B The response_type values are separated by a space. However, when you type this on the browser, the browser will
URL encode the space, so the space will be replaced by %20.

Let’s go through the query parameters added to the authentication request by the client
application, as shown in listing 3.1. The definition of these parameters are consistent across
all three authentication flows the OpenID Connect defines, however, the values may change.

• client_id: This is an identifier the OpenID provider uses to uniquely identify a client
application. The client application gets a client_id after registering itself at the
OpenID provider. For registration at the OpenID provider, either you can follow an
out-of-band mechanism provided by the OpenID provider or use OpenID Connect
dynamic client registration API, which we discuss in chapter 12.3 The client_id is a
required parameter in the authentication request, and is originally defined in the
OAuth 2.0 specification, which we discussed in detail in chapter 2.

• redirect_uri: This is an endpoint belongs to the client application. After successfully
authenticating the user and getting the consent from the user to share the requested
data with the client application, the OpenID provider redirects the user to the
redirect_uri endpoint along with the requested tokens (step 5 of figure 3.2). During
the client registration process at the OpenID provider, you need to share the exact
URI you use for redirect_uri parameter in the authentication request, with the
OpenID provider.

• The OpenID provider will do one-to-one matching of the value of the redirect_uri in
the authentication request against the one already registered by the client application.
Most OpenID providers do an exact match between these two URIs. However, some
OpenID providers let the client applications register multiple URI and some let the
client applications define a regular expression for the validation of the redirect_uri.

3 A out-of-band mechanism could be a developer registering a client application using the UI provided by the OpenID provider.

56

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://accounts.google.com/o/oauth2/v2/auth?
mailto:login_hint=jdoe@example.com&

• Doing a validation against a regular expression gives more flexibility to dynamically
change the redirection path by the client application, but should use consciously and
regular expression used for validation must be thoroughly tested. In the section 3.3
we explain the use cases where you want to have multiple redirect_uris for the
same client application.

• The redirect_uri is a required parameter in the authentication request, and is
originally defined in the OAuth 2.0 specification. However, in the OAuth 2.0
specification the redirect_uri is not a required parameter for both the implicit and
authorization code grant types.

• scope: The value of scope parameter is just a string, where both the client
application and the OpenID provider should be able to interpret the meaning of it. Any
OpenID Connect authentication request must carry the value openid for the scope
parameter. You can have multiple values for the scope parameter, each separated by
space, but one of them must be openid.

• The OpenID Connect specification defines four scope values (profile, email, address
and phone) in addition to the openid scope. A client application can use any of these
scope values to request claims from the OpenID provider. In chapter 5, we discuss in
detail how to use scopes to request claims.

• The scope is a required parameter in the authentication request, and is originally
defined in the OAuth 2.0 specification. However, in the OAuth 2.0 specification the
scope is not a required parameter for both the implicit and authorization code grant
types.

• login_hint: The value of login_hint parameter is a string that carries some hint
with respect to the user (or the application), which can be used by the OpenID
provider to build a better user experience. For example, if the application already
knows the user’s email address (probably from a cookie stored under the domain of
the client application), then that can go as the value of the login_hint parameter
and the OpenID provider can directly request the user to share the credentials, rather
asking for an user identifier.

• The login_hint is an optional parameter introduced by the OpenID Connect
specification, which you do not find in the OAuth 2.0 specification. In chapter 11 we
discuss a couple of use cases of login_hint with respect to OpenID federation.

• response_type: The value of the response_type parameter in the authentication
request defines which tokens the authorization endpoint of the OpenID provider
should return back to the client application.

• In the implicit flow there are two possible values: id_token or id_token token. If
the value of the response_type is id_token, then the authorization endpoint will only
return back an ID token, and if the response_type is id_token token, then the
authorization endpoint will return back an ID token and an access token.

• The response_type is a required parameter in the authentication request, and is
originally defined in the OAuth 2.0 specification.

57

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

• response_mode: The value of the response_mode parameter in the authentication
request defines how the client application expects the response from the OpenID
provider. This is an optional parameter and is not in the listing 2.1. If you set the
value of the response_mode parameter to query, for example, then all the
parameters in the response (from the OpenID provider) are encoded as a query string
added to the redirect_uri as shown below.

https://app.example.com/redirect_uri?token=XXXXX&id_token=YYYYYY

• If you set the value of the response_mode parameter to fragment, then all the
response parameters are added to the redirect_uri as a URI fragment as shown
below.

https://app.example.com/redirect_uri#token=XXXXX&id_token=YYYYYY

• In addition to the query and fragment, the OAuth 2.0 Form Post Response Mode
(https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html) specification
defines another response_mode called form_post, and we’ll discuss that in chapter 6.

• The response_type and response_mode are bit related to each other. If you do not
specify a response_mode parameter in the authentication request, then the default
response_mode associated with the corresponding response_type gets applied
automatically. If the response_type is id_token or id_token token (implicit flow) for
example, then the corresponding default response_mode is fragment (table 3.2). That
means, when you use implicit grant flow, the OpenID provider sends back the
response parameters as an URI fragment. query string.

Table 3.2: The default response_mode values for the corresponding response_type

The of response_type parameter The default value of response_mode

id_token token (implicit flow) fragment

Id_token (implicit flow) fragment

code (authorization code flow, section 3.9) query

token (OAuth 2.0 implicit grant type) fragment

The response_mode is an optional parameter in the authentication request, and is originally
defined in the OAuth 2.0 Multiple Response Type Encoding Practices specification
(https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html), which is developed
by the OpenID Foundation (not by the OAuth IETF working group).

58

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://app.example.com/redirect_uri?token=XXXXX&id_token=YYYYYY
https://app.example.com/redirect_uri#token=XXXXX&id_token=YYYYYY
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

Figure 3.3: The client application uses implicit authentication flow to communicate with the OpenID provider
to authenticate the user. This is duplicating the figure 3.1 for readability purpose.

• state: The value of state parameter is just a string, which is added to the
authentication request by the client application and the OpenID provider must return
back the same value (unchanged) in the response (step-5) in figure 3.3. In section
3.5 we discuss the use cases of the state parameter and also in chapter 13 we
discuss how to use the state parameter to mitigate some possible security threats.

• The state is an optional, however, a recommended parameter in the authentication
request, and is originally defined in the OAuth 2.0 specification.

• nonce: The value of nonce parameter carries a unique value added to the OpenID
Connect authentication request by the client application. The OpenID provider must
include the value of nonce from the authentication request to the ID token it builds.
The section 3.7 explains how to generate a nonce to be unique and nonguessable.

• The nonce is an optional parameter introduced by the OpenID Connect specification
to mitigate replay attacks and in chapter 13 we discuss nonce in detail.

In addition to the authentication request parameters we discussed in the above list, there are
few more optional ones: display, prompt, max_age, ui_locales, id_token_hint, and
acr_values. We’ll discuss them in detail in chapter 6.

THE OPENID PROVIDER VALIDATES THE AUTHENTICATION REQUEST AND REDIRECTS THE USER BACK TO THE BROWSER FOR
AUTHENTICATION

Once the OpenID provider validates the authentication request from the client application, it
checks whether the user has a valid login session under the OpenID provider’s domain. Here
the domain is the HTTP domain name that you use to access the OpenID provider using a
web browser. If the user has logged into the OpenID provider already from the same web
browser, then there exists a valid login session, unless its expired.

59

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

If the user does not have a valid login session, then the OpenID provider will challenge
the user to authenticate (step 2 in figure 3.3); and also will get user’s consent to share the
requested claims with the client application. In step 3 of figure 3.3 user types the login
credentials and in step 4 in figure 3.3, the browser posts the credentials to the OpenID
provider. The steps 2, 3 and 4 are out side the scope of the OpenID Connect specification
and up to the OpenID providers to implement in the way they prefer. Figure 3.4 shows a
sample login page, Google OpenID provider pops up during the login flow.

Figure 3.4: A sample login screen for user authentication from the Google OpenID provider.

THE OPENID PROVIDER RETURNS BACK THE REQUESTED TOKENS TO THE CLIENT APPLICATION

In step 5 of figure 3.5, the OpenID provider returns back the requested tokens to the client
application. If the client application, for example, requested only an ID token in step 1, by
having id_token as the value of the response_type parameter in the authentication
request, then the OpenID provider only returns back an ID token as shown below.

https://app.example.com/redirect_uri#id_token=YYYYYYYY&state=Xd2u73hgj59435

If the value of the response_type parameter was id_token token, then the OpenID
provider will return back both the ID token and the access token as shown below.

60

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://app.example.com/redirect_uri#id_token=YYYYYYYY&state=Xd2u73hgj59435

https://app.example.com/redirect_uri#access_token=XXXXXX&token_type=Bearer&expires_in=3600&
id_token=YYYYYYYY&state=Xd2u73hgj59435

In both the above cases the OpenID provider returns the tokens as an URI fragment.That’s
because, if you do not explicitly mention the response_mode parameter in the authentication
request, for the implicit flow the default value of the response_mode is fragment.

Figure 3.5: In step 5 the OpenID provider returns back the requested tokens to the client application.

Let’s go through the parameters in the URI fragments added to the authentication response
by the OpenID provider (step-5 in figure 3.5). The definition of these parameters are
consistent across all three authentication flows the OpenID Connect defines, however, the
values may change.

• access_token: The value of the access_token parameter carries the OAuth 2.0
access token. The OpenID provider adds an access_token to the response only if the
response_type is id_token token, under the implicit flow. A client application can
use this access token to securely access OpenID provider’s userinfo endpoint to
retrieve claims with respect to the logged in user or access a business API. In chapter
5, we discuss userinfo endpoint in detail. In case the client application does not need
to access any OAuth 2.0 secured APIs, it should use just id_token for the
response_type. So, there won’t be any access_token in the authentication response.

61

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://app.example.com/redirect_uri#access_token=XXXXXX&token_type=Bearer&expires_in=3600&

• As you already learned in chapter 2, what you do with an access_token is defined by
the scope. If you had email for the scope parameter in the authentication request,
for example, then you can use the corresponding access_token to access the OpenID
provider’s userinfo endpoint to retrieve logged in user’s email and email_verified
claims. If you had address for the scope, then you can retrieve the address claim of
the logged in user from the userinfo endpoint.

• The OpenID provider (or the authorization server under the OAuth 2.0 terminology)
does not necessarily need to respect the scope value in the authentication request all
the time. Based on the consent provided by the user and other policies, the OpenID
provider can decide which scope out of all the scopes in the authentication request it
wants to respect. So, a client application should not expect all the time to get an
access token, which is bound to the quested scope values.

• If the scope of the access token in the response is different from the requested scope,
the OpenID provider must include the corresponding scope value in the response,
otherwise the client application can safely assume the token is issued for the
requested scope values.

• id_token: The value of the id_token parameter carries the OpenID Connect ID
token, which is a JWT. This is a required parameter and we discuss ID token in detail
in chapter 5.

• token_type: The value of the token_type parameter carries the type of the OAuth
2.0 access token. This is a required parameter and we discussed this in detail in
chapter 2.

• expires_in: The value of the expires_in parameter carries the validity of the OAuth
2.0 access token in seconds calculated from the time it is issued. This is an optional,
but a recommended parameter and we discussed this in detail in chapter 2.

• state: The value of the state parameter copies the value of the state parameter
from the authentication request. The value of the state parameter in response must
be exactly the same found in the request. In section 3.6 we discuss how to use the
state parameter. This is a required parameter only if the authentication request
carries a state parameter.

• scope: If the scope of the access token in the response is different from the
requested scope, the OpenID provider must include the corresponding scope value in
the response, otherwise the client application can safely assume the token is issued
for the requested scope values.

One important thing you might have already noticed in the authentication response from the
OpenID provider is, there is no refresh_token. A refresh_token is defined in the OAuth 2.0
specification and is used by the client applications to refresh (extend the token expiration)
the access_token and the id_token. However, the implicit flow in OpenID Connect does not
return back an refresh_token.

If you don’t have a refresh_token, the client application won’t be able to renew the
access_token (or the ID token) it got from the OpenID provider, and in that case the client
application has to initiate a new authentication request to get a new access_token and a ID
token. This is one of the reason (not the only reason, we discuss more in section 3.11)

62

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

people prefer to use the authorization code flow over implicit flow. We discuss authorization
code flow in detail in section 3.9 and refresh tokens in detail in chapter 6.

Figure 3.6: The client application uses implicit authentication flow to communicate with the OpenID provider
to authenticate the user.

Once the client application gets the tokens in the authentication response, it can use a
JavaScript to extract out the access_token and the id_token from the URL fragment. In
practice, what happens is, the OpenID provider does an HTTP redirect (with 302 status code)
to the redirect_uri corresponding to the client application and the client application
delivers an HTML page with a JavaScript to the browser, which extracts out the ID token and
the access token from the URI fragment and does the validation (see figure 3.6).

The following code listing shows a JavaScript code segment extracted out from the
OpenID Connect Implicit Client Implementer's Guide 1.0 (https://openid.net/specs/openid-
connect-implicit-1_0.html) that extracts out the URI fragment from the browser location bar
and posts to a backend endpoint for validation.

63

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://openid.net/specs/openid-connect-implicit-1_0.html
https://openid.net/specs/openid-connect-implicit-1_0.html

Listing 3.2: A JavaScript code that validates the tokens in the URI fragment

<script type = "text/javascript" >

// First, parse the query string
var params = {},
 postBody = location.hash.substring(1),
 regex = /([^&=]+)=([^&]*)/g,
 m;

while (m = regex.exec(postBody)) {
 params[decodeURIComponent(m[1])] = decodeURIComponent(m[2]);

}

// And send the token over to the server
var req = new XMLHttpRequest();
// using POST so query isn't logged
req.open('POST', 'https://' + window.location.host + '/catch_response', true);
req.setRequestHeader('Content-Type','application/x-www-form-urlencoded');

req.onreadystatechange = function(e) {
 if (req.readyState == 4) {

 if (req.status == 200) {
 // If the response from the POST is 200 OK, perform a redirect
 window.location = 'https://' +

 window.location.host + '/redirect_after_login'
 }
 // if the OAuth response is invalid, generate an error message
 else if (req.status == 400) {

 alert('There was an error processing the token')
 } else {

 alert('Something other than 200 was returned')
 }

 }
};
req.send(postBody)
</script>

3.4 Why does one client application need to have multiple
redirect_uris?

The redirect_uri is a required parameter in the authentication request both under the
implicit flow we discussed in section 3.3 as well as under the authorization code flow we are
going to discuss in the section 3.9. As you already learnt in section 3.3, the OpenID provider
validates the redirect_uri in the authentication request against the one which is already
registered at the OpenID provider (during client application registration flow).

In theory, the OpenID provider is expected to do one-to-one match between these two
redirect_uris; however, in practice, sometimes we see one client application register
multiple redirect_uris. This is a common pattern in the enterprise use cases where the
organizations have multiple applications managed by the same team. In such cases, they
don’t want to duplicate the application configuration at the OpenID provider. Or in other
words they do not want to register each and every client application at the OpenID provider;
rather, they want to reuse one client_id, with multiple redirect_uris by different
applications (see figure 3.7).

64

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

Figure 3.7: Multiple client applications reuse the same client_id but with different redirect_uris.

If you are to follow this pattern, you need to do this cautiously by knowing the drawbacks of
this approach, as listed below.

• Since you are using a single client_id to identify multiple applications, OpenID
provider won’t be able to recognize authentication requests generated by different
applications independently. Even though still it’s possible to differentiate
authentication requests from each other by looking at the redirect_uri, in practice,
most of the OpenID providers are not built in that way.

• Most of the OpenID providers make the access_token unique by the client_id,
user, associated scopes and the status of the token. The status of a token can be
ACTIVE, EXPIRED, REVOKED, LOCKED and so on. None of these are defined in the
OpenID Connect or OAuth 2.0 specifications; rather implemented by different OpenID
providers in the way they want. For a given client_id, user, set of scopes and
status, OpenID provider can find one access_token.

65

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

• Then again, if the same user tries to login to the same client application several times
even before the first issued token is expired, the number of tokens the OpenID
provider has to maintain could explode, if the OpenID provider generates a new token
for each login of the user. To fix this token explosion problem, some OpenID providers
return the same access_token (not the ID token) back to the client application for
subsequent login requests from the same client application for the same user for the
same set of scopes, if the original token is not expired.

• Under the context of this topic, the above solution to the token explosion problem will
result in sharing the same access_token with multiple applications, because they do
share the same client_id. One workaround for this is, use one additional scope
value to represent the client application – and it has to be unique for a given
application. This is a special scope value, which acts a signal to the OpenID provider,
rather a scope that requires user’s consent. Since the requested scopes are different
by the application, even though they share the same client_id, still OpenID provider
will generate different tokens by application.

• Even if you register multiple redirect_uris at the OpenID provider, still the OpenID
provider does one-to-one validation of the redirect_uri in the authentication
request against each of the registered redirect_uris to see whether there is a
match.

• If the OpenID provider provides an option to validate the redirect_uri in the
authentication request with a regular expression pattern instead of doing one-to-one
match between the redirect_uri registered at the OpenID provider and the
redirect_uri in the authentication request, that could help an attacker to plant an
attack by changing the redirect_uri in the authentication request by adding some
parameters, that will still pass the regular expression pattern. We’ll discuss such
possible attacks in chapter 13.

• So, if you are using a regular expression pattern for redirect_uri validation, you
need to make sure that it’s tested properly only to include what you want to have.
However, as discussed in chapter 2, with OAuth 2.1, the authorization server (or the
OpenID provider) must make sure that the redirect_uri in the authorization
request exactly matches with the redirect_uri registered at the authorization
server.

3.5 Using the state parameter
As discussed in the section 3.3 the OpenID provider is obliged to return the value of the
state parameter from the authentication request, in the authentication response back to the
client application. From the client application’s point of view, this provides a way to correlate
an authentication response from the OpenID provider with the authentication request it
generates (figure 3.8).

66

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

Figure 3.8: The client application adds a random, nonguessable string as the value of the state parameter to
the authentication request, and the OpenID provider returns the same value in the authentication response,
back to the client application.

Following lists out some use cases of the state parameter.

• In an ecommerce application, for example, a user can add certain items to the
shopping cart and at the point they decide to checkout, the login with OpenID
Connect will kick in and will redirect the user to the OpenID provider. However, when
the user returns back from the OpenID provider to the client application, the user
expects the same shopping cart with all the items they picked, before being redirected
to the OpenID provider.

• In a typical web application, this is handled by maintaining a session with the backend
web server, and correlated with the browser via a session cookie. In a SPA, you can
use the HTML5 session storage of the browser to store the shopping cart items
against a key, which is a randomly generated identifier. The value of the key is non-
guessable and non-static, and generated once for each browser session.

• This key can go as the value of the state parameter in the authentication request;
and when the user returns back from the OpenID provider, the client application can
find the state value from the authentication response and use that as a key to load
the saved shopping cart from the browser session storage.

• In section 1.9.4 of chapter 1 we discussed bootstrap trust with external identity
providers as a benefit of having a single trusted identity provider for a client
application. So, the client application only connects to its own trusted OpenID
provider, and then that OpenID provider helps connecting the client application to
other external identity providers (figure 3.9). These external identity providers can be
OpenID Connect, SAML and so on.

67

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

Figure 3.9: The internal identity provider bootstraps trust with partner identity providers, and does
claim/protocol transformations, as expected by the client applications connected to it. All the client
applications only need to trust the internal identity provider, and should only need to support the
federation protocol, the internal identity provider supports.

• The OpenID provider here is responsible for getting a response from the external
identity providers and transforming the response in a way the response it (the
OpenID provider) generates is understood by the first client application. To do that
the OpenID provider has to cache (or store) the initial request it got from the client
application and should able to correlate it to the response it gets from the external
identity provider.

• Most of the OpenID providers implement this using the state parameter in the
authentication request. Before the OpenID provider redirects the user to an external
identity provider, it generates a random string as the correlation handle, and stores
the authentication request from the client application against it. The OpenID provider
adds the correlation handle as the value of the state parameter in the authentication
request it generates, and when it receives a response from an external identity
provider, the OpenID provider expects the same correlation handle to be in the state
parameter of the response; and that helps to retrieve the initial authentication
request from the cache.

68

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

• Finally, and most importantly, one of the primary use cases of the state parameter is
security. The state parameter helps protect a client application from a cross-site
request forgery (CSRF) attack, which we will discuss in detail in chapter 13.

3.6 URI fragment vs. query string
In the section 3.3.1 you learnt that the response_mode parameter in the authentication
request, dictates the structure or the format of the response a client application gets from an
OpenID provider. If you set the value of the response_mode parameter to query, for
example, then all the parameters in the response are encoded as a query string added to the
redirect_uri as shown below.

https://app.example.com/redirect_uri?token=XXXXX&id_token=YYYYYY

If you set the value of the response_mode parameter to fragment, then all the response
parameters are added to the redirect_uri as a URI fragment as shown below.

https://app.example.com/redirect_uri
#access_token=XXXXXX&token_type=Bearer&expires_in=3600&id_token=YYYYYYYY&state=Xd2u7
3hgj59435

When the OpenID provider redirects the user back to the client application, it sets the HTTP
response status code to 302 and sets the Location header to the redirect_uri either with
a query string or with an URI fragment. Then the browser after receiving 302 from the
OpenID provider, extracts out the URL from the Location header and does an HTTP GET.
Following lists out the key differences between an URI fragment and a query string.

• Any parameter in a URI fragment never leaves the browser. When the browser does
an HTTP GET to the URL comes from the Location header of the 302 response from
the OpenID provider, the HTTP GET request goes to the backend web server, but still
the URI fragment remains on the browser address bar. However, a query string
attached to a URL, goes to the backend web server.

• As defined in the RFC 2616 (https://tools.ietf.org/html/rfc2616), the HTTP Referer
header does not carry anything from the URI fragment, but everything in the query
string is included.

• Usually, when you click on a link on a web page, the URL of the current web page
goes as the Referer header of the HTTP request to the new web page, unless you
have setup a policy to not to include the Referer header. Having certain information
in the Referer header could lead to possible security issues and in chapter 10 we
discuss them in detail and how to mitigate those.

3.7 Generating a random, unguessable nonce
As discussed in the section 3.3.1 value of the nonce parameter carries a unique value added
to the OpenID Connect authentication request by the client application. In this section you’ll
learn how to generate a random, nonguessable nonce value in Java; and you’ll be able to
find similar constructs to generate random numbers in other programming languages as well.

69

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://app.example.com/redirect_uri?token=XXXXX&id_token=YYYYYY
https://app.example.com/redirect_uri
https://tools.ietf.org/html/rfc2616

When picking an algorithm to generate a random number, there are few properties you
need to worry about. You do not need to implement them by your own. Most of the random
number generators available in different programming languages support these properties.

• A random number should be statistically independent. That means, the random
number generator must not rely on previously generated ones to generate new
random numbers.

• A random number should be unpredictable. No one should be able to guess a
random number by looking at a random number already generated by the
corresponding random number generator.

• The generated random numbers should be uniformly distributed. The probability of
generating a given random number should be equal among all the possible random
numbers, the random number generator generates.

The following code listing shows how to use the java.secure.SecureRandom Java class to
generate a random number. Neil Madden, the author of the book API Security in Action
(Manning, 2020) suggests this approach in his blog
(https://neilmadden.blog/2018/08/30/moving-away-from-uuids/).

Listing 3.3: Generating a random, nonguessable nonce in Java

import java.security.SecureRandom;
import java.util.Base64;

public class SecureRandomString {

private static final SecureRandom random = new SecureRandom();
private static final Base64.Encoder encoder=Base64.getUrlEncoder().withoutPadding();

public static String generateNonce() {
byte[] buffer = new byte[20];

 random.nextBytes(buffer);
 return encoder.encodeToString(buffer);

 }
}

3.8 Implementing implicit flow using Google as the OpenID provider
In this section we discuss how to implement implicit authentication flow by using Google as
an OpenID provider. Here we are not going to build a web application from ground-up;
rather, we use a row URL constructed from all the necessary parameters and place it on the
browser address bar to demostrate the authentication request and authentication response
we discussed in section 3.3 under the implicit flow.

3.8.1 Setting up Google as an OpenID provider
To set up Google as an OpenID provider, please check https://github.com/openidconnect-in-
action/samples/blob/master/IDPs.md. Once you are done with that, you get a client_id
and a client_secret for your client application. However, since we are using implicit
authentication flow here, we only need client_id. Also, while registering your client

70

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://neilmadden.blog/2018/08/30/moving-away-from-uuids/
https://github.com/openidconnect-in-action/samples/blob/master/IDPs.md
https://github.com/openidconnect-in-action/samples/blob/master/IDPs.md
https://github.com/openidconnect-in-action/samples/blob/master/IDPs.md

application with Google, you also need to provide one or more redirect_uris and lets
assume you have https://localhost:3000/redirect_uri as the redirect_uri. The following
code snippet lists all the parameters we need to know to build a client application against the
Google OpenID provider following the implicit flow.

Listing 3.4: Parameters required to communicate with Google OpenID provider

client_id: 450443992251-7gft9u.apps.googleusercontent.com
redirect_uri: https://localhost:3000/redirect_uri
Google authorization endpoint: https://accounts.google.com/o/oauth2/v2/auth

3.8.2 Constructing the authentication request
In this section we’ll construct an OpenID Connect authentication request with the parameters
from the listing 3.4 and some additional parameters such as scope, state, response_type,
and nonce. The following listing shows the complete authentication request; you may replace
the value of client_id with what you got from Google after registering the client
application. Also, we use two random string values for state and nonce parameters, and we
expect the OpenID response to carry the same state value. In section 3.7 we discussed
how to generate random, nonguessable value for the nonce parameter.

Listing 3.5: Authentication that redirects the user to the Google OpenID provider

https://accounts.google.com/o/oauth2/v2/auth?
client_id=450443992251-7gft9u.apps.googleusercontent.com&
redirect_uri=https://localhost:3000/redirect_uri&
scope=openid profile&
response_type=id_token token&
state=caf7871khs872&
nonce=89hj37b3gd3

Once you copy and paste the above request into your browser location bar, it will take you to
Google (the OpenID provider) for authentication. If you are not logged in already, you may
see a screen similar to figure 3.5. Also, the same screen will display the name of the client
application you used during the application registration process, and the set of attributes
Google about to share with the client application. We used profile as the scope value (in
addition to openid) in the authentication request, and the list of attributes (name, email
address and so on) shown in figure 3.10 are related to that. You’ll learn more about
requesting user attributes using scopes in chapter 5.

71

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://accounts.google.com/o/oauth2/v2/auth
https://localhost:3000/redirect_uri
https://localhost:3000/redirect_uri
https://localhost:3000/redirect_uri
https://accounts.google.com/o/oauth2/v2/auth

Figure 3.10: Google login screen for user authentication. The name of the client application you used during
application registration process is displayed on the screen (Book Club), along with the user attributes Google is
going to share with the client application.

Once you complete the authentication flow at the Google OpenID provider by entering your
own credentials, it will redirect you back to the client application (to the redirect_uri we
provided). However, since we do not have any application running on that address, the
response from Google OpenID provider will remain on the browser location bar, as shown in
the following code (listing 3.6). In practice, you will get a lengthy string for the values of the
access_token and id_token parameters, which we have replaced in the listing 3.6 with the
text <ACCESS_TOKEN> and <ID_TOKEN> respectively. In the response from Google, we got
both the access_token and the id_token; as you might have rightly guessed already, that is
because we used id_token token as the response_type in the authentication request
(listing 3.5). In case we have used just id_token as the response_type, you won’t see the
access_token in the response.

72

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

©Manning Publications Co. To comment go to liveBook

Listing 3.6: Authentication response from the Google OpenID provider

https://localhost:3000/redirect_uri#state=caf7871khs872
 &access_token=<ACCESS_TOKEN>
 &token_type=Bearer
 &expires_in=3599
 &scope=profile%20openid%20https://www.googleapis.com/auth/userinfo.profile
 &id_token=<ID_TOKEN> &authuser=0&prompt=consent

3.8.3 An overview of the ID token returned back from the Google OpenID provider
In section 3.8.2 we got an authentication response from the Google OpenID provider, which
includes an ID token. In this section we’ll delve deep into the attributes that you find in the
ID token (listing 3.6). As you learnt in chapter 1, the ID token is a JSON Web Token (JWT).
In chapter 4, we discuss JWT in detail.

The ID token you got from Google has three parts in it, where they are separated by each
other with a period (.). If you have three parts in a JWT, that is a JSON Web Signature (JWS)
and if you have five parts in a JWT, that is a JSON Web Encryption (JWE). In chapter 4, you
learnt about both JWS and JWE in detail.

To decode the JWT you got in the response from Google, in listing 3.6, let’s use the
https://jwt.io. Just copy the value of id_token parameter in the Encoded text area of the
web site (jwt.io), and you will get the values decoded. Then again, you need to treat your ID
tokens as secrets and never use public sites like jwt.io to decode any production ID tokens.
4Once you decode the ID token, you will see the decoded payload of the JWT as shown in the
following listing.

Listing 3.7: The decoded payload of the ID token returned from Google

{
 "iss": "https://accounts.google.com",
 "azp": "450443992251-9l17d82cli8npa9cdrvcp1g9m17gft9u.apps.googleusercontent.com",
 "aud": "450443992251-9l17d82cli8npa9cdrvcp1g9m17gft9u.apps.googleusercontent.com",
 "sub": "104063262378861625904",
 "at_hash": "Krnm3SB1v_UR00j50VzLoQ",
 "nonce": "89hj37b3gd3",
 "name": "Prabath Siriwardena",
 "picture": "https://lh3.googleusercontent.com/a-

/AOh14GiriDTmbf8tcSKzMkFYvYwYuBMUmGFdtEBqpvRGOA=s96-c",
 "given_name": "Prabath",
 "family_name": "Siriwardena",
 "locale": "en",
 "iat": 1601313517,
 "exp": 1601317117,
 "jti": "4fea08bd4386e45d6f8b869520ace3f7a4f80bde"
}

The JWT payload in listing 3.7 has two types of claims: the claims related to the end user
and the claims related to token validation. The sub, name, picture, given_name,
family_name, and locale are related to the end user, and all those claims related to the

4 You can follow the approach this blog (https://prefetch.net/blog/2020/07/14/decoding-json-web-tokens-jwts-from-the-linux-command-line/)
suggests to decode a JWT in the command line. That’s a much safer way to decode a JWT, than relying on online tools.

73

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://prefetch.net/blog/2020/07/14/decoding-json-web-tokens-jwts-from-the-linux-command-line/
https://localhost:3000/redirect_uri#state=caf7871khs872
http://www.googleapis.com/auth/userinfo.profile
https://jwt.io
https://accounts.google.com
https://lh3.googleusercontent.com/a-/AOh14GiriDTmbf8tcSKzMkFYvYwYuBMUmGFdtEBqpvRGOA=s96-c
https://lh3.googleusercontent.com/a-/AOh14GiriDTmbf8tcSKzMkFYvYwYuBMUmGFdtEBqpvRGOA=s96-c

user are standard claims defined in the OpenID specification. In chapter 5 we’ll go through
these claims in detail.

The rest of the claims in listing 3.7 are defined in two specifications. Some are defined in
the JWT specification (jti, iat, exp, aud, iss) and some are defined in the OpenID Connect
specification (nonce, at_hash, azp). Chapter 4 covers in detail all the claims defined by the
JWT specification, and in the section 3.7.4, we’ll explain nonce, at_hash and azp. Even
though iat, exp, aud and iss claims are defined in the JWT specification, the OpenID
Connect specification makes all of them mandatory in an ID token.

3.8.4 ID token validation rules
You already know that an ID token is a JWT. So, the first step in validating an ID token is to
make sure, it is a valid JWT. We discuss in detail how to validate a JWT in chapter 4. This
section explains how a client application uses some of the attributes OpenID Connect
specification introduced into the ID token during the validation process. Once the client
application identified the ID token as a valid JWT it needs perform further validation as listed
in the following.

• If the authentication request included a nonce parameter, the same must be returned
to the client application as a claim in the ID token; and also the client application
must make sure it has not seen the same nonce value in an ID token before. This
check prevents a replay attack of an ID token, which we discuss in detail in chapter
13.

• The value of the at_hash parameter in the ID token is a base64url-encoded hash of a
part of the access token (not the hash of the complete token). The hashing algorithm
the OpenID provider uses to hash the token is included in the JWT header under the
alg parameter. If an access_token is returned along with ID token in the
authentication response from the OpenID provider, this parameter must be present in
the ID token and must be valid. This helps preventing some of the security issues
found in the OAuth 2.0 implicit grant type and chapter 13 discusses that in detail.

• The azp parameter (or the authorized party) in the ID token is an optional
parameter; but if the client_id is not present in the aud parameter of the ID token
the azp parameter must be included in the ID token and its value must be the
client_id.

There are few more claims (auth_time, act and amr) OpenID Connect specification
introduced with respect to token validation and we’ll discuss them in detail in chapter 6. Then
again most of the time as an application developer, you will not write code to do these
validations yourself, rather will use some OpenID Connect library.

74

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

Security issues with the implicit flow and how to mitigate those
We discussed OAuth 2.0 implicit grant type in chapter 2. The IETF OAuth 2.0 working group recommends not using

the implicit grant type due to couple of security issues explained in the OAuth 2.0 Security Best Current Practice
document (https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15), mostly the access token replay and access
token leakage attacks. We discuss these two attacks in chapter 13. However, the implicit flow in OpenID Connect is
not exactly the implicit grant type in OAuth 2.0; and OpenID Connect adds protection to prevent the implicit flow from
both the access token replay and access token leakage attacks.

The at_hash parameter we discussed in section 3.7.4 binds the access token issued along with the ID token, to
the ID token. Since the ID token itself has replay protection with the nonce parameter, binding the access token to
the ID token, also protects the access token being replayed. We have dedicated chapter 13 to discuss security issues
related to OpenID Connect and OAuth 2.0; so, we’ll differ a detailed discussion on this to chapter 13.

3.9 How does authorization code flow work?
In this section we’ll take you through how the authorization code flow works with a SPA in
detail. There are many similarities in the parameters passed in the authentication request
and authentication response, both under the implicit flow we discussed in section 3.3 and the
authorization code flow. So, we assume you have gone through the section 3.3 already. The
sequence of events or steps that happens during this flow, as well as the messages being
passed in each step, are clearly defined in the OpenID Connect specification.

3.9.1 The flow of events in the authorization code authentication flow
Figure 3.6 lists the sequence of events happens between the OpenID provider, the client
application, and the user. The client application in figure 3.6 can be any type of an
application, but here our discussion mostly focuses on a SPA. Over the time, the
authorization code flow has become more popular for implementing login with OpenID
Connect for SPAs. In the following sections we discuss what happens in each step in the
figure 3.11 in detail.

75

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15

Figure 3.11: The client application uses authorization code authentication flow to communicate with the
OpenID provider to authenticate the user.

THE CLIENT APPLICATION INITIATES A LOGIN REQUEST VIA THE BROWSER (STEP 1)

In the step 1 of figure 3.11, the client application initiates a login request via the browser. In
case of a SPA, we can expect the user clicks on a login link on the web page of the client
application, and browser does an HTTP GET to the authorize endpoint of the OpenID
provider. Listing 3.3 shows an example of an authentication request under the authorization
code authentication flow.

Listing 3.3: Authentication request generated by the client application (authorization code flow)

https://accounts.google.com/o/oauth2/v2/auth?
 response_type=code&
 client_id=424911365001.apps.googleusercontent.com&
 scope=openid email&
 redirect_uri=https%3A//app.example.com/redirect_uri&
 state=Xd2u73hgj59435&
 login_hint=jdoe@example.com&
 nonce=0394852-3190485-2490358

In section 3.3 we discussed the usage of all the parameters in the listing 3.3, so we do not
intend to duplicate the same here. However, a few parameters need attention:

• response_type: The value of the response_type parameter in the authentication
request defines which tokens the authorization endpoint of the OpenID provider
should return back to the client application.

76

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://accounts.google.com/o/oauth2/v2/auth?
mailto:login_hint=jdoe@example.com&

• In the authorization code flow there is only one possible value: code. The client
application expects that authorization endpoint of the OpenID provider to return a
code in the authentication response. This is the key parameter in the authentication
request that differentiates an authorization code flow from the implicit flow.

• response_mode: The value of the response_mode parameter in the authentication
request defines how the client application expects the response from the OpenID
provider. For the authorization code flow, the default value of response_mode
parameter is query. So, the client application expects the OpenID provider to return
the code and the corresponding parameters in query string to the redirect_uri.

THE OPENID PROVIDER VALIDATES THE AUTHENTICATION REQUEST AND REDIRECTS THE USER BACK TO THE BROWSER FOR
AUTHENTICATION (STEP 2)

Once the OpenID provider validates the authentication request from the client application, it
checks whether the user has a valid login session under the OpenID provider’s domain. If the
user has logged into the OpenID provider already from the same web browser, then there
exists a valid login session, unless its expired.

If the user does not have a valid login session, then the OpenID provider will challenge
the user to authenticate (step 2 in figure 3.12); and also will get user’s consent to share the
requested claims with the client application. In step 3 of figure 3.12 user types the login
credentials and in step 4 in figure 3.12, the browser posts the credentials to the OpenID
provider. The steps 2, 3 and 4 are out side the scope of the OpenID Connect specification
and up to the OpenID providers to implement in the way they prefer.

Figure 3.12: The client application uses authorization code authentication flow to communicate with the
OpenID provider to authenticate the user.

77

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

THE OPENID PROVIDER RETURNS BACK THE AUTHORIZATION CODE TO THE CLIENT APPLICATION (STEP 5)

In step 5 of figure 3.12, the OpenID provider returns the authorization code along with the
state parameter to the client application in a query string to the redirect_uri (as shown
in the following line of code). Once the the client application receives the request, it needs to
make sure that the value of the state parameter in the response exactly matches the value
of the state parameter in the authentication request.

https://app.example.com/redirect_uri?code=YDed2u73hXcr783d&state=Xd2u73hgj59435

THE CLIENT APPLICATION EXCHANGES THE AUTHORIZATION CODE TO AN ID TOKEN AND AN ACCESS TOKEN (STEP 6)

Unlike in the implicit flow, in the authorization code flow, the client application does not get
the ID token or the access token in the authentication response. To get an ID token and an
access token, the client application has to talk to the token endpoint of the OpenID
providers, as shown in the step 6 of figure 3.12. Following listing shows an example request
to the token endpoint of the OpenID provider, which carries the authorization code from the
authentication response. The token request defined in the authorization code authentication
flow in OpenID Connect is identical to the token request defined under the authorization code
grant type in OAuth 2.0 specification, which we discussed in the chapter 2.

Listing 3.4: Request to the token endpoint of the OpenID provider (authorization code flow)

POST /token
HTTP/1.1
Host: oauth2.googleapis.com
Content-Type: application/x-www-form-urlencoded

code=YDed2u73hXcr783d&
client_id=your_client_id&
redirect_uri=https%3A//oauth2.example.com/code&
grant_type=authorization_code

One key thing to notice here is, in the token request in listing 3.4, the client application does
not authenticate to the OpenID provider. So, we only use the client_id in the request and the
client application does not need to have a client_secret or any other authentication
mechanism. As you already learnt in chapter 2, an SPA is called a public client under the
OAuth 2.0 specification and a public client does not have the capability protect any secrets.

Since a SPA runs the browser, it can’t hide any secrets from the end user. Anything that
you hide on the browser is visible to the end user. So, no point of having any credentials for
an SPA. In chapter 6, we’ll discuss how to use the authorization code flow with a traditional
(server-side) web application and there web application will use client_id and client_secret to
authenticate to the token endpoint of the OpenID provider.

THE OPENID PROVIDER RETURNS BACK AN ID TOKEN AND ACCESS TOKEN TO THE CLIENT APPLICATION (STEP 7)

In step 7 of figure 3.8 the OpenID provider returns back an ID token and an access token to
the client application, as shown in the following listing.

78

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://app.example.com/redirect_uri?code=YDed2u73hXcr783d&state=Xd2u73hgj59435

Listing 3.5: The response from the token endpoint of the OpenID provider

{
 "access_token": "1/fFAGRNJru1FTz70BzhT3Zg",
 "expires_in": 3920,
 "token_type": "Bearer",
 "id_token": "<ID_TOKEN>"
 "refresh_token": "<ACCESS_TOKEN>"
}

The only difference you see in the response in listing 3.5 and the response you get from the
token endpoint under the OAuth 2.0 authorization grant type (which we discussed in chapter
2), here we have an additional parameter called id_token, which carries the ID token. Also,
unlike in the implicit flow, in the authorization code flow, the client application also gets a
refresh_token, which can be used to renew the access_token and also the id_token. We
talk about refreshing tokens in detail in chapter 6.

3.10 Authorization code flow or the implicit flow?
In section 3.3 we discussed implicit flow in detail and in section 3.9 the authorization code
flow in detail. In practice, there are SPAs that use implicit flow as well as the authorization
code flow. However, most of the new SPAs use authorization code flow, and based on the
following points listed out we recommend using authorization code flow over the implicit
flow.

• Under implicit flow, the access_token and the id_token are returned as an URI
fragment to the redirect_uri. The URI fragment will remain in the browser history,
and anyone having access to the browser could observe those. However, from the
following JavaScript code running on client application, you still can remove the URI
fragment (after reading the tokens) from the browser location bar as well as from the
browser history.

// remove fragment as much as it can go without adding
// an entry in browser history:
window.location.replace("#");

// slice off the remaining '#' in HTML5:
if (typeof window.history.replaceState == 'function') {
history.replaceState({}, '', window.location.href.slice(0, -1));

}

• Implicit flow does not return back a refresh_token, while the authorization code flow
does. Under implicit flow if the access_token expires, then the client application has
to re-initiate the login flow to obtain a new access_token.

• This point is not directly related to SPA, however if you implement OpenID Connect
login with the implicit flow in a native mobile application or a desktop application, it
could possibly be vulnerable for token interception, which we discuss in detail in
chapter 13. Under authorization code flow, this attack can be mitigated by
implementing Proof Key for Code Exchange (PKCE) OAuth 2.0 profile
(https://tools.ietf.org/html/rfc7636) that we discuss in chapter 6 in detail.

79

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://tools.ietf.org/html/rfc7636

• Finally, its better to understand why the implicit flow was added to the OpenID
Connect specification. When you use the authorization code flow with a SPA, to
exchange the code to an ID token or/and an access token, you need to do a direct
HTTP request from a JavaScript running on the browser to the token endpoint of the
OpenID provider. Most of the time, the domain of the token endpoint is different from
the domain of the client application. So, by default browsers won’t permit cross-
domain calls. That means a client application running on app.example.com domain,
won’t be able to do a direct HTTP request from the JavaScript to the op.example.com
domain.

• That’s was the reason, the OpenID Connect introduced the implicit flow. Unlike in the
authorization code, with implicit flow there is no direct HTTP requests between a client
application running on the browser and the OpenID provider. However, over the time
cross-origin resource sharing (CORS) policies became popular. CORS enables you to
do cross domain calls selectively. So, you can use authorization code flow by enabling
CORS for the client application’s domain to access the token endpoint of the
authorization server. That means, there is no reason to use the implicit flow now. In
chapter 5, you’ll learn more details about CORS.

3.11 Securing a single-page application using OpenID Connect
In this section you’ll learn how to create a fully functioning SPA using React and then
integrate the SPA with OpenID Connect for login. We assume you have a good knowledge on
React; if not, please go through appendix A first, which covers all the React fundamentals
you need to know to follow this section.

3.11.1 Building a single-page application with React
In this section we’ll build a React application with no security, and make sure its up and
running. All the samples we use in this book are available in the GitHub repository:
https://github.com/openidconnect-in-action/samples; either you can do a git clone or
download all the samples as a zip file. The sample we discuss in the section is available
under the chapter03/sample01 directory. To build the same React application, run the
following command from the sample01 directory. This npm command will look at the
package.json file inside the sample01 directory and download all the dependent node
modules and store them under the directory sample01/node_modules. You won’t see the
node_modules directory in the samples you downloaded from the GitHub repository; it’s
created only after you run the following command.

\> npm install

To build the React application, run the following command from sample01 directory on the
command console. This command wll create directory called build and copy all the files that
you want to deploy into your production web server.

\> npm run build

80

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://github.com/openidconnect-in-action/samples

In this example we use a node server as our web server. You can start using the following
command run from the sample01 directory.

\> npm start

The above command starts the node server on localhost port 3000 by default; if you visit
http://localhost:3000 link on the web browser, you will see a welcome message. This is the
simplest React application you can have; in the next two sections, you’ll learn how to secure
this application with OpenID Connect.

3.11.2 Setting up an OpenID Provider
To secure the React application we developed in section 3.11.1, we need to have an OpenID
provider. In section 3.8, in our discussion of the implicit flow, we used Google as the OpenID
provider. However, we cannot use Google as an OpenID provider here, because Google
always expects the client application that implements OpenID Connect login with Google,
following the authorization code flow, to authenticate to the token endpoint using client_id
and client_secret.

As we discussed in section 3.9, a SPA is a public client and public clients cannot securely
store secrets. So, there is no point of authenticating a SPA. Here we need to use an OpenID
provider that supports the authorization code flow with no client authentication. Here (check
https://github.com/openidconnect-in-action/samples/blob/master/IDPs.md), we explain how
to setup two open source OpenID providers and to run the examples in this section you can
pick one of them. Once you successfully set up your OpenID provider and register your
application with the OpenID provider, you need to have following parameters to secure
access to the React application with OpenID Connect.

Listing 3.6: Parameters with sample values required to communicate with the OpenID provider

client_id: D4ZoMSpsxqgvUuiC6j5ROnEYea0a
redirect_uri: https://localhost:3000
Authorization endpoint: https://localhost:9443/oauth2/authz
Token endpoint: https://localhost:9443/oauth2/token
Issuer: https://localhost:9443

3.11.3 Updating the client application to use OpenID Connect login
In this section we are going to update the React application we developed in section 3.11.1
to support login with OpenID Connect. If you are already running the node server, which
hosts the React application from section 3.11.1, please take it down by pressing Ctrl + C on
the terminal that runs the node server.

To enable OpenID Connect login to the React application, in chapter03/sample01
directory we use the npm package @facilelogin/oidc-react. It’s an open source npm
package released under the MIT licenses. We developed this package by forking two open
source node modules: https://github.com/auth0/auth0-react and
https://github.com/auth0/auth0-spa-js. If you are interested in finding more details you can
find the two forked repositories with our changes here: https://github.com/openidconnect-in-
action/oidc-react and https://github.com/openidconnect-in-action/oidc-spa-js.

81

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
http://localhost:3000/
https://github.com/openidconnect-in-action/samples/blob/master/IDPs.md
https://localhost:3000
https://localhost:9443/oauth2/authz
https://localhost:9443/oauth2/token
https://localhost:9443
https://github.com/auth0/auth0-react
https://github.com/auth0/auth0-spa-js
https://github.com/openidconnect-in-action/oidc-react
https://github.com/openidconnect-in-action/oidc-react
https://github.com/openidconnect-in-action/oidc-react
https://github.com/openidconnect-in-action/oidc-spa-js

To install the @facilelogin/oidc-react package, run the following command from sample01
directory. Once the command runs successfully, you’ll find a new entry added into the
sample01/package.json file under the dependencies section with respect to the
@facilelogin/oidc-react package.

\> npm install @facilelogin/oidc-react

The @facilelogin/oidc-react package introduces a new React component called
<OIDCProvider /> that carries the configuration corresponding to your OpenID provider. To
add this component to your React application, on sample01/src/index.js, replace the existing
call to the ReactDOM.render() function with the following. You also need to have an import
statement to import OIDCProvider component from the @facilelogin/oidc-react

package.

Listing 3.7: Rendering the <ODICProvider /> React component

import { OIDCProvider } from '@facilelogin/oidc-react';

ReactDOM.render(
 <OIDCProvider
 domain="localhost:9443"
 tokenEp="https://localhost:9443/oauth2/token"
 authzEp="https://localhost:9443/oauth2/authorize"
 clientId="D4ZoMSpsxqgvUuiC6j5ROnEYea0a"
 issuer="https://localhost:9443/oauth2/token"
 redirectUri={window.location.origin}>
 <App />

 </OIDCProvider>,
 document.getElementById('book-club-app')
);

Now you can replace the code in sample01/src/components/App.js with the following, that
adds a login button to the welcome page.

82

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
https://localhost:9443/oauth2/token
https://localhost:9443/oauth2/authorize
https://localhost:9443/oauth2/token

Listing 3.8: Updated App.js code that renders the login button to initiate the login flow

import React from 'react';
import { useAuth0 } from '@facilelogin/oidc-react';

function App() {
 const {isLoading,isAuthenticated,error,user,loginWithRedirect,logout,} = useAuth0();

 if (isLoading) {
 return <div>Loading...</div>;

 }
 if (error) {
 return <div>Oops... {error.message}</div>;

 }

 if (isAuthenticated) {
 console.log(user.id);
 return (

 <div>
 Hello {user.sub}{' '}
 <button onClick={() => logout({ returnTo: window.location.origin })}>

 Log out
 </button>
 </div>

);
 } else {
 return <button onClick={loginWithRedirect}>Log in</button>;

 }
}

export default App;

Now you can build the updated React application and start the node server using the
following two npm commands.

\> npm run build
\> npm start

Once the node server successfully started up, you can visit http://localhost:3000 and click on
the login button to initiate the login flow; and you will get redirected to the OpenID
provider’s login page.

83

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion
http://localhost:3000

3.12 Summary
• OpenID Connect defines three authentication flows: authorization code flow,

implicit flow, and hybrid flow.
• An authentication flow in OpenID Connect uses OAuth 2.0 grant types, but an

authentication flow is more than a grant type. It defines additional request/response
parameters on top of what is already defined by OAuth 2.0 for grant types.

• The OpenID Connect specification defines the authentication flows in a self-contained
manner in itself. So we should not confuse the OAuth 2.0 grant types with OpenID
Connect authentication flows.

• The implicit authentication flow uses id_token or id_token token as the value of the
response_type parameter in the authentication request and gets both the access
token and the ID token from the authorization endpoint of the OpenID provider.

• The authorization code authentication flow uses code as the value of the
response_type parameter in the authentication request and gets the access token
and the ID token from the token endpoint of the OpenID provider.

• In practice, some SPAs use implicit flow as well as authorization code flow. However,
most new SPAs use only authorization code flow.

84

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/openid-connect-in-action/discussion

	OpenID Connect in Action MEAP V06
	Copyright
	Chapter 3: Securing access to a single-page application
	3.1 Authentication flows define the communications between a client application and an OpenID provider
	3.2 Authentication flows vs. grant types
	3.3 How does implicit flow work?
	3.3.1 The flow of events in the implicit authentication flow

	3.4 Why does one client application need to have multiple redirect_uris?
	3.5 Using the state parameter
	3.6 URI fragment vs. query string
	3.7 Generating a random, unguessable nonce
	3.8 Implementing implicit flow using Google as the OpenID provider
	3.8.1 Setting up Google as an OpenID provider
	3.8.2 Constructing the authentication request
	3.8.3 An overview of the ID token returned back from the Google OpenID provider
	3.8.4 ID token validation rules

	3.9 How does authorization code flow work?
	3.9.1 The flow of events in the authorization code authentication flow

	3.10 Authorization code flow or the implicit flow?
	3.11 Securing a single-page application using OpenID Connect
	3.11.1 Building a single-page application with React
	3.11.2 Setting up an OpenID Provider
	3.11.3 Updating the client application to use OpenID Connect login

	3.12 Summary

