. ! From the Library of David Carty

The Pragmatic Programmer

your journey to mastery

Dave Thomas
Andy Hunt

vvAddison-Wesley

Boston « Columbus « New York « San Francisco « Amsterdam « Cape Town
Dubai « London « Madrid « Milan « Munich « Paris « Montreal « Toronto « Delhi « Mexico City
Séo Paulo - Sydney « Hong Kong « Seoul « Singapore - Taipei » Tokyo

From the Library of David Carty

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals. "The Pragmatic Programmer" and the linking g device are trademarks of
The Pragmatic Programmers, LLC.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019944178

Copyright © 2020 Pearson Education, Inc.

Cover images: Mihalec/Shutterstock, Stockish/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be ob-
tained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the appro-
priate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-595705-9
ISBN-10: 0-13-595705-2

Version: P2.0, October 28, 2019

From the Library of David Carty

Contents

Foreword xi

From the Library of David Carty

Contents ® viii

Pragmatic Paranoia 103
............... 104

........... 112
.............. 115
............ 118
.......... 125

129
................... 130
............. 137
........... 147
................. 158
.................. 166

169
........... 170
.......... 174

.............. 181
................... 187

191

From the Library of David Carty

Pragmatic Projects

Topic 53. Pride and Prejudice . .
Postface
Bibliography

Contents ® ix

263
..... 264

.......... ... 270

.. .. 273
..... . 280
..... 282

285
289
293
307

From the Library of David Carty

Foreword

I remember when Dave and Andy first tweeted about the new edition of this
book. It was big news. I watched as the coding community responded with
excitement. My feed buzzed with anticipation. After twenty years, The Prag-
matic Programmer is just as relevant today as it was back then.

It says a lot that a book with such history had such a reaction. I had the
privilege of reading an unreleased copy to write this foreword, and I understood
why it created such a stir. While it’s a technical book, calling it that does it
a disservice. Technical books often intimidate. They're stuffed with big words,
obscure terms, convoluted examples that, unintentionally, make you feel
stupid. The more experienced the author, the easier it is to forget what it’s
like to learn new concepts, to be a beginner.

Despite their decades of programming experience, Dave and Andy have con-
quered the difficult challenge of writing with the same excitement of people
who've just learned these lessons. They don’t talk down to you. They don’t
assume you are an expert. They don’t even assume you've read the first edi-
tion. They take you as you are—programmers who just want to be better.
They spend the pages of this book helping you get there, one actionable step
at a time.

To be fair, they’d already done this before. The original release was full of
tangible examples, new ideas, and practical tips to build your coding muscles
and develop your coding brain that still apply today. But this updated edition
makes two improvements on the book.

The first is the obvious one: it removes some of the older references, the out-
of-date examples, and replaces them with fresh, modern content. You won’t
find examples of loop invariants or build machines. Dave and Andy have
taken their powerful content and made sure the lessons still come through,
free of the distractions of old examples. It dusts off old ideas like DRY (don’t
repeat yourself) and gives them a fresh coat of paint, really making them
shine.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Foreword * xii

But the second is what makes this release truly exciting. After writing the
first edition, they had the chance to reflect on what they were trying to say,
what they wanted their readers to take away, and how it was being received.
They got feedback on those lessons. They saw what stuck, what needed
refining, what was misunderstood. In the twenty years that this book has
made its way through the hands and hearts of programmers all over the world,
Dave and Andy have studied this response and formulated new ideas, new
concepts.

They've learned the importance of agency and recognized that developers have
arguably more agency than most other professionals. They start this book
with the simple but profound message: “it’s your life.” It reminds us of our
own power in our code base, in our jobs, in our careers. It sets the tone for
everything else in the book—that it’s more than just another technical book
filled with code examples.

What makes it truly stand out among the shelves of technical books is that
it understands what it means to be a programmer. Programming is about
trying to make the future less painful. It's about making things easier for our
teammates. It’s about getting things wrong and being able to bounce back.
It’s about forming good habits. It's about understanding your toolset. Coding
is just part of the world of being a programmer, and this book explores that
world.

I spend a lot of time thinking about the coding journey. I didn’t grow up coding;
I didn’t study it in college. I didn’t spend my teenage years tinkering with
tech. I entered the coding world in my mid-twenties and had to learn what it
meant to be a programmer. This community is very different from others I'd
been a part of. There is a unique dedication to learning and practicality that
is both refreshing and intimidating.

For me, it really does feel like entering a new world. A new town, at least. I
had to get to know the neighbors, pick my grocery store, find the best coffee
shops. It took a while to get the lay of the land, to find the most efficient
routes, to avoid the streets with the heaviest traffic, to know when traffic was
likely to hit. The weather is different, I needed a new wardrobe.

The first few weeks, even months, in a new town can be scary. Wouldn't it be
wonderful to have a friendly, knowledgeable neighbor who’d been living there
a while? Who can give you a tour, show you those coffee shops? Someone
who’d been there long enough to know the culture, understand the pulse of
the town, so you not only feel at home, but become a contributing member
as well? Dave and Andy are those neighbors.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Foreword ® xiii

As a relative newcomer, it's easy to be overwhelmed not by the act of program-
ming but the process of becoming a programmer. There is an entire mindset
shift that needs to happen—a change in habits, behaviors, and expectations.
The process of becoming a better programmer doesn’t just happen because
you know how to code; it must be met with intention and deliberate practice.
This book is a guide to becoming a better programmer efficiently.

But make no mistake—it doesn’t tell you how programming should be. It's
not philosophical or judgmental in that way. It tells you, plain and simple,
what a Pragmatic Programmer is—how they operate, and how they approach
code. They leave it up to you to decide if you want to be one. If you feel it's
not for you, they won'’t hold it against you. But if you decide it is, they’re your
friendly neighbors, there to show you the way.

» Saron Yitbarelk

Founder & CEO of CodeNewbie
Host of Command Line Heroes

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

CHAPTER 4
Pragmatic Paranoia

You Can’t Write Perfect Software

Did that hurt? It shouldn’t. Accept it as an axiom of life. Embrace it. Celebrate
it. Because perfect software doesn’t exist. No one in the brief history of com-
puting has ever written a piece of perfect software. It’s unlikely that you’'ll be
the first. And unless you accept this as a fact, you'll end up wasting time and
energy chasing an impossible dream.

So, given this depressing reality, how does a Pragmatic Programmer turn it
into an advantage? That’s the topic of this chapter.

Everyone knows that they personally are the only good driver on Earth. The
rest of the world is out there to get them, blowing through stop signs, weaving
between lanes, not indicating turns, texting on the phone, and just generally
not living up to our standards. So we drive defensively. We look out for trouble
before it happens, anticipate the unexpected, and never put ourselves into a
position from which we can’t extricate ourselves.

The analogy with coding is pretty obvious. We are constantly interfacing with
other people’s code—code that might not live up to our high standards—and
dealing with inputs that may or may not be valid. So we are taught to code
defensively. If there’s any doubt, we validate all information we're given. We
use assertions to detect bad data, and distrust data from potential attackers
or trolls. We check for consistency, put constraints on database columns,
and generally feel pretty good about ourselves.

But Pragmatic Programmers take this a step further. They don’t trust them-
selves, either. Knowing that no one writes perfect code, including themselves,
Pragmatic Programmers build in defenses against their own mistakes. We

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 104

describe the first defensive measure in Design by Contract: clients and suppli-

ers must agree on rights and responsibilities.

In DeadPrograms TellNoLles we want to ensure that we do no damage while

we're working the bugs out. So we try to check things often and terminate
the program if things go awry.

Assertive Programming describes an easy method of checking along the

way—write code that actively verifies your assumptions.

As your programs get more dynamic, you'll find yourself juggling system
resources—memory, files, devices, and the like. In How to Balance Resources,
we'll suggest ways of ensuring that you don’t drop any of the balls.

And most importantly, we stick to small steps always, as described in Don't

Outrun Your Headlights, so we don't fall off the edge of the cliff.

In a world of imperfect systems, ridiculous time scales, laughable tools, and
impossible requirements, let’s play it safe. As Woody Allen said, “When
everybody actually is out to get you, paranoia is just good thinking.”

Design by Contract

Nothing astonishes men so much as common sense and plain dealing.

Ralph Waldo Emerson, Essays

Dealing with computer systems is hard. Dealing with people is even harder.
But as a species, we've had longer to figure out issues of human interactions.
Some of the solutions we've come up with during the last few millennia can
be applied to writing software as well. One of the best solutions for ensuring
plain dealing is the contract.

A contract defines your rights and responsibilities, as well as those of the
other party. In addition, there is an agreement concerning repercussions if
either party fails to abide by the contract.

Maybe you have an employment contract that specifies the hours you’ll work
and the rules of conduct you must follow. In return, the company pays you
a salary and other perks. Each party meets its obligations and everyone
benefits.

It’s an idea used the world over—both formally and informally—to help humans
interact. Can we use the same concept to help software modules interact?
The answer is “yes.”

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Design by Contract ® 105

DBC
Bertrand Meyer (Object-Oriented Software Construction [Mey97]) developed

the concept of Design by Contract for the language Eiffel.' It is a simple yet
powerful technique that focuses on documenting (and agreeing to) the rights
and responsibilities of software modules to ensure program correctness. What
is a correct program? One that does no more and no less than it claims to
do. Documenting and verifying that claim is the heart of Design by Contract

(DBC, for short).

Every function and method in a software system does something. Before it
starts that something, the function may have some expectation of the state
of the world, and it may be able to make a statement about the state of the
world when it concludes. Meyer describes these expectations and claims as
follows:

Preconditions
What must be true in order for the routine to be called; the routine’s
requirements. A routine should never get called when its preconditions
would be violated. It is the caller’s responsibility to pass good data (see
the box on page 110).

Postconditions
What the routine is guaranteed to do; the state of the world when the
routine is done. The fact that the routine has a postcondition implies that
it will conclude: infinite loops aren’t allowed.

Class invariants
A class ensures that this condition is always true from the perspective of
a caller. During internal processing of a routine, the invariant may not
hold, but by the time the routine exits and control returns to the caller,
the invariant must be true. (Note that a class cannot give unrestricted
write-access to any data member that participates in the invariant.)

The contract between a routine and any potential caller can thus be read as

If all the routine’s preconditions are met by the caller, the routine shall guarantee
that all postconditions and invariants will be true when it completes.

If either party fails to live up to the terms of the contract, then a remedy
(which was previously agreed to) is invoked—maybe an exception is raised,
or the program terminates. Whatever happens, make no mistake that failure
to live up to the contract is a bug. It is not something that should ever happen,

1. Based in part on earlier work by Dijkstra, Floyd, Hoare, Wirth, and others.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 106

which is why preconditions should not be used to perform things such as
user-input validation.

Some languages have better support for these concepts than others. Clojure,
for example, supports pre- and post-conditions as well as the more compre-
hensive instrumentation provided by specs. Here’s an example of a banking
function to make a deposit using simple pre- and post-conditions:

(defn accept-deposit [account-id amount]
{ :pre [(> amount 0.00)
(account-open? account-id)]
:post [(contains? (account-transactions account-id) %) 1 }
"Accept a deposit and return the new transaction id"
;; Some other processing goes here...
;3 Return the newly created transaction:
(create-transaction account-id :deposit amount))

There are two preconditions for the accept-deposit function. The first is that the
amount is greater than zero, and the second is that the account is open and
valid, as determined by some function named account-open?. There is also a
postcondition: the function guarantees that the new transaction (the return
value of this function, represented here by ‘%’) can be found among the
transactions for this account.

If you call accept-deposit with a positive amount for the deposit and a valid
account, it will proceed to create a transaction of the appropriate type and
do whatever other processing it does. However, if there’s a bug in the program
and you somehow passed in a negative amount for the deposit, you'll get a
runtime exception:

Exception in thread "main"...
Caused by: java.lang.AssertionError: Assert failed: (> amount 0.0)

Similarly, this function requires that the specified account is open and valid.
If it’s not, you'll see that exception instead:

Exception in thread "main"...
Caused by: java.lang.AssertionError: Assert failed: (account-open? account-id)

Other languages have features that, while not DBC-specific, can still be used
to good effect. For example, Elixir uses guard clauses to dispatch function
calls against several available bodies:

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Design by Contract ® 107

defmodule Deposits do
def accept_deposit(account_id, amount) when (amount > 100000) do
Call the manager!
end
def accept_deposit(account_id, amount) when (amount > 10000) do
Extra Federal requirements for reporting
Some processing...
end
def accept_deposit(account_id, amount) when (amount > @) do
Some processing...
end
end

In this case, calling accept_deposit with a large enough amount may trigger
additional steps and processing. Try to call it with an amount less than or
equal to zero, however, and you’ll get an exception informing you that you
can't:

*% (FunctionClauseError) no function clause matching in Deposits.accept_deposit/2

This is a better approach than simply checking your inputs; in this case, you
simply can not call this function if your arguments are out of range.

Design with Contracts

In Orthogonality, we recommended writing “shy” code. Here, the emphasis is
on lazycodebe strict in what you will accept before you begin, and promise
as little as possible in return. Remember, if your contract indicates that you’ll
accept anything and promise the world in return, then you've got a lot of code

to write!

In any programming language, whether it's functional, object-oriented, or
procedural, DBC forces you to think.

Class Invariants and Functional Languages

It's a naming thing. Eiffel is an object-oriented language, so Meyer named
this idea “class invariant.” But, really, it's more general than that. What this
idea really refers to is state. In an object-oriented language, the state is
associated with instances of classes. But other languages have state, too.

In a functional language, you typically pass state to functions and receive
updated state as a result. The concepts of invariants is just as useful in these
circumstances.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 108

DBC and Test-Driven Development

Is Design by Contract needed in a world where developers practice unit testing, test-
driven development (TDD), property-based testing, or defensive programming?

The short answer is “yes.”

DBC and testing are different approaches to the broader topic of program correctness.
They both have value and both have uses in different situations. DBC offers several
advantages over specific testing approaches:

e DBC doesn't require any setup or mocking

e DBC defines the parameters for success or failure in all cases, whereas testing
can only target one specific case at a time

e TDD and other testing happens only at “test time” within the build cycle. But
DBC and assertions are forever: during design, development, deployment, and
maintenance

e TDD does not focus on checking internal invariants within the code under test,
it’s more black-box style to check the public interface

¢ DBC is more efficient (and DRY-er) than defensive programming, where everyone
has to validate data in case no one else does.

TDD is a great technique, but as with many techniques, it might invite you to concen-
trate on the “happy path,” and not the real world full of bad data, bad actors, bad
versions, and bad specifications.

Implementing DBC

Simply enumerating what the input domain range is, what the boundary
conditions are, and what the routine promises to deliver—or, more importantly,
what it doesn’t promise to deliver—before you write the code is a huge leap
forward in writing better software. By not stating these things, you are back
to programming by coincidence (see the discussion on page 197), which is where

many projects start, finish, and fail.

In languages that do not support DBC in the code, this might be as far as
you can go—and that’s not too bad. DBC is, after all, a design technique.
Even without automatic checking, you can put the contract in the code as
comments or in the unit tests and still get a very real benefit.

Assertions

While documenting these assumptions is a great start, you can get much
greater benefit by having the compiler check your contract for you. You can
partially emulate this in some languages by using assertions: runtime checks

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Design by Contract ® 109

of logical conditions (see Topic 25, Assertive Programming, on page 115). Why

only partially? Can’t you use assertions to do everything DBC can do?

Unfortunately, the answer is no. To begin with, in object-oriented languages
there probably is no support for propagating assertions down an inheritance
hierarchy. This means that if you override a base class method that has a
contract, the assertions that implement that contract will not be called cor-
rectly (unless you duplicate them manually in the new code). You must
remember to call the class invariant (and all base class invariants) manually
before you exit every method. The basic problem is that the contract is not
automatically enforced.

In other environments, the exceptions generated from DBC-style assertions
might be turned off globally or ignored in the code.

Also, there is no built-in concept of “old” values; that is, values as they
existed at the entry to a method. If you're using assertions to enforce contracts,
you must add code to the precondition to save any information you’ll want
to use in the postcondition, if the language will even allow that. In the Eiffel
language, where DBC was born, you can just use old expression.

Finally, conventional runtime systems and libraries are not designed to sup-
port contracts, so these calls are not checked. This is a big loss, because it
is often at the boundary between your code and the libraries it uses that the
most problems are detected (see Topic 24, Dead Programs Tell No Lies, on

DBC and Crashing Early
DBC fits in nicely with our concept of crashing early (see Topic 24, Dead

validate the preconditions, postconditions, and invariants, you can crash
early and report more accurate information about the problem.

For example, suppose you have a method that calculates square roots. It
needs a DBC precondition that restricts the domain to positive numbers. In
languages that support DBC, if you pass sqrt a negative parameter, you'll get
an informative error such as sqrt_arg_must_be_positive, along with a stack trace.

This is better than the alternative in other languages such as Java, C, and
C++ where passing a negative number to sqrt returns the special value NaN (Not
a Number). It may be some time later in the program that you attempt to do
some math on NaN, with surprising results.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 110

Who's Responsible?

Who is responsible for checking the precondition, the caller or the routine being
called? When implemented as part of the language, the answer is neither: the precon-
dition is tested behind the scenes after the caller invokes the routine but before the
routine itself is entered. Thus if there is any explicit checking of parameters to be
done, it must be performed by the caller, because the routine itself will never see
parameters that violate its precondition. (For languages without built-in support, you
would need to bracket the called routine with a preamble and/or postamble that
checks these assertions.)

Consider a program that reads a number from the console, calculates its square root
(by calling sqrt), and prints the result. The sqrt function has a precondition—its argument
must not be negative. If the user enters a negative number at the console, it is up to
the calling code to ensure that it never gets passed to sqrt. This calling code has many
options: it could terminate, it could issue a warning and read another number, or it
could make the number positive and append an i to the result returned by sqrt.
Whatever its choice, this is definitely not sqrt’s problem.

By expressing the domain of the square root function in the precondition of the sqrt
routine, you shift the burden of correctness to the caller—where it belongs. You can
then design the sqrt routine secure in the knowledge that its input will be in range.

It's much easier to find and diagnose the problem by crashing early, at the
site of the problem.

Semantic Invariants

You can use semantic invariants to express inviolate requirements, a kind of
“philosophical contract.”

We once wrote a debit card transaction switch. A major requirement was that
the user of a debit card should never have the same transaction applied to
their account twice. In other words, no matter what sort of failure mode might
happen, the error should be on the side of not processing a transaction rather
than processing a duplicate transaction.

This simple law, driven directly from the requirements, proved to be very
helpful in sorting out complex error recovery scenarios, and guided the detailed
design and implementation in many areas.

Be sure not to confuse requirements that are fixed, inviolate laws with those
that are merely policies that might change with a new management regime.
That’s why we use the term semantic invariants—it must be central to the
very meaning of a thing, and not subject to the whims of policy (which is what
more dynamic business rules are for).

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Design by Contract ® 111

When you find a requirement that qualifies, make sure it becomes a well-
known part of whatever documentation you are producing—whether it is a
bulleted list in the requirements document that gets signed in triplicate or
just a big note on the common whiteboard that everyone sees. Try to state it
clearly and unambiguously. For example, in the debit card example, we might
write

Err in favor of the consumer.

This is a clear, concise, unambiguous statement that’s applicable in many
different areas of the system. It is our contract with all users of the system,
our guarantee of behavior.

Dynamic Contracts and Agents

Until now, we have talked about contracts as fixed, immutable specifications.
But in the landscape of autonomous agents, this doesn’t need to be the case.
By the definition of “autonomous,” agents are free to reject requests that they
do not want to honor. They are free to renegotiate the contract—*I can’t provide
that, but if you give me this, then I might provide something else.”

Certainly any system that relies on agent technology has a critical dependence
on contractual arrangements—even if they are dynamically generated.

Imagine: with enough components and agents that can negotiate their own
contracts among themselves to achieve a goal, we might just solve the software
productivity crisis by letting software solve it for us.

But if we can’t use contracts by hand, we won’t be able to use them automat-
ically. So next time you design a piece of software, design its contract as well.

Related Sections Include

e Topic 24, Dead Programs Tell No Lies, on page 112

* Topic 25, Assertive Programming, on page 115

Challenges

¢ Points to ponder: If DBC is so powerful, why isn’t it used more widely? Is
it hard to come up with the contract? Does it make you think about issues
you’d rather ignore for now? Does it force you to THINK!? Clearly, this is
a dangerous tool!

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 112

Exercises

Exercise 14 (possible answer on page 298)

Design an interface to a kitchen blender. It will eventually be a web-based,
IoT-enabled blender, but for now we just need the interface to control it. It
has ten speed settings (0O means off). You can’t operate it empty, and you can
change the speed only one unit at a time (that is, from O to 1, and from 1 to
2, not from O to 2).

Here are the methods. Add appropriate pre- and postconditions and an
invariant.

int getSpeed()

void setSpeed(int x)
boolean isFull()
void fill()

void empty()

Exercise 15 (possible answer on page 299)

How many numbers are in the series O, 5, 10, 15, ..., 100?

Dead Programs Tell No Lies

Have you noticed that sometimes other people can detect that things aren’t
well with you before you're aware of the problem yourself? It’s the same with
other people’s code. If something is starting to go awry with one of our pro-
grams, sometimes it is a library or framework routine that catches it first.
Maybe we’'ve passed in a nil value, or an empty list. Maybe there’s a missing
key in that hash, or the value we thought contained a hash really contains
a list instead. Maybe there was a network error or filesystem error that we
didn’t catch, and we've got empty or corrupted data. A logic error a couple of
million instructions ago means that the selector for a case statement is no
longer the expected 1, 2, or 3. We'll hit the default case unexpectedly. That’s
also one reason why each and every case/switch statement needs to have a
default clause: we want to know when the “impossible” has happened.

It's easy to fall into the “it can’t happen” mentality. Most of us have written
code that didn’t check that a file closed successfully, or that a trace statement
got written as we expected. And all things being equal, it’s likely that we didn’t
need to—the code in question wouldn’t fail under any normal conditions. But
we're coding defensively. We're making sure that the data is what we think

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Dead Programs Tell No Lies ® 113

it is, that the code in production is the code we think it is. We're checking
that the correct versions of dependencies were actually loaded.

All errors give you information. You could convince yourself that the error
can’t happen, and choose to ignore it. Instead, Pragmatic Programmers tell
themselves that if there is an error, something very, very bad has happened.
Don't forget to Read the Damn Error Message (see Coder in a Strange Land,
onpage OL. T e

Catch and Release Is for Fish

Some developers feel that is it good style to catch or rescue all exceptions,
re-raising them after writing some kind of message. Their code is full of things
like this (where a bare raise statement reraises the current exception):

try do
add_score_to_board(score);
rescue InvalidScore
Logger.error("Can't add invalid score. Exiting");
raise
rescue BoardServerDown
Logger.error("Can't add score: board is down. Exiting");
raise
rescue StaleTransaction
Logger.error("Can't add score: stale transaction. Exiting");
raise
end

Here’s how Pragmatic Programmers would write this:
add_score_to_board(score);

We prefer it for two reasons. First, the application code isn’t eclipsed by the
error handling. Second, and perhaps more important, the code is less coupled.
In the verbose example, we have to list every exception the add_score_to_board
method could raise. If the writer of that method adds another exception, our
code is subtly out of date. In the more pragmatic second version, the new
exception is automatically propagated.

Crash Early
Crash, Don’t Trash

One of the benefits of detecting problems as soon as you can is that you can
crash earlier, and crashing is often the best thing you can do. The alternative

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 114

may be to continue, writing corrupted data to some vital database or com-
manding the washing machine into its twentieth consecutive spin cycle.

The Erlang and Elixir languages embrace this philosophy. Joe Armstrong,
inventor of Erlang and author of Programming Erlang: Software for a Concurrent

of time. Let it crash!” In these environments, programs are designed to fail,
but that failure is managed with supervisors. A supervisor is responsible for
running code and knows what to do in case the code fails, which could include
cleaning up after it, restarting it, and so on. What happens when the super-
visor itself fails? Its own supervisor manages that event, leading to a design
composed of supervisor trees. The technique is very effective and helps to
account for the use of these languages in high-availability, fault-tolerant
systems.

In other environments, it may be inappropriate simply to exit a running pro-
gram. You may have claimed resources that might not get released, or you
may need to write log messages, tidy up open transactions, or interact with
other processes.

However, the basic principle stays the same—when your code discovers that
something that was supposed to be impossible just happened, your program
is no longer viable. Anything it does from this point forward becomes suspect,
so terminate it as soon as possible.

A dead program normally does a lot less damage than a crippled one.

Related Sections Include

. Topic 20, Debugging on page 88

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Assertive Programming ® 115

Assertive Programming

There is a luxury in self-reproach. When we blame ourselves we
feel no one else has a right to blame us.

Oscar Wilde, The Picture of Dorian Gray

It seems that there’s a mantra that every programmer must memorize early
in his or her career. It is a fundamental tenet of computing, a core belief that
we learn to apply to requirements, designs, code, comments, just about
everything we do. It goes

This can never happen...

“This application will never be used abroad, so why internationalize it?” “count
can’t be negative.” “Logging can’t fail.”

Let’s not practice this kind of self-deception, particularly when coding.

Use Assertions to Prevent the Impossible

Whenever you find yourself thinking “but of course that could never happen,”
add code to check it. The easiest way to do this is with assertions. In many
language implementations, you'll find some form of assert that checks a Boolean
condition.” These checks can be invaluable. If a parameter or a result should
never be null, then check for it explicitly:

assert (result != null);
In the Java implementation, you can (and should) add a descriptive string:
assert result != null && result.size() > @ : "Empty result from XYZ";

Assertions are also useful checks on an algorithm’s operation. Maybe you've
written a clever sort algorithm, named my_sort. Check that it works:

books = my_sort(find("scifi"))
assert(is_sorted?(books))

Don’t use assertions in place of real error handling. Assertions check for
things that should never happen: you don’t want to be writing code such as
the following:

2. In C and C++ these are usually implemented as macros. In Java, assertions are disabled
by default. Invoke the Java VM with the -enableassertions flag to enable them, and leave
them enabled.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 116

puts("Enter 'Y' or 'N': ")
ans = gets[0] # Grab first character of response
assert((ch == 'Y') || (ch == 'N")) # Very bad idea!

And just because most assert implementations will terminate the process when
an assertion fails, there’s no reason why versions you write should. If you
need to free resources, catch the assertion’s exception or trap the exit, and
run your own error handler. Just make sure the code you execute in those
dying milliseconds doesn’t rely on the information that triggered the assertion
failure in the first place.

Assertions and Side Effects

It's embarrassing when the code we add to detect errors actually ends up
creating new errors. This can happen with assertions if evaluating the condi-
tion has side effects. For example, it would be a bad idea to code something
such as

while (iter.hasMoreElements()) {

assert(iter.nextElement() '= null);
Object obj = iter.nextElement();
/] ...

}

The .nextElement() call in the assertion has the side effect of moving the iterator
past the element being fetched, and so the loop will process only half the
elements in the collection. It would be better to write

while (iter.hasMoreElements()) {
Object obj = iter.nextElement();
assert(obj != null);
/] ..

}

This problem is a kind of Heisenbug’—debugging that changes the behavior
of the system being debugged.

(We also believe that nowadays, when most languages have decent support
for iterating functions over collections, this kind of explicit loop is unnecessary
and bad form.)

Leave Assertions Turned On

There is a common misunderstanding about assertions. It goes something
like this:

3. http://www.eps.mcgill.ca/jargon/jargon.html#heisenbug

From the Library of David Carty

http://www.eps.mcgill.ca/jargon/jargon.html#heisenbug
http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Assertive Programming © 117

Assertions add some overhead to code. Because they check for things that should
never happen, they’ll get triggered only by a bug in the code. Once the code has
been tested and shipped, they are no longer needed, and should be turned off to
make the code run faster. Assertions are a debugging facility.

There are two patently wrong assumptions here. First, they assume that
testing finds all the bugs. In reality, for any complex program you are
unlikely to test even a minuscule percentage of the permutations your code
will be put through. Second, the optimists are forgetting that your program
runs in a dangerous world. During testing, rats probably won’t gnaw through
a communications cable, someone playing a game won’'t exhaust memory,
and log files won't fill the storage partition. These things might happen when
your program runs in a production environment. Your first line of defense is
checking for any possible error, and your second is using assertions to try to
detect those you've missed.

Turning off assertions when you deliver a program to production is like
crossing a high wire without a net because you once made it across in practice.
There’s dramatic value, but it’s hard to get life insurance.

Even if you do have performance issues, turn off only those assertions that
really hit you. The sort example above may be a critical part of your applica-
tion, and may need to be fast. Adding the check means another pass through
the data, which might be unacceptable. Make that particular check optional,
but leave the rest in.

Use Assertions in Production, Win Big Money

A former neighbor of Andy’s headed up a small startup company that made network
devices. One of their secrets to success was the decision to leave assertions in place
in production releases. These assertions were well crafted to report all the pertinent
data leading to the failure, and presented via a nice-looking UI to the end user. This
level of feedback, from real users under actual conditions, allowed the developers to
plug the holes and fix these obscure, hard-to-reproduce bugs, resulting in remarkably
stable, bullet-proof software.

This small, unknown company had such a solid product, it was soon acquired for
hundreds of millions of dollars.

Just sayin’.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 118

Exercise 16 (possible answer on page 299)

A quick reality check. Which of these “impossible” things can happen?

¢ A month with fewer than 28 days

¢ Error code from a system call: can’t access the current directory
e In C++: a=2;b=3; but (a+b) does not equal 5

¢ A triangle with an interior angle sum # 180°

¢ A minute that doesn’t have 60 seconds

* (a+1)<a

Related Sections Include

e Topic 23, Design by Contract, on page 104

How to Balance Resources

To light a candle is to cast a shadow...

Ursula K. Le Guin, A Wizard of Earthsea

We all manage resources whenever we code: memory, transactions, threads,
network connections, files, timers—all kinds of things with limited availability.
Most of the time, resource usage follows a predictable pattern: you allocate
the resource, use it, and then deallocate it.

However, many developers have no consistent plan for dealing with resource
allocation and deallocation. So let us suggest a simple tip:

Finish What You Start

This tip is easy to apply in most circumstances. It simply means that the
function or object that allocates a resource should be responsible for deallo-
cating it. Let’'s see how it applies by looking at an example of some bad
code—part of a Ruby program that opens a file, reads customer information
from it, updates a field, and writes the result back. We've eliminated error
handling to make the example clearer:

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

How to Balance Resources ® 119

def read_customer
@customer_file = File.open(@name + ".rec", "r+")
@balance = BigDecimal(@customer_file.gets)
end

def write_customer
@customer_file.rewind
@customer_file.puts abalance.to_s
@customer_file.close

end

def update_customer(transaction_amount)
read_customer
@balance = @balance.add(transaction_amount,2)
write_customer

end

At first sight, the routine update_customer looks reasonable. It seems to implement
the logic we require—reading a record, updating the balance, and writing the
record back out. However, this tidiness hides a major problem. The routines
read_customer and write_customer are tightly coupled*—they share the instance
variable customer_file. read_customer opens the file and stores the file reference in
customer_file, and then write_customer uses that stored reference to close the file
when it finishes. This shared variable doesn’t even appear in the update_customer
routine.

Why is this bad? Let’s consider the unfortunate maintenance programmer
who is told that the specification has changed—the balance should be
updated only if the new value is not negative. They go into the source and
change update_customer:

def update_customer(transaction_amount)
read_customer
if (transaction_amount >= 0.00)
@balance = @balance.add(transaction_amount,2)
write_customer
end
end

All seems fine during testing. However, when the code goes into production,
it collapses after several hours, complaining of too many open files. It turns
out that write_customer is not getting called in some circumstances. When that
happens, the file is not getting closed.

A very bad solution to this problem would be to deal with the special case in
update_customer:.

4. For a discussion of the dangers of coupled code, see Topic 28, Decoupling, on page 130.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 120

def update_customer(transaction_amount)
read_customer
if (transaction_amount >= 0.00)
@balance += BigDecimal(transaction_amount, 2)
write_customer
else
acustomer_file.close # Bad idea!
end
end

This will fix the problem—the file will now get closed regardless of the new
balance—but the fix now means that three routines are coupled through the
shared variable customer_file, and keeping track of when the file is open or not
is going to start to get messy. We're falling into a trap, and things are going
to start going downbhill rapidly if we continue on this course. This is not bal-
anced!

The finish what you start tip tells us that, ideally, the routine that allocates
a resource should also free it. We can apply it here by refactoring the code
slightly:

def read_customer(file)

@balance=BigDecimal(file.gets)
end

def write_customer(file)
file.rewind
file.puts @balance.to_s
end

def update_customer(transaction_amount)

file=File.open(@name + ".rec", "r+") # >-—-
read_customer(file) #

@balance = @balance.add(transaction_amount,2) # |
file.close # <--

end

Instead of holding on to the file reference, we've changed the code to pass it
as a parameter.’” Now all the responsibility for the file is in the update_customer
routine. It opens the file and (finishing what it starts) closes it before returning.
The routine balances the use of the file: the open and close are in the same
place, and it is apparent that for every open there will be a corresponding
close. The refactoring also removes an ugly shared variable.

There’s another small but important improvement we can make. In many
modern languages, you can scope the lifetime of a resource to an enclosed

5. See the tip on page 153.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

How to Balance Resources ® 121

block of some sort. In Ruby, there’s a variation of the file open that passes in
the open file reference to a block, shown here between the do and the end:

def update_customer(transaction_amount)

File.open(@name + ".rec", "r+") do |filel # >--
read_customer(file) #
@balance = @balance.add(transaction_amount,2) # |
write_customer(file) #

end # <--

end

In this case, at the end of the block the file variable goes out of scope and the
external file is closed. Period. No need to remember to close the file and release
the source, it is guaranteed to happen for you.

When in doubt, it always pays to reduce scope.

Act Locally

Nest Allocations

The basic pattern for resource allocation can be extended for routines that
need more than one resource at a time. There are just two more suggestions:

¢ Deallocate resources in the opposite order to that in which you allocate
them. That way you won’t orphan resources if one resource contains ref-
erences to another.

e When allocating the same set of resources in different places in your code,
always allocate them in the same order. This will reduce the possibility
of deadlock. (If process A claims resourcel and is about to claim resource2,
while process B has claimed resource2 and is trying to get resourcel, the two
processes will wait forever.)

It doesn’t matter what kind of resources we're using—transactions, network
connections, memory, files, threads, windows—the basic pattern applies:
whoever allocates a resource should be responsible for deallocating it. How-
ever, in some languages we can develop the concept further.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 122

In this topic we're mostly looking at ephemeral resources used by your running pro-
cess. But you might want to consider what other messes you might be leaving behind.

For instance, how are your logging files handled? You are creating data and using
up storage space. Is there something in place to rotate the logs and clean them up?
How about for your unofficial debug files you're dropping? If youre adding logging
records in a database, is there a similar process in place to expire them? For anything
that you create that takes up a finite resource, consider how to balance it.

What else are you leaving behind?

Objects and Exceptions

The equilibrium between allocations and deallocations is reminiscent of an
object-oriented class’s constructor and destructor. The class represents a
resource, the constructor gives you a particular object of that resource type,
and the destructor removes it from your scope.

If you are programming in an object-oriented language, you may find it useful
to encapsulate resources in classes. Each time you need a particular resource
type, you instantiate an object of that class. When the object goes out of scope,
or is reclaimed by the garbage collector, the object’s destructor then deallocates
the wrapped resource.

This approach has particular benefits when you're working with languages
where exceptions can interfere with resource deallocation.

Balancing and Exceptions

Languages that support exceptions can make resource deallocation tricky. If
an exception is thrown, how do you guarantee that everything allocated prior
to the exception is tidied up? The answer depends to some extent on the
language support. You generally have two choices:

1. Use variable scope (for example, stack variables in C++ or Rust)
2. Use a finally clause in a try...catch block

With usual scoping rules in languages such as C++ or Rust, the variable’s
memory will be reclaimed when the variable goes out of scope via a return,
block exit, or exception. But you can also hook in to the variable’s destructor
to cleanup any external resources. In this example, the Rust variable named
accounts will automatically close the associated file when it goes out of scope:

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

How to Balance Resources ¢ 123

{
let mut accounts = File::open("mydata.txt")?; // >--
// use 'accounts' // |
cee // |
} /] <==

// 'accounts' is now out of scope, and the file is
// automatically closed

The other option, if the language supports it, is the finally clause. A finally clause
will ensure that the specified code will run whether or not an exception was
raised in the try...catch block:

try

// some dodgy stuff
catch

// exception was raised
finally

// clean up in either case

However, there is a catch.

An Exception Antipattern

We commonly see folks writing something like this:

begin
thing = allocate_resource()
process(thing)

finally
deallocate(thing)

end

Can you see what's wrong?

What happens if the resource allocation fails and raises an exception? The
finally clause will catch it, and try to deallocate a thing that was never allocated.

The correct pattern for handling resource deallocation in an environment with
exceptions is

thing = allocate_resource()
begin
process(thing)
finally
deallocate(thing)
end

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 124

When You Can’t Balance Resources

There are times when the basic resource allocation pattern just isn’t appro-
priate. Commonly this is found in programs that use dynamic data structures.
One routine will allocate an area of memory and link it into some larger
structure, where it may stay for some time.

The trick here is to establish a semantic invariant for memory allocation. You
need to decide who is responsible for data in an aggregate data structure.
What happens when you deallocate the top-level structure? You have three
main options:

e The top-level structure is also responsible for freeing any substructures
that it contains. These structures then recursively delete data they contain,
and so on.

e The top-level structure is simply deallocated. Any structures that it
pointed to (that are not referenced elsewhere) are orphaned.

e The top-level structure refuses to deallocate itself if it contains any sub-
structures.

The choice here depends on the circumstances of each individual data
structure. However, you need to make it explicit for each, and implement
your decision consistently. Implementing any of these options in a procedural
language such as C can be a problem: data structures themselves are not
active. Our preference in these circumstances is to write a module for each
major structure that provides standard allocation and deallocation facilities
for that structure. (This module can also provide facilities such as debug
printing, serialization, deserialization, and traversal hooks.)

Checking the Balance

Because Pragmatic Programmers trust no one, including ourselves, we feel
that it is always a good idea to build code that actually checks that resources
are indeed freed appropriately. For most applications, this normally means
producing wrappers for each type of resource, and using these wrappers to
keep track of all allocations and deallocations. At certain points in your code,
the program logic will dictate that the resources will be in a certain state: use
the wrappers to check this. For example, a long-running program that services
requests will probably have a single point at the top of its main processing
loop where it waits for the next request to arrive. This is a good place to ensure
that resource usage has not increased since the last execution of the loop.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Don’t Outrun Your Headlights ® 125

At a lower, but no less useful level, you can invest in tools that (among other
things) check your running programs for memory leaks.

Related Sections Include

e Topic 24, Dead Programs Tell No Lies, on page 112

Challenges

e Although there are no guaranteed ways of ensuring that you always free
resources, certain design techniques, when applied consistently, will help.
In the text we discussed how establishing a semantic invariant for major
data structures could direct memory deallocation decisions. Consider
how Topic 23, Design by Contract, on page 104, could help refine this idea.

Some C and C++ developers make a point of setting a pointer to NULL after
they deallocate the memory it references. Why is this a good idea?

Exercise 18 (possible answer on page 299)

Some Java developers make a point of setting an object variable to NULL after
they have finished using the object. Why is this a good idea?

Don’t Outrun Your Headlights

It’s tough to malce predictions, especially about the future.

Lawrence "Yogi" Berra, after a Danish Proverb

It's late at night, dark, pouring rain. The two-seater whips around the tight
curves of the twisty little mountain roads, barely holding the corners. A
hairpin comes up and the car misses it, crashing though the skimpy guardrail
and soaring to a fiery crash in the valley below. State troopers arrive on the
scene, and the senior officer sadly shakes their head. “Must have outrun their
headlights.”

Had the speeding two-seater been going faster than the speed of light? No,
that speed limit is firmly fixed. What the officer referred to was the driver’s
ability to stop or steer in time in response to the headlight’s illumination.

Headlights have a certain limited range, known as the throw distance. Past
that point, the light spread is too diffuse to be effective. In addition, headlights

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Chapter 4. Pragmatic Paranoia ® 126

only project in a straight line, and won't illuminate anything off-axis, such
as curves, hills, or dips in the road. According to the National Highway Traffic
Safety Administration, the average distance illuminated by low-beam head-
lights is about 160 feet. Unfortunately, stopping distance at 40mph is 189 feet,
and at 70mph a whopping 464 feet.® So indeed, it's actually pretty easy to
outrun your headlights.

In software development, our “headlights” are similarly limited. We can’t see
too far ahead into the future, and the further off-axis you look, the darker it
gets. So Pragmatic Programmers have a firm rule:

Take Small Steps—Always

Always take small, deliberate steps, checking for feedback and adjusting
before proceeding. Consider that the rate of feedback is your speed limit. You
never take on a step or a task that’s “too big.”

What do we mean exactly by feedback? Anything that independently confirms
or disproves your action. For example:

¢ Results in a REPL provide feedback on your understanding of APIs and
algorithms

e Unit tests provide feedback on your last code change

e User demo and conversation provide feedback on features and usability

What's a task that’s too big? Any task that requires “fortune telling.” Just as
the car headlights have limited throw, we can only see into the future perhaps
one or two steps, maybe a few hours or days at most. Beyond that, you can
quickly get past educated guess and into wild speculation. You might find
yourself slipping into fortune telling when you have to:

e Estimate completion dates months in the future

e Plan a design for future maintenance or extendability
e Guess user’s future needs

e Guess future tech availability

But, we hear you cry, aren’'t we supposed to design for future maintenance?
Yes, but only to a point: only as far ahead as you can see. The more you have
to predict what the future will look like, the more risk you incur that you’ll
be wrong. Instead of wasting effort designing for an uncertain future, you can
always fall back on designing your code to be replaceable. Make it easy to

6. Per the NHTSA, Stopping Distance = Reaction Distance + Braking Distance, assuming
an average reaction time of 1.5s and deceleration of 17.02ft/s>.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Don’t Outrun Your Headlights ® 127

throw out your code and replace it with something better suited. Making code
replaceable will also help with cohesion, decoupling, and DRY, leading to a
better design overall.

Even though you may feel confident of the future, there’s always the chance
of a black swan around the corner.

Black Swans
In his book, The Black Swan: The Impact of the Highly Improbable [TallO],

Nassim Nicholas Taleb posits that all significant events in history have come
from high-profile, hard-to-predict, and rare events that are beyond the realm
of normal expectations. These outliers, while statistically rare, have dispro-
portionate effects. In addition, our own cognitive biases tend to blind us to

changes creeping up on the edges of our work (see Stone Soup and Boiled

Around the time of the first edition of The Pragmatic Programmer, debate raged
in computer magazines and online forums over the burning question: “Who
would win the desktop GUI wars, Motif or OpenLook?”” It was the wrong
question. Odds are you've probably never heard of these technologies as nei-
ther “won” and the browser-centric web quickly dominated the landscape.

Avoid Fortune-Telling

Much of the time, tomorrow looks a lot like today. But don’t count on it.

Related Sections Include

e Topic 12, Tracer Bullets, on page 50
it Notes, on page 56

7. Motif and OpenLook were GUI standards for X-Window based Unix workstations.

From the Library of David Carty

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

Dave Thomas and Andy Hunt are internationally recognized
as leading voices in the software development community.
They consult and speak around the world. Together, they founded the
Pragmatic Bookshelf, publishing award-winning, leading-edge books for
software developers. They were two of the authors of the Agile Manifesto.

Dave currently teaches college, turns wood, and plays
with new technology and paradigms.

Andy writes science fiction, is an active musician,
and loves to tinker with technology.

But, most of all, they’re both driven to keep learning.

pragdave.me toolshed.com

From the Library of David Carty

	Cover
	Table of Contents
	Foreword
	Preface to the Second Edition
	How the Book Is Organized
	What’s in a Name?
	Source Code and Other Resources
	Send Us Feedback
	Second Edition Acknowledgments

	From the Preface to the First Edition
	Who Should Read This Book?
	What Makes a Pragmatic Programmer?
	Individual Pragmatists, Large Teams
	It’s a Continuous Process

	1. A Pragmatic Philosophy
	Topic 1. It's Your Life
	Topic 2. The Cat Ate My Source Code
	Topic 3. Software Entropy
	Topic 4. Stone Soup and Boiled Frogs
	Topic 5. Good-Enough Software
	Topic 6. Your Knowledge Portfolio
	Topic 7. Communicate!

	2. A Pragmatic Approach
	Topic 8. The Essence of Good Design
	Topic 9. DRY—The Evils of Duplication
	Topic 10. Orthogonality
	Topic 11. Reversibility
	Topic 12. Tracer Bullets
	Topic 13. Prototypes and Post-it Notes
	Topic 14. Domain Languages
	Topic 15. Estimating

	3. The Basic Tools
	Topic 16. The Power of Plain Text
	Topic 17. Shell Games
	Topic 18. Power Editing
	Topic 19. Version Control
	Topic 20. Debugging
	Topic 21. Text Manipulation
	Topic 22. Engineering Daybooks

	4. Pragmatic Paranoia
	Topic 23. Design by Contract
	Topic 24. Dead Programs Tell No Lies
	Topic 25. Assertive Programming
	Topic 26. How to Balance Resources
	Topic 27. Don't Outrun Your Headlights

	5. Bend, or Break
	Topic 28. Decoupling
	Topic 29. Juggling the Real World
	Topic 30. Transforming Programming
	Topic 31. Inheritance Tax
	Topic 32. Configuration

	6. Concurrency
	Topic 33. Breaking Temporal Coupling
	Topic 34. Shared State Is Incorrect State
	Topic 35. Actors and Processes
	Topic 36. Blackboards

	7. While You Are Coding
	Topic 37. Listen to Your Lizard Brain
	Topic 38. Programming by Coincidence
	Topic 39. Algorithm Speed
	Topic 40. Refactoring
	Topic 41. Test to Code
	Topic 42. Property-Based Testing
	Topic 43. Stay Safe Out There
	Topic 44. Naming Things

	8. Before the Project
	Topic 45. The Requirements Pit
	Topic 46. Solving Impossible Puzzles
	Topic 47. Working Together
	Topic 48. The Essence of Agility

	9. Pragmatic Projects
	Topic 49. Pragmatic Teams
	Topic 50. Coconuts Don't Cut It
	Topic 51. Pragmatic Starter Kit
	Topic 52. Delight Your Users
	Topic 53. Pride and Prejudice

	10. Postface
	A1. Bibliography
	A2. Possible Answers to the Exercises
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –

