
B E Y O N D T H E B A S I C
S T U F F W I T H P Y T H O N

B E S T P R A C T I C E S F O R W R I T I N G

C L E A N C O D E

A L S W E I G A R T

BEYOND THE BASIC STUFF WITH PYTHON. Copyright © 2021 by Al Sweigart.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59327-966-0 (print)

ISBN-13: 978-1-59327-967-7 (ebook)

Publisher: William Pollock

Executive Editor: Barbara Yien

Production Editor: Maureen Forys, Happenstance Type-O-Rama

Developmental Editor: Frances Saux

Cover Design: Octopod Studios

Interior Design: Octopod Studios

Cover Illustration: Josh Ellingson

Technical Reviewer: Kenneth Love

Copyeditor: Anne Marie Walker

Compositor: Happenstance Type-O-Rama

Proofreader: Rachel Monaghan

Indexer: Valerie Perry

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1-415-863-9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Library of Congress Cataloging-in-Publication Data Names:

Sweigart, Al, author.
Title: Beyond the basic stuff with python : best practices for writing clean code / Al Sweigart.
Description: San Francisco, CA : No Starch Press, Inc., [2021] | Includes index.
Identifiers: LCCN 2020034287 (print) | LCCN 2020034288 (ebook) | ISBN

9781593279660 (paperback) | ISBN 9781593279677 (ebook)

Subjects: LCSH: Python (Computer program language) | Computer programming.
Classification: LCC QA76.73.P98 S943 2021 (print) | LCC QA76.73.P98 (ebook) | DDC

005.13/3—dc23

LC record available at https://lccn.loc.gov/2020034287

LC ebook record available at https://lccn.loc.gov/2020034288

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other

product and company names mentioned herein may be the trademarks of their respective owners. Rather

than use a trademark symbol with every occurrence of a trademarked name, we are using the names only

in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of

the trademark.

mailto:info@nostarch.com
http://www.nostarch.com/
http://www.nostarch.com/

3
C OD E F OR M A T T IN G W I T H B L A C K

Code formatting is applying a set of rules

to source code to give it a certain appear-

ance. Although unimportant to the com-

puter parsing your program, code formatting is

vital for readability, which is necessary for maintain-

ing your code. If your code is difficult for humans

(whether it’s you or a co-worker) to understand, it will

be hard to fix bugs or add new features. Formatting

code isn’t a mere cosmetic issue. Python’s readability

is a critical reason for the language’s popularity.
This chapter introduces you to Black, a code formatting tool that can

automatically format your source code into a consistent, readable style

without changing your program’s behavior. Black is useful, because it’s

tedious to manually format your code in a text editor or IDE. You’ll first

learn about the rationalization for the code style choices Black makes.

Then you’ll learn how to install, use, and customize the tool.

46 Chapter 3

How to Lose Friends and Alienate Co-Workers

We can write code in many ways that result in identical behavior. For exam-

ple, we can write a list with a single space after each comma and use one

kind of quote character consistently:

spam = ['dog', 'cat', 'moose']

But even if we wrote the list with a varying number of spaces and quote

styles, we’d still have syntactically valid Python code:

spam= ['dog' ,'cat',"moose"]

Programmers who prefer the former approach might like the visual

separation that the spaces add and the uniformity of the quote characters.

But programmers sometimes choose the latter, because they don’t want

to worry about details that have no impact on whether the program works

correctly.

Beginners often ignore code formatting because they’re focused on

programming concepts and language syntax. But it’s valuable for beginners

to establish good code formatting habits. Programming is difficult enough,

and writing understandable code for others (or for yourself in the future)

can minimize this problem.

Although you might start out coding on your own, programming is

often a collaborative activity. If several programmers working on the same

source code files write in their own style, the code can become an incon-

sistent mess, even if it runs without error. Or worse, the programmers will

constantly be reformatting each other’s code to their own style, wasting

time and causing arguments. Deciding whether to, say, put one or zero

spaces after a comma is a matter of personal preference. These style choices

can be much like deciding which side of the road to drive on; it doesn’t

matter whether people drive on the right side of the road or the left side, as

long as everyone consistently drives on the same side.

Style Guides and PEP 8

An easy way to write readable code is to follow a style guide, a document

that outlines a set of formatting rules a software project should follow. The

Python Enhancement Proposal 8 (PEP 8) is one such style guide written by the

Python core development team. But some software companies have estab-

lished their own style guides as well.

You can find PEP 8 online at https://www.python.org/dev/peps/pep-0008/.

Many Python programmers view PEP 8 as an authoritative set of rules,

although the PEP 8 creators argue otherwise. The “A Foolish Consistency

Is the Hobgoblin of Little Minds” section of the guide reminds the reader

that maintaining consistency and readability within a project, rather than

https://www.python.org/dev/peps/pep-0008/

Code Formatting with Black 47

adhering to any individual formatting rule, is the prime reason for enforc-

ing style guides.

PEP 8 even includes the following advice: “Know when to be

inconsistent—sometimes style guide recommendations just aren’t appli-

cable. When in doubt, use your best judgment.” Whether you follow all

of it, some of it, or none of it, it’s worthwhile to read the PEP 8 document.

Because we’re using the Black code formatter, our code will follow

Black’s style guide, which is adapted from PEP 8’s style guide. You should

learn these code formatting guidelines, because you might not always have

Black conveniently at hand. The Python code guidelines you learn in this

chapter also generally apply to other languages, which might not have auto-

matic formatters available.

I don’t like everything about how Black formats code, but I take that

as the sign of a good compromise. Black uses formatting rules that pro-

grammers can live with, letting us spend less time arguing and more time

programming.

Horizontal Spacing

Empty space is just as important for readability as the code you write. These

spaces help separate distinct parts of code from each other, making them

easier to identify. This section explains horizontal spacing —that is, the place-

ment of blank space within a single line of code, including the indentation

at the front of the line.

Use Space Characters for Indentation

Indentation is the whitespace at the beginning of a code line. You can use

one of two whitespace characters, a space or a tab, to indent your code.

Although either character works, the best practice is to use spaces instead

of tabs for indentation.

The reason is that these two characters behave differently. A space

character is always rendered on the screen as a string value with a single

space, like this ' '. But a tab character, which is rendered as a string value

containing an escape character, or '\t', is more ambiguous. Tabs often, but

not always, render as a variable amount of spacing so the following text

begins at the next tab stop. The tab stop are positioned every eight spaces

across the width of a text file. You can see this variation in the following

interactive shell example, which first separates words with space characters

and then with tab characters:

>>> print('Hello there, friend!\nHow are you?')
Hello there, friend!
How are you?

>>> print('Hello\tthere,\tfriend!\nHow\tare\tyou?')
Hello there, friend!
How are you?

48 Chapter 3

Because tabs represent a varying width of whitespace, you should avoid

using them in your source code. Most code editors and IDEs will automati-

cally insert four or eight space characters when you press the TAB key

instead of one tab character.

You also can’t use tabs and spaces for indentation in the same block of

code. Using both for indentation was such a source of tedious bugs in ear-

lier Python programs that Python 3 won’t even run code indented like this;

it raises a TabError: inconsistent use of tabs and spaces in indentation excep- tion

instead. Black automatically converts any tab characters you use for

indentation into four space characters.

As for the length of each indentation level, the common practice in

Python code is four spaces per level of indentation. The space characters

in the following example have been marked with periods to make them

visible:

def getCatAmount():

....numCats = input('How many cats do you have?')

....if int(numCats) < 6:

........print('You should get more cats.')

The four-space standard has practical benefits compared to the alter-

natives; using eight spaces per level of indentation results in code that

quickly runs up against line length limits, whereas using two space charac-

ters per level of indentation can make the differences in indentation hard

to see. Programmers often don’t consider other amounts, such as three or

six spaces, because they, and binary computing in general, have a bias for

numbers that are powers of two: 2, 4, 8, 16, and so on.

Spacing Within a Line

Horizontal spacing has more to it than just the indentation. Spaces are

important for making different parts of a code line appear visually distinct.

If you never use space characters, your line can end up dense and hard to

parse. The following subsections provide some spacing rules to follow.

Put a Single Space Between Operators and Identifiers

If you don’t leave spaces between operators and identifiers, your code will

appear to run together. For example, this line has spaces separating opera-

tors and variables:

YES: blanks = blanks[:i] + secretWord[i] + blanks[i + 1 :]

This line removes all spacing:

NO: blanks=blanks[:i]+secretWord[i]+blanks[i+1:]

In both cases, the code uses the + operator to add three values, but with-
out spacing, the + in blanks[i+1:] can appear to be adding a fourth value. The
spaces make it more obvious that this + is part of a slice for the value in blanks.

Code Formatting with Black 49

Put No Spaces Before Separators and a Single Space After Separators

We separate the items lists and dictionaries, as well as the parameters

in function def statements, using comma characters. You should place

no spaces before these commas and a single space after them, as in this

example:

YES: def spam(eggs, bacon, ham):

YES: weights = [42.0, 3.1415, 2.718]

Otherwise, you’ll end up with “bunched up” code that is harder to read:

NO: def spam(eggs,bacon,ham):

NO: weights = [42.0,3.1415,2.718]

Don’t add spaces before the separator, because that unnecessarily draws

the eye to the separator character:

NO: def spam(eggs , bacon , ham):

NO: weights = [42.0 , 3.1415 , 2.718]

Black automatically inserts a space after commas and removes spaces

before them.

Don’t Put Spaces Before or After Periods

Python allows you to insert spaces before and after the periods marking the

beginning of a Python attribute, but you should avoid doing so. By not plac-

ing spaces there, you emphasize the connection between the object and its

attribute, as in this example:

YES: 'Hello, world'.upper()

If you put spaces before or after the period, the object and attribute

look like they’re unrelated to each other:

NO: 'Hello, world' . upper()

Black automatically removes spaces surrounding periods.

Don’t Put Spaces After a Function, Method, or Container Name

We can readily identify function and method names because they’re fol-

lowed by a set of parentheses, so don’t put a space between the name and

the opening parenthesis. We would normally write a function call like this:

YES: print('Hello, world!')

But adding a space makes this singular function call look like it’s two

separate things:

NO: print ('Hello, world!')

50 Chapter 3

Black removes any spaces between a function or method name and its

opening parenthesis.

Similarly, don’t put spaces before the opening square bracket for an

index, slice, or key. We normally access items inside a container type (such

as a list, dictionary, or tuple) without adding spaces between the variable

name and opening square bracket, like this:

YES: spam[2]

YES: spam[0:3]

YES: pet['name']

Adding a space once again makes the code look like two separate things:

NO: spam [2]

NO: spam [0:3]

NO: pet ['name']

Black removes any spaces between the variable name and opening

square bracket.

Don’t Put Spaces After Opening Brackets or Before Closing Brackets

There should be no spaces separating parentheses, square brackets, or

braces and their contents. For example, the parameters in a def statement or

values in a list should start and end immediately after and before their

parentheses and square brackets:

YES: def spam(eggs, bacon, ham):

YES: weights = [42.0, 3.1415, 2.718]

You should not put a space after an opening or before a closing paren-

theses or square brackets:

NO: def spam(eggs, bacon, ham):

NO: weights = [42.0, 3.1415, 2.718]

Adding these spaces doesn’t improve the code’s readability, so it’s

unnecessary. Black removes these spaces if they exist in your code.

Put Two Spaces Before End-of-Line Comments

If you add comments to the end of a code line, put two spaces after the end

of the code and before the # character that begins the comment:

YES: print('Hello, world!') # Display a greeting.

The two spaces make it easier to distinguish the code from the

comment. A single space, or worse, no space, makes it more difficult to

notice this separation:

NO: print('Hello, world!') # Display a greeting.

NO: print('Hello, world!')# Display a greeting.

Code Formatting with Black 51

Black puts two spaces between the end of the code and the start of the

comment.

In general, I advise against putting comments at the end of a code line,

because they can make the line too lengthy to read onscreen.

Vertical Spacing

Vertical spacing is the placement of blank lines between lines of code. Just

as a new paragraph in a book keeps sentences from forming a wall of text,

vertical spacing can group certain lines of code together and separate those

groups from one another.

PEP 8 has several guidelines for inserting blank lines in code: it states

that you should separate functions with two blank lines, classes with two

blank lines, and methods within a class with one blank line. Black automati-

cally follows these rules by inserting or removing blank lines in your code,

turning this code:

NO: class ExampleClass:
def exampleMethod1():

pass
def exampleMethod2():

pass
def exampleFunction():

pass

. . . into this code:

YES: class ExampleClass:
def exampleMethod1():

pass

def exampleMethod2():
pass

def exampleFunction():

pass

A Vertical Spacing Example

What Black can’t do is decide where blank lines within your functions, meth-

ods, or global scope should go. Which of those lines to group together is a

subjective decision that is up to the programmer.

For example, let’s look at the EmailValidator class in validators.py in the
Django web app framework. It’s not necessary for you to understand how

52 Chapter 3

this code works. But pay attention to how blank lines separate the call ()

method’s code into four groups:

--snip--

def call (self, value):

1 if not value or '@' not in value:

raise ValidationError(self.message, code=self.code)

2 user_part, domain_part = value.rsplit('@', 1)

3 if not self.user_regex.match(user_part):

raise ValidationError(self.message, code=self.code)

4 if (domain_part not in self.domain_whitelist and
not self.validate_domain_part(domain_part)): # Try

for possible IDN domain-part
try:

domain_part = punycode(domain_part)
except UnicodeError:

pass
else:

if self.validate_domain_part(domain_part): return
raise ValidationError(self.message, code=self.code)

--snip--

Even though there are no comments to describe this part of the code, the

blank lines indicate that the groups are conceptually distinct from each other.

The first group 1 checks for an @ symbol in the value parameter. This task is

different from that of the second group 2, which splits the email address

string in value into two new variables, user_part and domain_part. The third 3

and fourth 4 groups use these variables to validate the user and domain

parts of the email address, respectively.

Although the fourth group has 11 lines, far more than the other groups,

they’re all related to the same task of validating the domain of the email

address. If you felt that this task was really composed of multiple subtasks,

you could insert blank lines to separate them.

The programmer for this part of Django decided that the domain vali-

dation lines should all belong to one group, but other programmers might

disagree. Because it’s subjective, Black won’t modify the vertical spacing

within functions or methods.

Vertical Spacing Best Practices

One of Python’s lesser-known features is that you can use a semicolon to

separate multiple statements on a single line. This means that the following

two lines:

print('What is your name?')
name = input()

Code Formatting with Black 53

. . . can be written on the same line if separated by a semicolon:

print('What is your name?'); name = input()

As you do when using commas, you should put no space before the

semicolon and one space after it.

For statements that end with a colon, such as if, while, for, def, or class

statements, a single-line block, like the call to print() in this example:

if name == 'Alice': print('Hello,
Alice!')

. . . can be written on the same line as its if statement:

if name == 'Alice': print('Hello, Alice!')

But just because Python allows you to include multiple statements on

the same line doesn’t make it a good practice. It results in overly wide lines

of code and too much content to read on a single line. Black splits these

statements into separate lines.

Similarly, you can import multiple modules with a single import statement:

import math, os, sys

Even so, PEP 8 recommends that you split this statement into one import

statement per module:

import math
import os
import sys

If you write separate lines for imports, you’ll have an easier time spot-

ting any additions or removals of imported modules when you’re compar-

ing changes in a version control system’s diff tool. (Version control systems,

such as Git, are covered in Chapter 12.)

PEP 8 also recommends grouping import statements into the following
three groups in this order:

1. Modules in the Python standard library, like math, os, and sys

2. Third-party modules, like Selenium, Requests, or Django

3. Local modules that are a part of the program

These guidelines are optional, and Black won’t change the formatting

of your code’s import statements.

Black: The Uncompromising Code Formatter

Black automatically formats the code inside your .py files. Although you

should understand the formatting rules covered in this chapter, Black can

54 Chapter 3

do all the actual styling for you. If you’re working on a coding project with

others, you can instantly settle many arguments on how to format code by

just letting Black decide.

You can’t change many of the rules that Black follows, which is why

it’s described as “the uncompromising code formatter.” Indeed, the tool’s

name comes from Henry Ford’s quote about the automobile colors choices he

offered his customers: “You can have any color you want, as long as it’s black.”

I’ve just described the exact styles that Black uses; you can find Black’s full

style guide at https://black.readthedocs.io/en/stable/the_black_code_style.html.

Installing Black

Install Black using the pip tool that comes with Python. In Windows, do this
by opening a Command Prompt window and entering the following:

C:\Users\Al\>python -m pip install --user black

On macOS and Linux, open a Terminal window and enter python3
rather than python (you should do this for all the instructions in this book
that use python):
Als-MacBook-Pro:~ al$ python3 -m pip install --user black

The -m option tells Python to run the pip module as an application, which
some Python modules are set up to do. Test that the installation was
successful by running python -m black. You should see the message No paths given.
Nothing to do. rather than No module named black.

RUnning Black from the Command Line

You can run Black for any Python file from the Command Prompt or

Terminal window. In addition, your IDE or code editor can run Black in

the background. You’ll find instructions for getting Black to work with

Jupyter Notebook, Visual Studio Code, PyCharm, and other editors on

Black’s home page at https://github.com/psf/black/.

Let’s say that you want to format a file called yourScript.py automatically.

From the command line in Windows, run the following (on macOS and

Linux, use the python3 command instead of python):

C:\Users\Al>python -m black yourScript.py

After you run this command, the content of yourScript.py will be format-

ted according to Black’s style guide.

Your PATH environment variable might already be set up to run Black

directly, in which case you can format yourScript.py by simply entering the
following:

C:\Users\Al>black yourScript.py

https://black.readthedocs.io/en/stable/the_black_code_style.html
https://github.com/psf/black/

Code Formatting with Black 55

If you want to run Black over every .py file in a folder, specify a single

folder instead of an individual file. The following Windows example for-

mats every file in the C:\yourPythonFiles folder, including its subfolders:

C:\Users\Al>python -m black C:\yourPythonFiles

Specifying the folder is useful if your project contains several Python

files and you don’t want to enter a command for each one.

Although Black is fairly strict about how it formats code, the next three
subsections describe a few options that you can change. To see the full
range of options that Black offers, run python -m black --help.

Adjusting Black’s Line Length Setting

The standard line of Python code is 80 characters long. The history of the

80 character line dates back to the era of punch card computing in the

1920s when IBM introduced punch cards that had 80 columns and 12 rows.

The 80 column standard remained for the printers, monitors, and com-

mand line windows developed over the next several decades.

But in the 21st century, high-resolution screens can display text that

is more than 80 characters wide. A longer line length can keep you from

having to scroll vertically to view a file. A shorter line length can keep too

much code from crowding on a single line and allow you to compare two

source code files side by side without having to scroll horizontally.

Black uses a default of 88 characters per line for the rather arbitrary

reason that it is 10 percent more than the standard 80 character line. My

preference is to use 120 characters. To tell Black to format your code with,

for example, a 120-character line length limit, use the -l 120 (that’s the low-

ercase letter L, not the number 1) command line option. On Windows, the

command looks like this:

C:\Users\Al>python -m black -l 120 yourScript.py

No matter what line length limit you choose for your project, all .py files

in a project should use the same limit.

Disabling Black’s Double-Quoted Strings Setting

Black automatically changes any string literals in your code from using

single quotes to double quotes unless the string contains double quote char-

acters, in which case it uses single quotes. For example, let’s say yourScript.py

contains the following:

a = 'Hello' b =
"Hello"
c = 'Al\'s cat, Zophie.' d =
'Zophie said, "Meow"'
e = "Zophie said, \"Meow\"" f =
'''Hello'''

56 Chapter 4

Running Black on yourScript.py would format it like this:

1 a = "Hello" b
= "Hello"
c = "Al's cat, Zophie."

2 d = 'Zophie said, "Meow"' e =
'Zophie said, "Meow"'

3 f = """Hello"""

Black’s preference for double quotes makes your Python code look simi-

lar to code written in other programming languages, which often use dou-

ble quotes for string literals. Notice that the strings for variables a, b, and c

use double quotes. The string for variable d retains its original single quotes

to avoid escaping any double quotes within the string 2. Note that Black

also uses double quotes for Python’s triple-quoted, multiline strings 3.

But if you want Black to leave your string literals as you wrote them

and not change the type of quotes used, pass it the -S command line option.

(Note that the S is uppercase.) For example, running Black on the original

yourScript.py file in Windows would produce the following output:

C:\Users\Al>python –m black -S yourScript.py
All done!

1 file left unchanged.

You can also use the -l line length limit and -S options in the same command:

C:\Users\Al>python –m black –l 120 -S yourScript.py

Previewing the Changes Black Will Make

Although Black won’t rename your variable or change your program’s

behavior, you might not like the style changes Black makes. If you want to

stick to your original formatting, you could either use version control for

your source code or maintain your own backups. Alternatively, you can

preview the changes Black would make without letting it actually alter your

files by running Black with the --diff command line option. In Windows, it

looks like this:

C:\Users\Al>python -m black --diff yourScript.py

This command outputs the differences in the diff format commonly

used by version control software, but it’s generally readable by humans. For

example, if yourScript.py contains the line weights=[42.0,3.1415,2.718], run-

ning the --diff option would display this result:

C:\Users\Al\>python -m black --diff yourScript.py

--- yourScript.py 2020-12-07 02:04:23.141417 +0000

Code Formatting with Black 57

+++ yourScript.py 2020-12-07 02:08:13.893578 +0000

@@ -1 +1,2 @@
-weights=[42.0,3.1415,2.718]

+weights = [42.0, 3.1415, 2.718]

The minus sign indicates that Black would remove the line weights=
[42.0,3.1415,2.718] and replace it with the line prefixed with a plus sign: weights =
[42.0, 3.1415, 2.718]. Keep in mind that once you’ve run Black to change your
source code files, there’s no way to undo this change. You need

to either make backup copies of your source code or use version control

software, such as Git, before running Black.

Disabling Black for Parts of YoUr Code

As great as Black is, you might not want it to format some sections of your

code. For example, I like to do my own special spacing whenever I’m lining

up multiple related assignment statements, as in the following example:

Set up constants for different time amounts:
SECONDS_PER_MINUTE = 60
SECONDS_PER_HOUR = 60 * SECONDS_PER_MINUTE
SECONDS_PER_DAY = 24 * SECONDS_PER_HOUR
SECONDS_PER_WEEK = 7 * SECONDS_PER_DAY

Black would remove the additional spaces before the = assignment oper-
ator, making them, in my opinion, less readable:

Set up constants for different time amounts:
SECONDS_PER_MINUTE = 60
SECONDS_PER_HOUR = 60 *
SECONDS_PER_MINUTE SECONDS_PER_DAY = 24 *
SECONDS_PER_HOUR SECONDS_PER_WEEK = 7 *
SECONDS_PER_DAY

By adding # fmt: off and # fmt: on comments, we can tell Black to turn off

its code formatting for these lines and then resume code formatting afterward:

Set up constants for different time amounts:
fmt: off
SECONDS_PER_MINUTE =
60
SECONDS_PER_HOUR = 60 * SECONDS_PER_MINUTE
SECONDS_PER_DAY = 24 * SECONDS_PER_HOUR
SECONDS_PER_WEEK = 7 * SECONDS_PER_DAY

fmt: on

Running Black on this file now won’t affect the unique spacing, or any

other formatting, in the code between these two comments.

58 Chapter 4

Summary

Although good formatting can be invisible, poor formatting can make read-

ing code frustrating. Style is subjective, but the software development field

generally agrees on what constitutes good and poor formatting while still

leaving room for personal preferences.

Python’s syntax makes it rather flexible when it comes to style. If you’re

writing code that nobody else will ever see, you can write it however you

like. But much of software development is collaborative. Whether you’re

working with others on a project or simply want to ask more experienced

developers to review your work, formatting your code to fit accepted style

guides is important.

Formatting your code in an editor is a boring task that you can auto-

mate with a tool like Black. This chapter covered several of the guidelines

that Black follows to make your code more readable, including spacing code

vertically and horizontally, which keeps it from being too dense to read eas-

ily, and setting a limit on how long each line should be. Black enforces these

rules for you, preventing potential style arguments with collaborators.

But there’s more to code style than spacing and deciding between single

and double quotes. For instance, choosing descriptive variable names is also

a critical factor for code readability. Although automated tools like Black can

make syntactic decisions, such as the amount of spacing code should have,

they can’t make semantic decisions, such as what a good variable name is.

That responsibility is yours, and we’ll discuss this topic in the next chapter.

Practice Projects 59

