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building your first deep neural network:
introduction to backpropagation 6

O Deep Thought computer,” he said, “the task we have designed 
you to perform is this. We want you to tell us…” he paused, 
“The Answer.”

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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The streetlight problem
This toy problem considers how a network learns entire datasets.
Consider yourself approaching a street corner in a foreign country. As you approach, you 
look up and realize that the street light is unfamiliar. How can you know when it’s safe to 
cross the street? 

You can know when it’s safe to cross the street by interpreting the streetlight. But in this 
case, you don’t know how to interpret it. Which light combinations indicate when it’s time 
to walk? Which indicate when it’s time to stop? To solve this problem, you might sit at the 
street corner for a few minutes observing the correlation between each light combination 
and whether people around you choose to walk or stop. You take a seat and record the 
following pattern:

STOP

OK, nobody walked at the first light. At this point you’re thinking, “Wow, this pattern could 
be anything. The left light or the right light could be correlated with stopping, or the central 
light could be correlated with walking.” There’s no way to know. Let’s take another datapoint:

WALK
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People walked, so something about this light changed the signal. The only thing you know 
for sure is that the far-right light doesn’t seem to indicate one way or another. Perhaps it’s 
irrelevant. Let’s collect another datapoint:

STOP

Now you’re getting somewhere. Only the middle light changed this time, and you got the 
opposite pattern. The working hypothesis is that the middle light indicates when people feel 
safe to walk. Over the next few minutes, you record the following six light patterns, noting 
when people walk or stop. Do you notice a pattern overall?

STOP

WALK

WALK

WALK

STOP

STOP

As hypothesized, there is a perfect correlation between the middle (crisscross) light and 
whether it’s safe to walk. You learned this pattern by observing all the individual datapoints 
and searching for correlation. This is what you’re going to train a neural network to do.
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Preparing the data
Neural networks don’t read streetlights.
In the previous chapters, you learned about supervised algorithms. You learned that they 
can take one dataset and turn it into another. More important, they can take a dataset of 
what you know and turn it into a dataset of what you want to know. 

How do you train a supervised neural network? You present it with two datasets and ask it 
to learn how to transform one into the other. Think back to the streetlight problem. Can you 
identify two datasets? Which one do you always know? Which one do you want to know?

You do indeed have two datasets. On the one hand, you have six streetlight states. On the 
other hand, you have six observations of whether people walked. These are the two datasets. 

You can train the neural network to convert from the dataset you know to the dataset that 
you want to know. In this particular real-world example, you know the state of the streetlight 
at any given time, and you want to know whether it’s safe to cross the street.  

STOP

WALK

WALK

WALK

STOP

STOP

What you know What you want  
to know

To prepare this data for the neural network, you need to first split it into these two groups 
(what you know and what you want to know). Note that you could attempt to go backward 
if you swapped which dataset was in which group. For some problems, this works.
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Matrices and the matrix relationship
Translate the streetlight into math.
Math doesn’t understand streetlights. As mentioned in the previous section, you want to 
teach a neural network to translate a streetlight pattern into the correct stop/walk pattern. 
The operative word here is pattern. What you really want to do is mimic the pattern of the 
streetlight in the form of numbers. Let me show you what I mean.

Streetlights

1   0   1

0   1   1

0   0   1

1   1   1

0   1   1

1   0   1

Streetlight pattern

Notice that the pattern of numbers shown here mimics the pattern from the streetlights in 
the form of 1s and 0s. Each light gets a column (three columns total, because there are three 
lights). Notice also that there are six rows representing the six different observed streetlights. 

This structure of 1s and 0s is called a matrix. This relationship between the rows and 
columns is common in matrices, especially matrices of data (like the streetlights). 

In data matrices, it’s convention to give each recorded example a single row. It’s also 
convention to give each thing being recorded a single column. This makes the matrix easy  
to read. 

So, a column contains every state in which a thing was recorded. In this case, a column 
contains every on/off state recorded for a particular light. Each row contains the 
simultaneous state of every light at a particular moment in time. Again, this is common.
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Good data matrices perfectly mimic the outside world.
The data matrix doesn’t have to be all 1s and 0s. What if the streetlights were on dimmers 
and turned on and off at varying degrees of intensity? Perhaps the streetlight matrix would 
look more like this:

Streetlights

.9  .0   1

.2  .8   1

.1  .0   1

.8  .9   1

.1  .7   1

.9  .1   0

Streetlight matrix A

Matrix A is perfectly valid. It’s mimicking the patterns that exist in the real world 
(streetlight), so you can ask the computer to interpret them. Would the following matrix  
still be valid?

Streetlights

9   0   10

2   8   10

1   0   10

8   9   10

1   7   10

9   1   0

Streetlight matrix B

Matrix (B) is valid. It adequately captures the relationships between various training 
examples (rows) and lights (columns). Note that Matrix A * 10 == Matrix B 
(A * 10 == B). This means these matrices are scalar multiples of each other. 
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Matrices A and B both contain the same underlying pattern.
The important takeaway is that an infinite number of matrices exist that perfectly reflect the 
streetlight patterns in the dataset. Even the one shown next is perfect.

Streetlights

 18  0   20

 4   16  20

 2   0   20

 16  18  20

 2   14  20

 18  2   0

Streetlight matrix C

It’s important to recognize that the underlying pattern isn’t the same as the matrix. It’s a 
property of the matrix. In fact, it’s a property of all three of these matrices (A, B, and C). 
The pattern is what each of these matrices is expressing. The pattern also existed in the 
streetlights. 

This input data pattern is what you want the neural network 
to learn to transform into the output data pattern. But in order 
to learn the output data pattern, you also need to capture the 
pattern in the form of a matrix, as shown here. 

Note that you could reverse the 1s and 0s, and the output matrix 
would still capture the underlying STOP/WALK pattern that’s 
present in the data. You know this because regardless of whether 
you assign a 1 to WALK or to STOP, you can still decode the 1s 
and 0s into the underlying STOP/WALK pattern. 

The resulting matrix is called a lossless representation because 
you can perfectly convert back and forth between your stop/
walk notes and the matrix.

STOP

WALK

WALK

WALK

STOP

STOP

0

1

0

1

1

0
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Creating a matrix or two in Python
Import the matrices into Python.
You’ve converted the streetlight pattern into a matrix (one with just 1s and 0s). Now let’s 
create that matrix (and, more important, its underlying pattern) in Python so the neural 
network can read it. Python’s NumPy library (introduced in chapter 3) was built just for 
handling matrices. Let’s see it in action:

import numpy as np
streetlights = np.array( [ [ 1, 0, 1 ],
								            [ 0, 1, 1 ],
								            [ 0, 0, 1 ],
								            [ 1, 1, 1 ],
								            [ 0, 1, 1 ],
								            [ 1, 0, 1 ] ] )

If you’re a regular Python user, something should be striking in this code. A matrix is just 
a list of lists. It’s an array of arrays. What is NumPy? NumPy is really just a fancy wrapper 
for an array of arrays that provides special, matrix-oriented functions. Let’s create a NumPy 
matrix for the output data, too:

walk _ vs _ stop = np.array( [ [ 0 ],
								            [ 1 ],
								            [ 0 ],
								            [ 1 ],
								            [ 1 ],
								            [ 0 ] ] )

What do you want the neural network to do? Take the streetlights matrix and learn to 
transform it into the walk_vs_stop matrix. More important, you want the neural network 
to take any matrix containing the same underlying pattern as streetlights and transform it 
into a matrix that contains the underlying pattern of walk_vs_stop. More on that later. Let’s 
start by trying to transform streetlights into walk_vs_stop using a neural network.

streetlights walk_vs_stop

Neural network
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Building a neural network
You’ve been learning about neural networks for several chapters now. You have a new 
dataset, and you’re going to create a neural network to solve it. Following is some example 
code to learn the first streetlight pattern. This should look familiar: 

import numpy as np
weights = np.array([0.5,0.48,-0.7])
alpha = 0.1

streetlights = np.array( [ [ 1, 0, 1 ],
                           [ 0, 1, 1 ],
                           [ 0, 0, 1 ],
                           [ 1, 1, 1 ],
                           [ 0, 1, 1 ],
                           [ 1, 0, 1 ] ] )

walk_vs_stop = np.array( [ 0, 1, 0, 1, 1, 0 ] )

input = streetlights[0]                  b
goal_prediction = walk_vs_stop[0]        c

for iteration in range(20):
    prediction = input.dot(weights)
    error = (goal_prediction - prediction) ** 2
    delta = prediction - goal_prediction
    weights = weights - (alpha * (input * delta))	

    print("Error:" + str(error) + " Prediction:" + str(prediction))

b   [1,0,1]

c   Equals 0 (stop)

This code example may bring back several nuances you learned in chapter 3. First, the 
use of the dot function was a way to perform a dot product (weighted sum) between 
two vectors. But not included in chapter 3 was the way NumPy matrices can perform 
elementwise addition and multiplication:

import numpy as np

a = np.array([0,1,2,1])
b = np.array([2,2,2,3])

print(a*b)             b
print(a+b)             c
print(a * 0.5)         d
print(a + 0.5)         e

b   Elementwise multiplication

c   Elementwise addition

d   Vector-scalar multiplication

e   Vector-scalar addition

NumPy makes these operations easy. When you put a + between two vectors, it does what 
you expect: it adds the two vectors together. Other than these nice NumPy operators and 
the new dataset, the neural network shown here is the same as the ones built previously.
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Learning the whole dataset
The neural network has been learning only one streetlight. Don’t 
we want it to learn them all?
So far in this book, you’ve trained neural networks that learned how to model a single 
training example (input -> goal_pred pair). But now you’re trying to build a neural 
network that tells you whether it’s safe to cross the street. You need it to know more than one 
streetlight. How do you do this? You train it on all the streetlights at once:

import numpy as np

weights = np.array([0.5,0.48,-0.7])
alpha = 0.1

streetlights = np.array( [[ 1, 0, 1 ],
                          [ 0, 1, 1 ],
                          [ 0, 0, 1 ],
                          [ 1, 1, 1 ],
                          [ 0, 1, 1 ],
                          [ 1, 0, 1 ] ] )

walk_vs_stop = np.array( [ 0, 1, 0, 1, 1, 0 ] )

input = streetlights[0]                b
goal_prediction = walk_vs_stop[0]      c

for iteration in range(40):
    error_for_all_lights = 0
    for row_index in range(len(walk_vs_stop)):
        input = streetlights[row_index]
        goal_prediction = walk_vs_stop[row_index]
        
        prediction = input.dot(weights)
        
        error = (goal_prediction - prediction) ** 2
        error_for_all_lights += error
        
        delta = prediction - goal_prediction
        weights = weights - (alpha * (input * delta))	
        print("Prediction:" + str(prediction))
    print("Error:" + str(error_for_all_lights) + "\n")

Error:2.6561231104
Error:0.962870177672
...
Error:0.000614343567483
Error:0.000533736773285

b   [1,0,1]

c  Equals 0 (stop)
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Full, batch, and stochastic gradient descent
Stochastic gradient descent updates weights one example  
at a time.
As it turns out, this idea of learning one example at a time is a variant on gradient descent 
called stochastic gradient descent, and it’s one of the handful of methods that can be used to 
learn an entire dataset.

How does stochastic gradient descent work? As you saw in the previous example, it 
performs a prediction and weight update for each training example separately. In other 
words, it takes the first streetlight, tries to predict it, calculates the weight_delta, and 
updates the weights. Then it moves on to the second streetlight, and so on. It iterates 
through the entire dataset many times until it can find a weight configuration that works 
well for all the training examples.

(Full) gradient descent updates weights one dataset at a time.
As introduced in chapter 4, another method for learning an entire dataset is gradient 
descent (or average/full gradient descent). Instead of updating the weights once for each 
training example, the network calculates the average weight_delta over the entire dataset, 
changing the weights only each time it computes a full average.

Batch gradient descent updates weights after n examples.
This will be covered in more detail later, but there’s also a third configuration that sort 
of splits the difference between stochastic gradient descent and full gradient descent. 
Instead of updating the weights after just one example or after the entire dataset of 
examples, you choose a batch size (typically between 8 and 256) of examples, after 
which the weights are updated.

We’ll discuss this more later in the book, but for now, recognize that the previous 
example created a neural network that can learn the entire streetlights dataset by 
training on each example, one at a time.
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Neural networks learn correlation
What did the last neural network learn?
You just got done training a single-layer neural network to take a streetlight pattern and 
identify whether it was safe to cross the street. Let’s take on the neural network’s perspective 
for a moment. The neural network doesn’t know that it was processing streetlight data. All it 
was trying to do was identify which input (of the three possible) correlated with the output. 
It correctly identified the middle light by analyzing the final weight positions of the network.

walk/stop

.01
1.0

–.0Input

Output

Notice that the middle weight is very near 1, whereas the far-left and far-right weights are 
very near 0. At a high level, all the iterative, complex processes for learning accomplished 
something rather simple: the network identified correlation between the middle input and 
output. The correlation is located wherever the weights were set to high numbers. Inversely, 
randomness with respect to the output was found at the far-left and far-right weights (where 
the weight values are very near 0). 

How did the network identify correlation? Well, in the process of gradient descent, each 
training example asserts either up pressure or down pressure on the weights. On average, 
there was more up pressure for the middle weight and more down pressure for the other 
weights. Where does the pressure come from? Why is it different for different weights? 
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Up and down pressure
It comes from the data.
Each node is individually trying to correctly predict the output given the input. For the 
most part, each node ignores all the other nodes when attempting to do so. The only cross 
communication occurs in that all three weights must share the same error measure. The 
weight update is nothing more than taking this shared error measure and multiplying it by 
each respective input. 

Why do you do this? A key part of why neural networks learn is error attribution, which 
means given a shared error, the network needs to figure out which weights contributed (so 
they can be adjusted) and which weights did not contribute (so they can be left alone). 

1   0   1

0   1   1

0   0   1

1   1   1

0   1   1

1   0   1

0

1

0

1

1

0

–   0   –

0   +   +

0   0   –

+   +   +

0   +   +

–   0   –

0

1

0

1

1

0

Training data Weight pressure

Consider the first training example. Because the middle input is 0, the middle weight 
is completely irrelevant for this prediction. No matter what the weight is, it’s going to be 
multiplied by 0 (the input). Thus, any error at that training example (regardless of whether 
it’s too high or too low), can be attributed to only the far-left and right weights.  

Consider the pressure of this first training example. If the network should predict 0, and two 
inputs are 1s, then this will cause error, which drives the weight values toward 0. 

The Weight Pressure table helps describe the effect of each training example on each 
respective weight. + indicates that it has pressure toward 1, and – indicates that it has 
pressure toward 0. Zeros (0) indicate that there is no pressure because the input datapoint  
is 0, so that weight won’t be changed. Notice that the far-left weight has two negatives and 
one positive, so on average the weight will move toward 0. The middle weight has three 
positives, so on average the weight will move toward 1.
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1   0   1

0   1   1

0   0   1

1   1   1

0   1   1

1   0   1

0

1

0

1

1

0

–   0   –

0   +   +

0   0   –

+   +   +

0   +   +

–   0   –

0

1

0

1

1

0

Training data Weight pressure

Each individual weight is attempting to compensate for error. In the first training example, 
there’s discorrelation between the far-right and far-left inputs and the desired output. This 
causes those weights to experience down pressure. 

This same phenomenon occurs throughout all six training examples, rewarding correlation 
with pressure toward 1 and penalizing decorrelation with pressure toward 0. On average, 
this causes the network to find the correlation present between the middle weight and the 
output to be the dominant predictive force (heaviest weight in the weighted average of the 
input), making the network quite accurate.

Bottom line

The prediction is a weighted sum of the inputs. The learning algorithm rewards inputs that 
correlate with the output with upward pressure (toward 1) on their weight while penalizing 
inputs with discorrelation with downward pressure. The weighted sum of the inputs find 
perfect correlation between the input and the output by weighting decorrelated inputs to 0.

The mathematician in you may be cringing a little. Upward pressure and downward pressure 
are hardly precise mathematical expressions, and they have plenty of edge cases where 
this logic doesn’t hold (which we’ll address in a second). But you’ll later find that this is an 
extremely valuable approximation, allowing you to temporarily overlook all the complexity 
of gradient descent and just remember that learning rewards correlation with larger weights 
(or more generally, learning finds correlation between the two datasets).
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Edge case: Overfitting
Sometimes correlation happens accidentally.
Consider again the first example in the training data. What if the far-left weight was 0.5 and 
the far-right weight was –0.5? Their prediction would equal 0. The network would predict 
perfectly. But it hasn’t remotely learned how to safely predict streetlights (those weights 
would fail in the real world). This phenomenon is known as overfitting. 

Deep learning’s greatest weakness: Overfitting

Error is shared among all the weights. If a particular configuration of weights accidentally 
creates perfect correlation between the prediction and the output dataset (such that 
error == 0) without giving the heaviest weight to the best inputs, the neural network 
will stop learning.

If it wasn’t for the other training examples, this fatal flaw would cripple the neural network. 
What do the other training examples do? Well, let’s look at the second training example. It 
bumps the far-right weight upward while not changing the far-left weight. This throws off 
the equilibrium that stopped the learning in the first example. As long as you don’t train 
exclusively on the first example, the rest of the training examples will help the network avoid 
getting stuck in these edge-case configurations that exist for any one training example.

This is very important. Neural networks are so flexible that they can find many, many 
different weight configurations that will correctly predict for a subset of training data. If 
you trained this neural network on the first two training examples, it would likely stop 
learning at a point where it did not work well for the other training examples. In essence, it 
memorized the two training examples instead of finding the correlation that will generalize 
to any possible streetlight configuration. 

If you train on only two streetlights and the network finds just these edge-case 
configurations, it could fail to tell you whether it’s safe to cross the street when it sees a 
streetlight that wasn’t in the training data.

Key takeaway

The greatest challenge you’ll face with deep learning is convincing your neural network to 
generalize instead of just memorize. You’ll see this again.
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Edge case: Conflicting pressure
Sometimes correlation fights itself.
Consider the far-right column in the following Weight Pressure table. What do you see? 

This column seems to have an equal number of upward and downward pressure moments. 
But the network correctly pushes this (far-right) weight down to 0, which means the 
downward pressure moments must be larger than the upward ones. How does this work?

1   0   1

0   1   1

0   0   1

1   1   1

0   1   1

1   0   1

0

1

0

1

1

0

–   0   –

0   +   +

0   0   –

+   +   +

0   +   +

–   0   –

0

1

0

1

1

0

Training data Weight pressure

The left and middle weights have enough signal to converge on their own. The left weight 
falls to 0, and the middle weight moves toward 1. As the middle weight moves higher and 
higher, the error for positive examples continues to decrease. But as they approach their 
optimal positions, the decorrelation on the far-right weight becomes more apparent. 

Let’s consider the extreme example, where the left and middle weights are perfectly set to 
0 and 1, respectively. What happens to the network? If the right weight is above 0, then the 
network predicts too high; and if the right weight is beneath 0, the network predicts too low. 

As other nodes learn, they absorb some of the error; they absorb part of the correlation. 
They cause the network to predict with moderate correlative power, which reduces the error. 
The other weights then only try to adjust their weights to correctly predict what’s left. 
In this case, because the middle weight has consistent signal to absorb all the correlation 
(because of the 1:1 relationship between the middle input and the output), the error when 
you want to predict 1 becomes very small, but the error to predict 0 becomes large, pushing 
the middle weight downward. 
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It doesn’t always work out like this.
In some ways, you kind of got lucky. If the middle node hadn’t been so perfectly correlated, 
the network might have struggled to silence the far-right weight. Later you’ll learn about 
regularization, which forces weights with conflicting pressure to move toward 0. 

As a preview, regularization is advantageous because if a weight has equal pressure upward 
and downward, it isn’t good for anything. It’s not helping either direction. In essence, 
regularization aims to say that only weights with really strong correlation can stay on; 
everything else should be silenced because it’s contributing noise. It’s sort of like natural 
selection, and as a side effect it would cause the neural network to train faster (fewer 
iterations) because the far-right weight has this problem of both positive and negative 
pressure. 

In this case, because the far-right node isn’t definitively correlative, the network would 
immediately start driving it toward 0. Without regularization (as you trained it before), you 
won’t end up learning that the far-right input is useless until after the left and middle start to 
figure out their patterns. More on this later. 

If networks look for correlation between an input column of data and the output column, 
what would the neural network do with the following dataset?

1   0   1

0   1   1

0   0   1

1   1   1

1

1

0

0

+   0   +

0   +   +

0   0   –

–   –   –

1

1

0

0

Weight pressureTraining data

There is no correlation between any input column and the output column. Every weight has 
an equal amount of upward pressure and downward pressure. This dataset is a real problem 
for the neural network. 

Previously, you could solve for input datapoints that had both upward and downward 
pressure because other nodes would start solving for either the positive or negative 
predictions, drawing the balanced node to favor up or down. But in this case, all the inputs 
are equally balanced between positive and negative pressure. What do you do? 
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Learning indirect correlation
If your data doesn’t have correlation, create intermediate data 
that does!
Previously, I described a neural network as an instrument that searches for correlation 
between input and output datasets. I want to refine this just a touch. In reality, neural 
networks search for correlation between their input and output layers. 

You set the values of the input layer to be individual rows of the input data, and you try 
to train the network so that the output layer equals the output dataset. Oddly enough, the 
neural network doesn’t know about data. It just searches for correlation between the input 
and output layers.

walk/stop

.01
1.0

–.0Input

Output

Unfortunately, this is a new streetlights dataset that has no correlation between the input 
and output. The solution is simple: use two of these networks. The first one will create an 
intermediate dataset that has limited correlation with the output, and the second will use 
that limited correlation to correctly predict the output. 

Because the input dataset doesn’t correlate with the output dataset, you’ll use the input 
dataset to create an intermediate dataset that does have correlation with the output. It’s kind 
of like cheating.
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Creating correlation
Here’s a picture of the new neural network. You basically stack two neural networks on top 
of each other. The middle layer of nodes (layer_1) represents the intermediate dataset. The 
goal is to train this network so that even though there’s no correlation between the input 
dataset and output dataset (layer_0 and layer_2), the layer_1 dataset that you create 
using layer_0 will have correlation with layer_2.

walk/stop

layer_1

layer_2

layer_0

weights_0_1

weights_1_2 This will be the 
intermediate data.

Note: this network is still just a function. It has a bunch of weights that are collected together 
in a particular way. Furthermore, gradient descent still works because you can calculate how 
much each weight contributes to the error and adjust it to reduce the error to 0. And that’s 
exactly what you’re going to do.
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Stacking neural networks: A review
Chapter 3 briefly mentioned stacked neural networks.  
Let’s review.
When you look at the following architecture, the prediction occurs exactly as you might 
expect when I say, “Stack neural networks.” The output of the first lower network (layer_0 
to layer_1) is the input to the second upper neural network (layer_1 to layer_2). The 
prediction for each of these networks is identical to what you saw before.

walk/stop

layer_1

layer_2

layer_0

weights_0_1

weights_1_2

As you start to think about how this neural network learns, you already know a great deal.  
If you ignore the lower weights and consider their output to be the training set, the top 
half of the neural network (layer_1 to layer_2) is just like the networks trained in the 
preceding chapter. You can use all the same learning logic to help them learn. 

The part that you don’t yet understand is how to update the weights between layer_0  
and layer_1. What do they use as their error measure? As you may remember from  
chapter 5, the cached/normalized error measure is called delta. In this case, you want 
to figure out how to know the delta values at layer_1 so they can help layer_2 make 
accurate predictions.
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Backpropagation: Long-distance error attribution
The weighted average error
What’s the prediction from layer_1 to layer_2? It’s a weighted average of the values at 
layer_1. If layer_2 is too high by x amount, how do you know which values at layer_1 
contributed to the error? The ones with higher weights (weights_1_2) contributed more. 
The ones with lower weights from layer_1 to layer_2 contributed less. 

Consider the extreme. Let’s say the far-left weight from layer_1 to layer_2 was zero. How 
much did that node at layer_1 cause the network’s error? Zero.

It’s so simple it’s almost hilarious. The weights from layer_1 to layer_2 exactly describe how 
much each layer_1 node contributes to the layer_2 prediction. This means those weights 
also exactly describe how much each layer_1 node contributes to the layer_2 error. 

How do you use the delta at layer_2 to figure out the delta at layer_1? You multiply it 
by each of the respective weights for layer_1. It’s like the prediction logic in reverse. This 
process of moving delta signal around is called backpropagation.

layer_0

weights_0_1

+0.25

layer_1

layer_2

weights_1_2

This value is the layer_2 delta
(goal_prediction - prediction).

0.0

1.00.5

-1.0

0.0 0.125 0.25 –0.25

layer_1 deltas, which 
are actually weighted 
versions of the layer_2 
delta

I made up some weight
values so you can see
how the layer_2 delta
passes through them.
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Backpropagation: Why does this work?
The weighted average delta
In the neural network from chapter 5, the delta variable told you the direction and 
amount the value of this node should change next time. All backpropagation lets you 
do is say, “Hey, if you want this node to be x amount higher, then each of these previous 
four nodes needs to be x*weights_1_2 amount higher/lower, because these weights were 
amplifying the prediction by weights_1_2 times.” 

When used in reverse, the weights_1_2 matrix amplifies the error by the appropriate 
amount. It amplifies the error so you know how much each layer_1 node should move 
up or down. 

Once you know this, you can update each weight matrix as you did before. For each 
weight, multiply its output delta by its input value, and adjust the weight by that much 
(or you can scale it with alpha).

layer_0

weights_0_1

+0.25

layer_1

layer_2

weights_1_2

This value is the layer_2 delta
(goal_prediction – prediction).

0.0

1.00.5

–1.0

0.0 0.125 0.25 –0.25

layer_1 deltas, which 
are actually weighted 
versions of the layer_2 
delta

I made up some weight
values so you can see
how the layer_2 delta
passes through them.
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Linear vs. nonlinear
This is probably the hardest concept in the book.  
Let’s take it slowly.
I’m going to show you a phenomenon. As it turns out, you need one more piece to make this 
neural network train. Let’s take it from two perspectives. The first will show why the neural 
network can’t train without it. In other words, first I’ll show you why the neural network 
is currently broken. Then, once you add this piece, I’ll show you what it does to fix this 
problem. For now, check out this simple algebra:

1 * 10 * 2 = 100
5 * 20 = 100

1 * 0.25 * 0.9 = 0.225
1 * 0.225 = 0.225

Here’s the takeaway: for any two multiplications, I can accomplish the same thing using a 
single multiplication. As it turns out, this is bad. Check out the following: 

These two graphs show two training examples 
each, one where the input is 1.0 and another 
where the input is –1.0. The bottom line: for 
any three-layer network you create, there’s a 
two-layer network that has identical behavior. 
Stacking two neural nets (as you know them at 
the moment) doesn’t give you any more power. 
Two consecutive weighted sums is just a more 
expensive version of one weighted sum.

1.0
–1.0

0.25

0.25
–0.25

0.9

0.225
–0.225

1.0
–1.0

0.225

0.225
–0.225
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Why the neural network still doesn’t work
If you trained the three-layer network as it is now,  
it wouldn’t converge.

Problem: For any two consecutive weighted sums of the input, there exists a single 
weighted sum with exactly identical behavior. Anything that the three-layer network can 
do, the two-layer network can also do.

Let’s talk about the middle layer (layer_1) before it’s fixed. Right now, each node (out of the 
four) has a weight coming to it from each of the inputs. Let’s think about this from a correlation 
standpoint. Each node in the middle layer subscribes to a certain amount of correlation with 
each input node. If the weight from an input to the middle layer is 1.0, then it subscribes to 
exactly 100% of that node’s movement. If that node goes up by 0.3, the middle node will follow. 
If the weight connecting two nodes is 0.5, 
each node in the middle layer subscribes to 
exactly 50% of that node’s movement. 

The only way the middle node can escape 
the correlation of one particular input node 
is if it subscribes to additional correlation 
from another input node. Nothing new is 
being contributed to this neural network. 
Each hidden node subscribes to a little 
correlation from the input nodes. 

The middle nodes don’t get to add anything 
to the conversation; they don’t get to have 
correlation of their own. They’re more or 
less correlated to various input nodes. 

But because you know that in the new 
dataset there is no correlation between any of the inputs and the output, how can the middle 
layer help? It mixes up a bunch of correlation that’s already useless. What you really need is 
for the middle layer to be able to selectively correlate with the input. 

You want the middle layer to sometimes correlate with an input, and sometimes not correlate. 
That gives it correlation of its own. This gives the middle layer the opportunity to not just 
always be x% correlated to one input and y% correlated to another input. Instead, it can be 
x% correlated to one input only when it wants to be, but other times not be correlated at all. 
This is called conditional correlation or sometimes correlation.

layer_1

layer_2

layer_0

weights_0_1

weights_1_2
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The secret to sometimes correlation
Turn off the node when the value would be below 0.
This might seem too simple to work, but consider this: if a node’s value dropped below 0, 
normally the node would still have the same correlation to the input as always. It would just 
happen to be negative in value. But if you turn off the node (setting it to 0) when it would be 
negative, then it has zero correlation to any inputs whenever it’s negative.  

What does this mean? The node can now selectively pick and choose when it wants to be 
correlated to something. This allows it to say something like, “Make me perfectly correlated 
to the left input, but only when the right input is turned off.” How can it do this? Well, if 
the weight from the left input is 1.0 and the weight from the right input is a huge negative 
number, then turning on both the left and right inputs will cause the node to be 0 all the 
time. But if only the left input is on, the node will take on the value of the left input.

This wasn’t possible before. Earlier, the middle node was either always correlated to an input 
or always not correlated. Now it can be conditional. Now it can speak for itself.

Solution: By turning off any middle node whenever it would be negative, you allow the 
network to sometimes subscribe to correlation from various inputs. This is impossible for 
two-layer neural networks, thus adding power to three-layer nets.

The fancy term for this “if the node would be negative, set it to 0” logic is nonlinearity. 
Without this tweak, the neural network is linear. Without this technique, the output layer 
only gets to pick from the same correlation it had in the two-layer network. It’s subscribing 
to pieces of the input layer, which means it can’t solve the new streetlights dataset. 

There are many kinds of nonlinearities. But the one discussed here is, in many cases, the best 
one to use. It’s also the simplest. (It’s called relu.)

For what it’s worth, most other books and courses say that consecutive matrix multiplication 
is a linear transformation. I find this unintuitive. It also makes it harder to understand 
what nonlinearities contribute and why you choose one over the other (which we’ll get to 
later). It says, “Without the nonlinearity, two matrix multiplications might as well be 1.” My 
explanation, although not the most concise answer, is an intuitive explanation of why you 
need nonlinearities.
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A quick break
That last part probably felt a little abstract, and that’s totally OK.
Here’s the deal. Previous chapters worked with simple algebra, so everything was ultimately 
grounded in fundamentally simple tools. This chapter started building on the premises you 
learned earlier. Previously, you learned lessons like this:

You can compute the relationship between the error and any one of the weights so that you 
know how changing the weight changes the error. You can then use this to reduce the error 
to 0.

That was a massive lesson. But now we’re moving past it. Because we already worked through 
why that works, you can take the statement at face value. The next big lesson came at the 
beginning of this chapter:

Adjusting the weights to reduce the error over a series of training examples ultimately 
searches for correlation between the input and the output layers. If no correlation exists, then 
the error will never reach 0.

This is an even bigger lesson. It largely means you can put the previous lesson out of 
your mind for now. You don’t need it. Now you’re focused on correlation. The takeaway 
is that you can’t constantly think about everything all at once. Take each lesson and let 
yourself trust it. When it’s a more concise summarization (a higher abstraction) of more 
granular lessons, you can set aside the granular and focus on understanding the higher 
summarizations. 

This is akin to a professional swimmer, biker, or similar athlete who requires a combined 
fluid knowledge of a bunch of small lessons. A baseball player who swings a bat learned 
thousands of little lessons to ultimately culminate in a great bat swing. But the player doesn’t 
think of all of them when he goes to the plate. His actions are fluid—even subconscious. It’s 
the same for studying these math concepts. 

Neural networks look for correlation between input and output, and you no longer have to 
worry about how that happens. You just know it does. Now we’re building on that idea. Let 
yourself relax and trust the things you’ve already learned.
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Your first deep neural network
Here’s how to make the prediction.
The following code initializes the weights and makes a forward propagation. New code is bold.

import numpy as np

np.random.seed(1)

def relu(x):                                           b
    return (x > 0) * x 

alpha = 0.2
hidden_size = 4

streetlights = np.array( [[ 1, 0, 1 ],
                          [ 0, 1, 1 ],
                          [ 0, 0, 1 ],
                          [ 1, 1, 1 ] ] )

walk_vs_stop = np.array([[ 1, 1, 0, 0]]).T

weights_0_1 = 2*np.random.random((3,hidden_size)) - 1  c
weights_1_2 = 2*np.random.random((hidden_size,1)) - 1

layer_0 = streetlights[0]
layer_1 = relu(np.dot(layer_0,weights_0_1))
layer_2 = np.dot(layer_1,weights_1_2)                  d

b   This function sets all negative numbers to 0.

c   Two sets of weights now to connect the three layers (randomly initialized)

d   The output of layer_1 is sent through relu, where negative  values become 0. This is the input for the next 
layer, layer_2.

For each piece of the code, follow along with 
the figure. Input data comes into layer_0. 
Via the dot function, the signal travels 
up the weights from layer_0 to layer_1 
(performing a weighted sum at each of the 
four layer_1 nodes). These weighted sums 
at layer_1 are then passed through the 
relu function, which converts all negative 
numbers to 0. Then a final weighted sum is 
performed into the final node, layer_2.

walk/ 
stop

layer_1

layer_2

layer_0

weights_0_1

weights_1_2
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Backpropagation in code
You can learn the amount that each weight contributes  
to the final error.
At the end of the previous chapter, I made an assertion that it would be important to 
memorize the two-layer neural network code so you could quickly and easily recall it when I 
reference more-advanced concepts. This is when that memorization matters. 

The following listing is the new learning code, and it’s essential that you recognize and 
understand the parts addressed in the previous chapters. If you get lost, go to chapter 5, 
memorize the code, and then come back. It will make a big difference someday.

import numpy as np

np.random.seed(1)

def relu(x):
    return (x > 0) * x                                                   b

def relu2deriv(output):
    return output>0                                                      c

alpha = 0.2
hidden_size = 4

weights_0_1 = 2*np.random.random((3,hidden_size)) - 1
weights_1_2 = 2*np.random.random((hidden_size,1)) - 1

for iteration in range(60):
   layer_2_error = 0
   for i in range(len(streetlights)):
      layer_0 = streetlights[i:i+1]
      layer_1 = relu(np.dot(layer_0,weights_0_1))
      layer_2 = np.dot(layer_1,weights_1_2)

      layer_2_error += np.sum((layer_2 - walk_vs_stop[i:i+1]) ** 2)

      layer_2_delta = (walk_vs_stop[i:i+1] - layer_2)
      layer_1_delta=layer_2_delta.dot(weights_1_2.T)*relu2deriv(layer_1) d

      weights_1_2 += alpha * layer_1.T.dot(layer_2_delta)
      weights_0_1 += alpha * layer_0.T.dot(layer_1_delta)

   if(iteration % 10 == 9):
      print("Error:" + str(layer_2_error))

b   Returns x if x > 0; returns 0 otherwise

c   Returns 1 for input > 0; returns 0 otherwise

d   This line computes the delta at layer_1 given the delta at  layer_2 by taking the layer_2_delta and multiplying 
it by its connecting weights_1_2.

Believe it or not, the only truly new code is in bold. Everything else is fundamentally the 
same as in previous pages. The relu2deriv function returns 1 when output > 0; otherwise, 
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it returns 0. This is the slope (the derivative) of the relu function. It serves an important 
purpose, as you’ll see in a moment. 
Remember, the goal is error attribution. It’s about figuring out how much each weight 
contributed to the final error. In the first (two-layer) neural network, you calculated a delta 
variable, which told you how much higher or lower you wanted the output prediction to 
be. Look at the code here. You compute the layer_2_delta in the same way. Nothing new. 
(Again, go back to chapter 5 if you’ve forgotten how that part works.)

Now that you know how much the final prediction should move up or down (delta), you 
need to figure out how much each middle (layer_1) node should move up or down. These 
are effectively intermediate predictions. Once you have the delta at layer_1, you can use 
the same processes as before for calculating a weight update (for each weight, multiply its 
input value by its output delta and increase the weight value by that much).

How do you calculate the deltas for layer_1? First, do the obvious: multiply the output 
delta by each weight attached to it. This gives a weighting of how much each weight 
contributed to that error. There’s one more thing to factor in. If relu set the output to a 
layer_1 node to be 0, then it didn’t contribute to the error. When this is true, you should 
also set the delta of that node to 0. Multiplying each layer_1 node by the relu2deriv 
function accomplishes this. relu2deriv is either 1 or 0, depending on whether the layer_1 
value is greater than 0.

layer_0

weights_0_1

+0.25

layer_1

layer_2

weights_1_2

This value is layer_2 delta
(goal_prediction – prediction).

0.0

1.00.5

–1.0

0.0

layer_1 deltas, which 
are actually weighted 
versions of the layer_2 
delta

I made up some weight
values so you can see
how the layer_2 delta
passes through them.

0.125 0.25 –0.25
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One iteration of backpropagation

b Initializing the network’s weights and data 

Inputs PredictionHiddens
import numpy as np

np.random.seed(1)

def relu(x):
    return (x > 0) * x 

def relu2deriv(output):
    return output>0 

lights = np.array( [[ 1, 0, 1 ],
                    [ 0, 1, 1 ],
                    [ 0, 0, 1 ],
                    [ 1, 1, 1 ] ] )

walk_stop = np.array([[ 1, 1, 0, 0]]).T

alpha = 0.2
hidden_size = 3

weights_0_1 = 2*np.random.random(\
							       (3,hidden_size)) - 1
weights_1_2 = 2*np.random.random(\
							       (hidden_size,1)) - 1

c PREDICT + COMPARE: Making a prediction, and calculating the output error and delta

Inputs

Prediction

Hiddens
layer_0 = lights[0:1]
layer_1 = np.dot(layer_0,weights_0_1)
layer_1 = relu(layer_1)
layer_2 = np.dot(layer_1,weights_1_2)

error = (layer_2-walk_stop[0:1])**2

layer_2_delta=(layer_2-walk_stop[0:1])

layer_0

layer_2

layer_1

1

0

1

0

0

.13 –.02 1.04

0.14
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d LEARN: Backpropagating from layer_2 to layer_1

Inputs

Prediction

Hiddens
layer_0 = lights[0:1]
layer_1 = np.dot(layer_0,weights_0_1)
layer_1 = relu(layer_1)
layer_2 = np.dot(layer_1,weights_1_2)

error = (layer_2-walk_stop[0:1])**2

layer_2_delta=(layer_2-walk_stop[0:1])

layer_0

layer_2

layer_1

layer_1_delta=layer_2_delta.dot(weights_1_2.T)
layer_1_delta *= relu2deriv(layer_1)

1

0

1

0

0

.13 –.02 1.04

0.14–.17

0

0

e LEARN: Generating weight_deltas, and updating weights 

Inputs PredictionHiddens

layer_0 = lights[0:1]
layer_1 = np.dot(layer_0,weights_0_1)
layer_1 = relu(layer_1)
layer_2 = np.dot(layer_1,weights_1_2)
error = (layer_2-walk_stop[0:1])**2
layer_2_delta=(layer_2-walk_stop[0:1])

layer_0 layer_2layer_1

layer_1_delta=layer_2_delta.dot(weights_1_2.T)
layer_1_delta *= relu2deriv(layer_1)

weight_delta_1_2 = layer_1.T.dot(layer_2_delta)
weight_delta_0_1 = layer_0.T.dot(layer_1_delta)

weights_1_2 -= alpha * weight_delta_1_2
weights_0_1 -= alpha * weight_delta_0_1

1

0

1

0

0

.13 –.02 1.04

0.14–.17

0

0

As you can see, backpropagation is about calculating deltas for intermediate layers so you 
can perform gradient descent. To do so, you take the weighted average delta on layer_2 
for layer_1 (weighted by the weights in between them). You then turn off (set to 0) nodes 
that weren’t participating in the forward prediction, because they couldn’t have contributed 
to the error.
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Putting it all together
Here’s the self-sufficient program you should be able to run 
(runtime output follows).
import numpy as np

np.random.seed(1)

def relu(x):
    return (x > 0) * x        b

def relu2deriv(output):
    return output>0           c

streetlights = np.array( [[ 1, 0, 1 ],
                          [ 0, 1, 1 ],
                          [ 0, 0, 1 ],
                          [ 1, 1, 1 ] ] )

walk_vs_stop = np.array([[ 1, 1, 0, 0]]).T
    
alpha = 0.2
hidden_size = 4

weights_0_1 = 2*np.random.random((3,hidden_size)) - 1
weights_1_2 = 2*np.random.random((hidden_size,1)) - 1

for iteration in range(60):
   layer_2_error = 0
   for i in range(len(streetlights)):
      layer_0 = streetlights[i:i+1]
      layer_1 = relu(np.dot(layer_0,weights_0_1))
      layer_2 = np.dot(layer_1,weights_1_2)

      layer_2_error += np.sum((layer_2 - walk_vs_stop[i:i+1]) ** 2)

      layer_2_delta = (layer_2 - walk_vs_stop[i:i+1])
      layer_1_delta=layer_2_delta.dot(weights_1_2.T)*relu2deriv(layer_1)

      weights_1_2 -= alpha * layer_1.T.dot(layer_2_delta)
      weights_0_1 -= alpha * layer_0.T.dot(layer_1_delta)

   if(iteration % 10 == 9):
      print("Error:" + str(layer_2_error))

b   Returns x if x > 0; returns 0 otherwise

c   Returns 1 for input > 0; returns 0 otherwise

Error:0.634231159844
Error:0.358384076763
Error:0.0830183113303
Error:0.0064670549571
Error:0.000329266900075
Error:1.50556226651e-05
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Why do deep networks matter?
What’s the point of creating “intermediate datasets” that  
have correlation?
Consider the cat picture shown here. Consider further that I had a dataset of images with 
cats and without cats (and I labeled them as such). If I wanted to train a neural network to 
take the pixel values and predict whether there’s a cat in the picture, the two-layer network 
might have a problem. 

Just as in the last streetlight dataset, no individual pixel correlates with whether there’s a cat 
in the picture. Only different configurations of pixels correlate with whether there’s a cat.

This is the essence of deep learning. Deep learning is all about creating intermediate layers 
(datasets) wherein each node in an intermediate layer represents the presence or absence of 
a different configuration of inputs. 

This way, for the cat images dataset, no individual pixel has to correlate with whether there’s 
a cat in the photo. Instead, the middle layer will attempt to identify different configurations 
of pixels that may or may not correlate with a cat (such as an ear, or cat eyes, or cat hair). 
The presence of many cat-like configurations will then give the final layer the information 
(correlation) it needs to correctly predict the presence or absence of a cat.

Believe it or not, you can take the three-layer network and continue to stack more and 
more layers. Some neural networks have hundreds of layers, each node playing its part in 
detecting different configurations of input data. The rest of this book will be dedicated to 
studying different phenomena within these layers in an effort to explore the full power of 
deep neural networks.

Toward that end, I must issue the same challenge I did in chapter 5: memorize the previous 
code. You’ll need to be very familiar with each of the operations in the code in order for the 
following chapters to be readable. Don’t progress past this point until you can build a three-
layer neural network from memory!
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