Chapter 3

A Cryptography Primer

Scott R. Ellis
kCura Corporation, Chicago, IL, United States

s

“Cryptography,” as a word, literally means the “study of
hidden writing.” It comes from the Greek kpurttdg, “hid-
den, secret”; and from ypQoerv, graphein, “writing,” or
-lovia, -logia, “study.”l In practice, it is so much more
than that. The zeros and ones of compiled software binary,
something that frequently requires encryption, can hardly
be considered “writing.” Were a new word for
cryptography to be invented today, it would probably be
“secret communications.” It follows that, rather than point
to the first altered writing as the origins of cryptography, we
must look to the origins of communication and to the first
known alterations of it in any form. Historically, then, you
might say that cryptography is a built-in defense
mechanism, as a property of language. As you will see in
this chapter, ultimately this dependency is also the final,
greatest weakness of any cryptographic system, even the
perceivably unbreakable Advanced Encryption Standard
(AES) system. From unique, cultural body language to
language itself, to our every means of communication, it is
in our nature to want to prevent others who would do us
harm from intercepting private communications (which
could be about them!). Perhaps nothing so perfectly
illustrates this fact as the art of cryptography. It is, in its
purpose, an art form entirely devoted to the methods
whereby we can prevent information from falling into the
hands of those who would use it against us: our enemies.

Since the beginning of sentient language, cryptography
has been a part of communication. It is as old as language
itself. In fact, one could make the argument that the desire
and ability to encrypt communication, to alter a missive in
such a way so that only the intended recipient may
understand it, is an innate ability hard-wired into the
human genome. Aside from the necessity to communicate,

1. H. Liddell, R. Scott, Greek-English Lexicon, Oxford University Press,
1984.

it could well be what led to the development of language
itself. Over time, languages and dialects evolved, as we
can see with Spanish, French, Portuguese, and Italian, all
of which derived from Latin. People who speak French
have a great deal of trouble understanding people who
speak Spanish, and vice versa. The profusion of Latin
cognates in these languages is undisputed, but generally
speaking, the two languages are so far removed that they
are not dialects but rather separate languages. But why is
this? Certain abilities, such as walking, are built into our
nervous systems; other abilities, such as language, are not.
From Pig Latin to whispering circles to word jumbles,
to languages so foreign that only the native speakers
understand them, to diverse languages and finally modern
cryptography, it is in our nature to keep our communi-
cations secret.

So why is language not hard-wired into our nervous
system, as it is with bees, which are born knowing how to
tell another bee how far away a flower is, as well as the
quantity of pollen and whether there is danger present?
Why do we humans not all speak the same language?
The reason is undoubtedly because unlike bees, humans
understand that knowledge is power, and knowledge is
communicated via spoken and written words. Plus, we were
not born with giant stingers with which to sting people we
do not like. With the development of evolving languages
innate in our genetic wiring, the inception of cryptography
was inevitable.

In essence, computer-based cryptography is the art of
creating a form of communication that embraces the
following precepts:

e It can be readily understood by the intended recipients.

e It cannot be understood by unintended recipients.

e It can be adapted and changed easily with relatively
small modifications, such as a changed passphrase or
word.

Computer and Information Security Handbook. http://dx.doi.org/10.1016/B978-0-12-803843-7.00003-X 35

Copyright © 2013 Elsevier Inc. All rights reserved.



36 PART | I Overview of System and Network Security: A Comprehensive Introduction

All artificially created lexicons, such as the Pig Latin of
children, pictograph codes, gang-speak, and corporate
lingo, and even the names of music albums, such as Four
Flicks, are manners of cryptography in which real text,
sometimes not so ciphered, is hidden in what appears to be
plaintext. They are attempts at hidden communications.

1. WHAT IS CRYPTOGRAPHY? WHAT IS
ENCRYPTION?

Ask any ancient Egyptian and he will undoubtedly define
“cryptography” as the practice of burying the dead so that
they cannot be found again. The Egyptians were good at it;
thousands of years later, new crypts are still being
discovered. The Greek root krypt literally means “a hidden
place,” and as such it is an appropriate base for any term
involving cryptology. According to the Online Etymology
Dictionary, crypto- as a prefix, meaning “concealed, se-
cret,” has been used since 1760, and from the Greek
graphikos, “of or for writing, belonging to drawing,
picturesque.” Together, crypto + graphy would then mean
“hiding place for ideas, sounds, pictures, or words.” Graph,
technically from its Greek root, is “the art of writing.”
“Encryption,” in contrast, merely means the act of carrying
out some aspect of cryptography. “Cryptology,” with its
-ology ending, is the study of cryptography. Encryption is
subsumed by cryptography.

How Is Cryptography Done?

For most information technology (IT) occupations,
knowledge of cryptography is a small part of a broader skill
set and is generally limited to relevant applications. The
argument could be made that this is why the Internet is so
extraordinarily plagued with security breaches. The ma-
jority of IT administrators, software programmers, and
hardware developers are barely cognizant of the power of
true cryptography. Overburdened with battling the plague
that they inherited, they cannot afford to devote the time or
resources needed to implement a truly secure strategy. The
reason, as we shall see, is that as good as cryptographers
can be, for every cryptographer there is a decryptographer
working just as diligently to decipher a new encryption
algorithm.

Traditionally, cryptography has consisted of any means
possible whereby communications may be encrypted and
transmitted. This could be as simple as using a language
with which the opposition is not familiar. Who has not been
in a place where everyone around them was speaking a
language they did not understand? There are thousands of
languages in the world; nobody can know them all. As was
shown in World War II, when the Allied forces used
Navajo as a means of communicating freely, some lan-
guages are so obscure that an entire nation may not contain

one person who speaks it! All true cryptography is
composed of three parts: a cipher, an original message, and
the resultant encryption. The cipher is the method of
encryption used. Original messages are referred to as
plaintext or as clear text. A message that is transmitted
without encryption is said to be sent “in the clear.” The
resultant message is called a ciphertext or cryptogram. This
part of the chapter begins with a simple review of cryp-
tography procedures and carries them through; each section
builds on the next to illustrate the principles of

cryptography.

2. FAMOUS CRYPTOGRAPHIC DEVICES

The past few hundred years of technical development and
advances have brought greater and greater means to
decrypt, encode, and transmit information. With the advent
of the most modern warfare techniques and the increase in
communication and ease of reception, the need for
encryption has never been more urgent.

World War II publicized and popularized cryptography
in modern culture. The Allied forces’ ability to capture,
decrypt, and intercept Axis communications is said to have
hastened the end of the war by several years. Next, we take
a quick look at some famous cryptographic devices from
that era.

The Lorenz Cipher

The Lorenz cipher machine was an industrial-strength
ciphering machine used in teleprinter circuits by the
Germans during World War II. Not to be confused with its
smaller cousin, the Enigma machine, the Lorenz cipher
could possibly best be compared to a virtual private
network tunnel for a telegraph line, only it was not sending
Morse code, it was using a code like a sort of American
Standard Code for Information Interchange (ASCII) format.
A granddaddy of sorts, called the Baudot code, was used to
send alphanumeric communications across telegraph lines.
Each character was represented by a series of 5 bits.

The Lorenz cipher is often confused with the famous
Enigma, but unlike the Enigma (which was a portable field
unit), the Lorenz cipher could receive typed messages,
encrypt them, and send them to another distant Lorenz
cipher, which would then decrypt the signal. It used a
pseudorandom cipher XOR’d (an encryption algorithm)
with plaintext. The machine would be inserted inline as an
attachment to a Lorenz teleprinter. Fig. 3.1 is a rendered
drawing from a photograph of a Lorenz cipher machine.

Enigma

The Enigma machine was a field unit used in World War II
by German field agents to encrypt and decrypt messages



A Cryptography Primer Chapter | 3 37

Al

FIGURE 3.1 The Lorenz machine was set inline with a teletype to produce encrypted telegraphic signals.

and communications. Similar to the Feistel function of the
1970s, the Enigma machine was one of the first mechanized
methods of encrypting text using an iterative cipher. It
employed a series of rotors that, with some electricity, a
light bulb, and a reflector, allowed the operator to either
encrypt or decrypt a message. The original position of the
rotors, set with each encryption and based on a prearranged
pattern that in turn was based on the calendar, allowed the
machine to be used even if it was compromised.

When the Enigma was in use, with each subsequent key
press, the rotors would change in alignment from their set
positions in such a way that a different letter was produced
each time. With a message in hand, the operator would enter
each character into the machine by pressing a typewriter-like
key. The rotors would align and a letter would then
illuminate, telling the operator what the letter really was.
Likewise, when enciphering, the operator would press the key
and the illuminated letter would be the cipher text. The
continually changing internal flow of electricity that caused
the rotors to change was not random, but it created a poly-
alphabetic cipher that could be different each time it was used.

3. CIPHERS

Cryptography is built on one overarching premise: the need
for a cipher that can be used reliably and portably to encrypt
text so that through any means of cryptanalysis (differen-
tial, deductive, algebraic, or the like) the ciphertext cannot
be undone with available technology. Throughout the

centuries, there have been many attempts to create simple
ciphers that can achieve this goal. With the exception of the
one-time pad, which is not particularly portable, success
has been limited. Let us look at a few of these methods.

The Substitution Cipher

In this method, each letter of the message is replaced with a
single character. Table 3.1 shows an example of a substi-
tution cipher. Because some letters appear more often and
certain words are used more than others, some ciphers are
extremely easy to decrypt and can be deciphered at a glance
by more practiced cryptologists.

Simply by understanding probability and employing
some applied statistics, certain metadata about a language
can be derived and used to decrypt any simple one-for-one
substitution cipher. Decryption methods often rely on un-
derstanding the context of the ciphertext. What was
encrypted: business communication? Spreadsheets? Tech-
nical data? Coordinates? For example, using a hex editor
and an access database to conduct some statistics, we can
use the information in Table 3.2 to gain highly specialized
knowledge about the data in Chapter 40, “Cyber Foren-
sics,” by Scott R. Ellis, in this book. A long chapter at
nearly 25,000 words, it provides a sufficiently large sta-
tistical pool to draw some meaningful analyses.

Table 3.3 gives additional data about the occurrence of
specific words in Chapter 40. Note that because it is a
technical text, words such as “computer,” “files,” “email,”



38 PART | | Overview of System and Network Security: A Comprehensive Introduction




TABLE 3.2 Statistical Data of Interest in Encryption

Character Analysis Count
Number of distinct alphanumeric combinations 1958
Distinct characters 68
Number of four-letter words 984
Number of five-letter words 1375

An analysis of a selection of a manuscript (in this case, the preedited
version of Chapter 40 of this book) can provide insight into the
reasons why good ciphers need to be developed.

TABLE 3.3 Five-Letter Word Recurrences in

Chapter 40

Words Field
files
drive
there
email
these
other
about
where
would
every
court
their
first
using
which
could
table
after
image
don’t
tools
being

entry

Number of Recurrences
125
75
67
46
43
42
41
36
33
31
30
30
28
28
24
22
22
21
21
19
19
18
18

A glimpse of the leading five-letter words found in the preedited
manuscript. Once unique letter groupings have been identified,

substitution, often by trial and error, can result in a meaningful

reconstruction that allows the entire cipher to be revealed.

A Cryptography Primer Chapter | 3 39

and “drive” emerge as leaders. Analysis of these leaders
can reveal individual and paired alpha frequencies. Being
armed with knowledge about the type of communication
can be beneficial in decrypting it.

Further information about types of data being encrypted
includes word counts by the length of words. Table 3.4
contains such a list for Chapter 40. This information can be
used to begin to piece together useful and meaningful short
sentences, which can provide cues to longer and more

TABLE 3.4 Leaders by Word Length in the Preedited
Manuscript for Chapter 40

Number of Word
Words Field Duplications Length
XOriginalArrivalTime: 2 21
interpretations 2 15
XOriginating|P: 2 15
electronically 4 14
investigations 5 14
interpretation 6 14
reconstructing 3 14
irreproducible 2 14
professionally 2 14
inexperienced 2 13
demonstrative 2 13
XAnalysisOut: 8 13
steganography 7 13
understanding 8 13
certification 2 13
circumstances 8 13
unrecoverable 4 13
investigation 15 13
automatically 2 13
admissibility 2 13
XProcessedBy: 2 13
administrator 4 13
determination 3 13
investigative 3 13
practitioners 2 13
preponderance 2 13
intentionally 2 13
consideration 2 13
interestingly 2 13

The context of the clear text can make the cipher less secure. After
all, there are only a finite number of words. Few of them are long.



40 PART | I Overview of System and Network Security: A Comprehensive Introduction

complex structures. It is exactly this sort of activity that
good cryptography attempts to defeat.

If it was encrypted using a simple substitution cipher, a
good start to deciphering Chapter 40 could be made using
the information we have gathered. As a learning exercise,
game, or logic puzzle, substitution ciphers are useful. Some
substitution ciphers that are more elaborate can be just as
difficult to crack. Ultimately, though, the weakness behind
a substitution cipher is that the ciphertext remains a one-to-
one, directly corresponding substitution; ultimately, anyone
with a pen and paper and a large enough sample of the
ciphertext can defeat it. Through use of a computer, deci-
phering a simple substitution cipher becomes child’s play.

The Shift Cipher

Also known as the Caesar cipher, the shift cipher is one that
anyone can readily understand and remember for decoding.
It is a form of the substitution cipher. By shifting the al-
phabet a few positions in either direction, a simple sentence
can become unreadable to casual inspection. Example 3.1 is
an example of such a shift.”

Interestingly, for cryptogram word games, spaces are
always included. Often puzzles use numbers instead of
letters for the substitution. Removing the spaces in this
particular example can make the ciphertext somewhat more
secure. The possibility for multiple solutions becomes an
issue; any number of words might fit the pattern.

Today many software tools are available to decode most
cryptograms quickly and easily (at least, those not written in
a dead language). You can have some fun with these tools;
for example, the name Scott Ellis, when decrypted, turns
into Still Books. The name of a friend of the author decrypts
to “His Sinless.” It is apparent, then, that smaller-sample
simple substitution ciphers can have more than one solution.

Much has been written and stated about frequency
analysis; it is considered the ‘“end-all and be-all” with
respect to cipher decryption. Frequency analysis is not to
be confused with cipher breaking, which is a modern
attack against the actual cryptographic algorithms them-
selves. However, to think simply plugging of in some
numbers generated from a Google search is naive. The
frequency chart in Table 3.5 is commonplace on the Web.

It is beyond the scope of this chapter to delve into the
accuracy of the table, but suffice it to say that our own
analysis of Chapter 40’s 118,000 characters, a technical

EXAMPLE 3.1 A Sample Cryptogram. Try This Out:
Gv Vw, Dtwvg?
Hint: Caesar said it, and it is in Latin.

2. Et tu, Brute?

TABLE 3.5 “In a Random Sampling of
1000 Letters,” This Pattern Emerges

Letter Frequency
E 130

T 93
N 78
R 77
74
74
73
63
44

35
35
30
28
27
27
25
19
16
16
13

- 0 A X W< s 0O0<ZTCwWTWmor©o IgYe >0

N W w1 ©

N

Total 1000

text, yielded a much different result (Table 3.6). Perhaps
the significantly larger sample and the fact that it is a
technical text make the results different after the top two. In
addition, where computers are concerned, an actual fre-
quency analysis would take into consideration all ASCII
characters, as shown in Table 3.6.

Frequency analysis is not difficult; once of all the letters of
a text are pulled into a database program, it is straightforward
to count all the duplicate values. The snippet of code in
Example 3.2 demonstrates one way in which text can be
transformed into a single column and imported into a database.

The cryptograms that use formatting (every word
becomes the same length) are considerably more difficult



TABLE 3.6 Using MS Access to Perform
Frequency Analysis of Chapter 40 in This

Book

Chapter 40 Letters
e

t

a

N o X o &~ = < T s @ < ©

*

Frequency
14,467
10,945
9,239
8,385
7,962
7,681
7,342
6,872
4,882
4,646
4,104
4,066
2,941
2,929
2,759
2,402
2,155
1,902
1,881
1,622
1,391
1,334
1,110
698
490
490
166
160
149
147
147
146
145
142
140
134
134

Continued

A Cryptography Primer Chapter | 3 41

TABLE 3.6 Using MS Access to Perform
Frequency Analysis of Chapter 40 in This
Book—cont'd

Chapter 40 Letters Frequency
(6} 129

(o) 129

4 119

z 116

Total 116,798

Characters with fewer repetitions than z were excluded from
the return. Character frequency analysis of different types of
communications yields slightly different results.

EXAMPLE 3.2 How Text Can Be Transformed Into a
Single Column and Imported Into a Database
1: Sub Letters2column ()
2: Dim bytText () As Byte
3: Dim bytNew() As Byte
4: Dim IngCount As Long
5: With ActiveDocument.Content
6: bytText = .Text
7: ReDim bytNew(((UBound(bytText()) + 1) * 2) — 5))
8: For IngCount=0 To (UBound(bytText()) — 2) Step
two
9: bytNew((IngCount * 2)) = bytText(IngCount)
10: bytNew(((IngCount * 2) + 2)) = 13
11: Next IngCount
12: .Text = bytNew()
13: End With
14: End Sub

for basic online decryption programs to crack. They must
take into consideration spacing and word lengths when
considering whether a string matches a word. It stands to
reason, then, that the formulation of the cipher (in which a
substitution that is based partially on frequency similarities
and with a whole lot of obfuscation, so that when messages
are decrypted, they have ambiguous or multiple meanings)
would be desirable for simple ciphers. However, this would
be true only for very short and very obscure messages that
could be code words to decrypt other messages or could
simply be sent to misdirect the opponent. The amount of
ciphertext needed to break a cipher successfully is called
the unicity distance. Ciphers with small unicity distances
are weaker than those with large ones.

Ultimately, substitution ciphers are vulnerable to either
word-pattern analysis, letter-frequency analysis, or some
combination of both. Where numerical information is



42 PART | I Overview of System and Network Security: A Comprehensive Introduction

encrypted, tools such as Benford’s law can be used to elicit
patterns of numbers that should be occurring. Forensic tech-
niques incorporate such tools to uncover accounting fraud.
Thus, although this particular cipher is a child’s game, it is
useful in that it is an underlying principle of cryptography and
should be well understood before continuing. The primary
purpose of discussing it here is as an introduction to ciphers.
Further topics of interest and places to find information
involving substitution ciphers are the chi-square statistic,
Edgar Allan Poe, Sherlock Holmes, Benford’s law, Google,
and Wikipedia. For example, an Internet search for Edgar
Allan Poe + cryptography will lead you to articles detailing
how Poe’s interest in the subject and his use of it in stories
such as “The Gold-Bug” served to popularize and raise
awareness of cryptography in the general public.

The Polyalphabetic Cipher

The preceding clearly demonstrated that although the
substitution cipher is fun and easy, it is also vulnerable and
weak. It is especially susceptible to frequency analysis.
Given a large enough sample, a cipher can easily be broken
by mapping the frequency of the letters in the ciphertext to
the frequency of letters in the language or dialect of the
ciphertext (if it is known). To make ciphers more difficult
to crack, Blaise de Vigenere, from the 16th-century court of
Henry III of France, proposed a polyalphabetic substitution.
In this cipher, instead of a one-to-one relationship, there is a
one-to-many. A single letter can have multiple substitutes.
The Vigenere solution was the first known cipher to use a
keyword.

It works like this: First, a tableau is developed, as in
Table 3.7. This tableau is a series of shift ciphers. In fact,
because there can be only 26 additive shift ciphers, it is all
of them.

In Table 3.7, a table combined with a keyword is used
to create the cipher. For example, if we choose the keyword
rockerrooks, overlay it over the plaintext, and cross-index it
to Table 3.7, we can produce the ciphertext. In this
example, the top row is used to look up the plaintext and
the leftmost column is used to reference the keyword.

For example, we lay the word rockerrooks over the sen-
tence “Ask not what your country can do for you.” Line 1 is the
keyword, line 2 is the plaintext, and line 3 is the ciphertext:

Keyword: ROC KER ROOK SROC KERROOK SRO
CK ERR OOK

Plaintext: ASK NOT WHAT YOUR COUNTRY CAN
DO FOR YOU

Ciphertext: RGM XSK NVOD QFIT MSLEHFI URB
FY JFI MCE

The similarity of this tableau to a mathematical table
like the one shown in Table 3.8 becomes apparent. Just
think letters instead of numbers, and it becomes clear how

this works. The top row is used to “look up” a letter from
the plaintext, the leftmost column is used to locate the
overlaying keyword letter, and where the column and the
row intersect is the ciphertext.

In fact, this similarity is the weakness of the cipher.
Through some creative “factoring,” the length of the
keyword can be determined. Because the tableau is, in
practice, a series of shift ciphers, the length of the keyword
determines how many ciphers are used. With only six
distinct letters the keyword rockerrook uses only six
ciphers. Regardless, for nearly 300 years many people
believed the cipher to be unbreakable.

The Kasiski—Kerckhoff Method

Now let us look at Kerckhoff’s principle: “Only secrecy of
the key provides security.” (This principle is not to be
confused with Kirchhoff’s law, a totally different man and
rule.) In the 19th century, Auguste Kerckhoff stated that
essentially, a system should still be secure, even when
everyone knows everything about the system (except the
password). Basically, his thought was that if more than one
person knows something, it is no longer a secret.
Throughout modern cryptography, the inner workings of
cryptographic techniques have been well-known and pub-
lished. Creating a portable, secure, unbreakable code is
easy if nobody knows how it works. The problem lies in the
fact that we people just cannot keep a secret!

In 1863, Friedrich Kasiski, a Prussian major, proposed a
method to crack the Vigenere cipher.” Briefly, his method
required the cryptographer to deduce the length of the
keyword used and then dissect the cryptogram into a cor-
responding number of ciphers. This is accomplished simply
by examining the distance between repeated strings in the
ciphertext. Each cipher would then be solved independently.
The method required a suitable number of bigrams to be
located. A bigram is a portion of the ciphertext two char-
acters long, which repeats in a discernible pattern. In
Example 3.3, a repetition has been deliberately made simple
with a short keyword (fofo) and engineered by crafting a
harmonic between the keyword and the plaintext.

This might seem an oversimplification, but it effec-
tively demonstrates the weakness of the polyalphabetic
cipher. Similarly, the polyalphanumeric ciphers, such as
the Gronsfeld cipher, are even weaker because they use 26
letters and 10 digits. This one also happens to decrypt to
“On of when on of,” but a larger sample with such a weak
keyword would easily be cracked by even the least
intelligent Web-based cryptogram solvers. The harmonic
is created by the overlaying keyword with the underlying
text; when the bigrams “line up” and repeat themselves,

3. D. Kahn, The Codebreakers—The Story of Secret Writing, Scribner,
New York, NY, 1996. (ISBN:0,684,831,309)



TABLE 3.7 Vigenere’s Tableau Arranging All Shift Ciphers Into a Single Table

A

Letter

A Cryptography Primer Chapter | 3 43

I - % . = zZz O
O I - . x o = Z
L O I - & o =
w o O I - o ¥ 4
0O w w O I - o ¥
e e [©]E ] = | =

Vigeneére’s tableau then implements a keyword to create a more complex cipher than the simple substitution or shift ciphers. The number of spurious keys, or bogus decryptions, that result from attempting

to decrypt a polyalphabetic encryption, is greater than those created during the decryption of a single shift cipher.



44 PART | I Overview of System and Network Security: A Comprehensive Introduction

TABLE 3.8 Multiplication Table Is the Inspiration for the Vigenere Tableau

Multiplier 1 2 3 4
1 1 2 3 4
2 2 4 6 8
3 3 6 9 12
4 4 8 12 16
5 5 10 15 20
6 6 12 18 24
7 7 14 21 28
8 8 16 24 32
9 9 18 27 36
10 10 20 30 40
EXAMPLE 3.3 A Repetitious, Weak Keyword
Combines With Plaintext to Produce an Easily
Deciphered Ciphertext

| to to toto to to toto to
Plaintext it is  what it is, Isn’t it?

Ciphertext BH BG PVTH BH BG BGGH BH

the highest frequency will be the length of the password.
The distance between the two occurrences will be the
length of the password. In Example 3.3, we see BH and
BG repeating, and then we see BG repeating at a tight
interval of 2, which tells us the password might be two
characters long and based on two shift ciphers that, when
decrypted side by side, will make a real word. Not all
bigrams will be indicators of this, so some care must be
taken. As can be seen, BH repeats with an interval of 8,
but the password is not eight digits long (however, it is a
factor of 8!). By locating the distance of all of the
repeating bigrams and factoring them, we can deduce the
length of the keyword.

4. MODERN CRYPTOGRAPHY

Some of cryptography’s greatest stars emerged in World
War II. For the first time during modern warfare, vast
resources were devoted to enciphering and deciphering
communications. Both sides made groundbreaking
advances in cryptography. Understanding the need for
massive calculations (for the time: more is probably
happening in the random-access memory of this author’s
personal computer over a period of 5 min than happened in
all of the war), both sides developed new machinery,

5 6 7 8 9 10
5 6 7 8 9 10
10 12 14 16 18 20
15 18 21 24 27 30
20 24 28 32 36 40
25 30 35 40 45 50
30 36 42 48 54 60
35 42 49 56 63 70
40 48 56 64 72 80
45 54 63 72 81 90
50 60 70 80 90 100

predecessors to modern solid-state computers, that could be
coordinated to perform the calculations and procedures
needed to crack enemy ciphers.

The Vernam Cipher (Stream Cipher)

Gilbert Sandford Vernam (1890—1960) invented the stream
cipher in 1917; a patent was issued on July 22, 1919.
Vernam worked for Bell Labs, and his patent described a
cipher in which a prepared key, on a paper tape, combined
with plaintext to produce a transmitted ciphertext message.
He did not use the term “d’art” “XOR,” but he imple-
mented the same logic at the relay layer. The credit for
automating cryptography goes to Vernam, who introduced
the Baudot system, which is the Morse code of the teletype,
to cryptography. In it, each character is represented by five
units, or pulses. With the expectation that a set number of
“pulses” would be transmitted over a given period of time,
the pulse, or absence of it, creates a system of zeros and
ones that flesh out a binary system. Vernam was the first to
suggest that a prepunched tape (cipher) could combine with
the plaintext and yield difficult to crack ciphertext. The
same tape would then be used to decrypt the ciphertext.
Through testing and development, it became apparent that
two tapes could be used and offset against one another to
produce many different ciphers. Later, methods were
derived to employ a single stream of random numbers to
create an unbreakable cipher. Physical problems barred this
from gaining wide implementation; the logistics of man-
aging or transmitting the random cipher, and then knowing
which message to which it applied, were simply insur-
mountable in wartime, when messaging increased dramat-
ically. Regardless, Vernam’s accomplishment of employing
a method of automation to encryption cannot be under-
estimated. He developed a way in which, using a series of



magnets and relays, the cipher and plaintext pulses could be
combined electrically.” Fig. 3.2 shows a page from the
actual patent papers, Patent No. 1,310,719.°

In effect, the Vernam stream cipher and “one-time pad”
ciphers are similar; in fact, Vernam later coinvented it. The
primary difference is that the “one-time pad” cipher dictates
that a truly random stream cipher be used for the encryp-
tion. The stream cipher had no such requirement and used a
different method of relay logic to combine a pseudorandom
stream of bits with the plaintext bits. (The XOR process is
discussed in more detail in the section on XOR ciphering.)
In practice today, the Vernam cipher is any stream cipher in
which pseudorandom or random text is combined with
plaintext to produce cipher text that is the same length as
the cipher. RC4 is a modern example of a Vernam cipher.

G. S. VERNAM.
SECRET SIGNALING SYSTEM.
APPLICATION FILED SEPT. 13. 1918.
Patented July 22, 1919.

1,310,719. 2 SHEETS-SHEET.1.

530

» INVENTOR.

G.S. Vernam
g.e.folk,
ATTORNEY

BY

FIGURE 3.2 G. S. Vernam’s Secret Signaling System introduced bit-by-
bit enciphering using XOR technology to the world of cryptography for the
first time.

4. D. Kahn, The Codebreakers—The Story of Secret Writing (394—403),
(Scribner, 1996).
5.U.S. Patent 1,310,719.

A Cryptography Primer Chapter | 3 45

The One-Time Pad

The “one-time pad” cipher, attributed to Joseph Mau-
borgne, is perhaps one of the most secure forms of cryp-
tography. It is difficult to break if used properly, and if the
key stream is perfectly random, the ciphertext gives away
absolutely no details about the plaintext, which renders it
unbreakable. As the name suggests, it uses a single random
key that is the same length as the entire message, and it uses
the key only once. The word “pad” is derived from the fact
that the key is distributed on pads of paper, with each sheet
torn off and destroyed as it is used.

There are several weaknesses to this cipher. We begin to
see that the more secure the encryption is, the more it will rely
on other means of key transmission. The more a key has to be
moved around, the more likely it is that someone who should
not have it will have it. The following weaknesses are
apparent in this “bulletproof™ style of cryptography:

e The key length has to equal plaintext length.

e It is susceptible to key interception; the key must be
transmitted to the recipient, and the key is as long as
the message.

e It is cumbersome, because it doubles the traffic on the
line.

e The cipher must be perfectly random.

e One-time use is absolutely essential. As soon as two
separate messages are available, the messages can be
decrypted. Example 3.4 demonstrates this.

Since most people do not use binary, the author takes
the liberty in Example 3.4 of using decimal numbers
modulus 26 to represent the XOR that would take place in a
bitstream encryption (see the section on the XOR cipher)
that uses the method of the one-time pad.

A numeric value is assigned to each letter, as seen in
Table 3.9. By assigning a numeric value to each letter,
adding the plaintext value to the ciphertext value, modulus
26, yields a pseudo-XOR, or a wraparound Caesar shift that
has a different shift for each letter in the entire message.

As this example demonstrates, by using the same cipher
twice, a dimension is introduced that allows for the intro-
duction of frequency analysis. By placing the two streams
side by side, we can identify letters that are the same. In a
large enough sample, in which the ciphertext is sufficiently
randomized, frequency analysis of the aligned values will
begin to crack the cipher wide open because we know that
they are streaming in a logical order: the order in which
they were written. One of the chief advantages of 21st-
century cryptography is that the “eggs” are scrambled and
descrambled during decryption based on the key, which in
fact you do not want people to know. If the same cipher is
used repeatedly, multiple inferences can be made, and
eventually the entire key can be deconstructed. Because
plaintext 1 and plaintext 2 are so similar, this sample yields



46 PART | I Overview of System and Network Security: A Comprehensive Introduction

EXAMPLE 3.4 Using the Random Cipher, a Modulus Shift Instead of an XOR, and Plaintext to Produce Ciphertext

Plaintext 1

thiswillbesoeasytobreakitwillbefunny
208919239121225191551192520152185111920239121225621141425

Cipher 1

qertyuiopasdfghjklzxcvbnmqgazwsxerfvt
1751820252191516119467810111226243222141317 1262319245186 2220

Ciphertext 1

111311322421 118612191181951216823132371410129213 1113201019
kmamvduarflskhaieabphwmwgnjlwuckmtjs

Plaintext 2

Thiswillnotbeeasytobreakorbetoofunny
20891923912121415202551192520152185111151825201515621 1414 25

Ciphertext 2, also using Cipher 1

11131132242114161361112931061502113252935178131113201019
kmamvduaepmfklifjfozuacybiceghmkmtjs

Some Statistical Tests for Cryptographic Applications
by Adrian Fleissig

In many applications, it is often important to determine
whether a sequence is random. For example, a random
sequence provides little or no information in cryptographic
analysis. When estimating economic and financial models, it is
important for the residuals from the estimated model to be
random. Various statistical tests can be used to evaluate
whether a sequence is actually random. For a truly random
sequence, it is assumed that each element is generated inde-
pendently of any prior and/or future elements. A statistical test
is used to compute the probability that the observed sequence
is random compared with a truly random sequence. The pro-
cedures have test statistics that are used to evaluate the null
hypothesis, which typically assumes that the observed
sequence is random. The alternative hypothesis is that the
sequence is nonrandom. Thus, failing to accept the null hy-
pothesis, at some critical level selected by the researcher,
suggests that the sequence may be nonrandom.

There are many statistical tests to evaluate for randomness
in a sequence, including frequency tests, runs tests, discrete
Fourier transforms, and serial tests. The test statistics often have
chi-square or standard normal distributions that are used to
evaluate the hypothesis. Whereas no test is superior overall
to the others, a frequency or runs test is a good starting point to
examine for nonrandomness in a sequence. As an example, a
frequency or runs test typically evaluates whether the number
of zeros and ones in a sequence are about the same, as would
be the case if the sequence were truly random.

It is important to examine the results carefully. For example,
the researcher may incorrectly fail to accept the null hypoth-
esis that the sequence is random, and therefore may make a
type I error. Incorrectly accepting the null of randomness when
the sequence is actually nonrandom results in committing a
type Il error. The reliability of the results depends on having a
sufficiently large number of elements in a sequence. In addi-
tion, it is important to perform alternative tests to evaluate
whether a sequence is random.

the following harmonics (in bold and boxed), as shown in
Example 3.5.

Cracking Ciphers

One method of teasing out the frequency patterns is by
applying some sort of mathematical formula to test a hy-
pothesis against reality. The chi-square test is perhaps one of
the most commonly used; it allows someone to use what is
called inferential statistics to draw certain inferences about
the data by testing them against known statistical
distributions.

Using the chi-square test against an encrypted text
would allow certain inferences to be made, but only where
the contents, or the type of contents (random or of an
expected distribution), of the text were known. For
example, someone may use a program that encrypts files.
By creating the null hypothesis that the text is completely
random and by reversing the encryption steps, a block
cipher may emerge as the null hypothesis is disproved
through the chi-square test. This would be done by
reversing the encryption method and XORing against the
bytes with a block created from the known text. At the
point where the nonencrypted text matches the positioning
of the encrypted text, chi-square would reveal that the
output is not random and the block cipher would be
revealed.

Chi-squared = ...(observed-expected)2/(expected)

What would be observed would be the actual 0:1 ratio
produced by XORing the data streams together, and what
would be expected would be the randomness of zeros and
ones (50:50) in a body of pseudorandom text.

Independent of having a portion of the text, a large
body of encrypted text could be reverse-encrypted using a
block size of all zeros. In this manner it may be possible to



TABLE 3.9 A Simple Key Is Created So That Random Characters and Regular Characters May Be Combined With a Modulus Function

Key
a b @ d e f g h i j k I m n o p q r s t u v w X y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Without the original cipher, this key is meaningless intelligence. It is used here in a similar capacity as an XOR, which is also a function that everyone knows how to perform.

EXAMPLE 3.5 Where Plaintext 1 and Plaintext 2 Are so Similar, This Sample Yields the Following Harmonics (In Bold and Boxed)

Side by side, the two ciphertexts show a high level of harmonics. This indicates that two different ciphertexts actually have the same cipher. Where letters are
different, because XOR is a known process and our encryption technique is also publicly known, it is a simple matter to say that r= 18, e = 5 (Table 3.9), and thus
construct an algorithm that can tease apart the cipher and ciphertext to produce plaintext.

j s |(ciphertext 1)
j s |(ciphertext 2)

26

b € | 19ydey) sewiy AydesdoydAiny v



48 PART | I Overview of System and Network Security: A Comprehensive Introduction

tease out a block cipher by searching for nonrandom block-
sized strings. Modern encryption techniques generate many
block cipher permutations that are layered against previous
iterations (n — 1) of permutated blocks. The feasibility of
running such decryption techniques would require a heavy-
duty programmer and a statistician, an incredible amount of
processing power, and in-depth knowledge of the encryp-
tion algorithm used. An unpublished algorithm would
render such testing worthless.

The methods and procedures employed in breaking
encryption algorithms are used throughout society in many
applications where a null hypothesis needs to be tested.
Forensic consultants use pattern matching and similar
decryption techniques to combat fraud on a daily basis.
Adrian Fleissig, a seasoned economist, uses many statistical
tests to examine corporate data (see the sidebar, “Some
Statistical Tests for Cryptographic Applications”).®

The XOR Cipher and Logical Operands

In practice, the XOR cipher is not so much a cipher as it is a
mechanism whereby ciphertext is produced. “Random bi-
nary stream cipher” would be a better term. The terms
“XOR,” “logical disjunction,” and “inclusive” may be used
interchangeably. Most people are familiar with the logical
functions of speech, which are words such as “and,” “or,”
“nor,” and “not.” A girl can tell her brother, “Mother is
either upstairs or at the neighbor’s,” which means she could
be in either state, but you have no way of knowing which
one it is. The mother could be in either place, and you
cannot infer from the statement the greater likelihood of
either. The outcome is undecided.

Alternatively, if a salesman offers a customer either a
blue car or a red car, the customer knows that he can have
red or he can have blue. Both statements are true. Blue
cars and red cars exist simultaneously in the world. A
person can own both a blue car and a red car. But Mother
will never be in more than one place at a time. Purport-
edly, there is a widespread belief that no author has pro-
duced an example of an English or sentence that appears
to be false because both of its inputs are true.” Quantum
physics takes considerable exception to this statement
(which explains quantum physicists) at the quantum-
mechanical level. In the Schrodinger cat experiment, the
sentence “The cat is alive or dead” or the statement “The
photon is a particle and a wave until you look at it, then it
is a particle or a wave, depending on how you observed it”
both create a quandary for logical operations, and there are

6. Adrian Fleissig is the Senior Economist of Counsel for RGL Forensics,
2006—present. He is also a full professor, California State University
Fullerton (CSUF) with a joint Ph.D. in Economics and Statistics from
North Carolina State University in 1993.

7. Barrett, Stenner, The myth of the exclusive ‘or,” Mind 80 (317) (1971)
116—121. [First names or initials needed for authors].

XOR A®B

XNOR A®B

S

AND AAB NAND A-B
NOT A NULL{ }

RELATI®NSHIPS

FIGURE 3.3 In each Venn diagram, the possible outcome of two inputs

is decided.

no Venn diagrams or words that depend on time or
quantum properties of the physical universe. Regardless of
this exception, when speaking of things in the world in a
more rigorously descriptive fashion (in the macroscopi-
cally nonphenomenological sense), greater accuracy is
needed.

To create a greater sense of accuracy in discussions of
logic, the operands as listed in Fig. 3.3 were created. When
attempting to understand this chart, the best thing to do is to
assign a word to the A and B values and think of each Venn
diagram as a universe of documents, perhaps in a document
database or just on a computer being searched. If A stands
for the word “tree” and B for “frog,” each letter simply
takes on a significant and distinct meaning.

In computing, it is traditional that a value of 0 is false
and a value of 1 is true. Thus, an XOR operation is the
determination of whether two possibilities can be combined
to produce a value of true or false, based on whether both
operations are true, both are false, or one of the values is
true.

1 XOR 1 =
0XOR 0=0
1 XOR 0 =1
0XOR 1 =1

In an XOR operation, if the two inputs are different, the
resultant is TRUE, or 1. If the two inputs are the same, the
resultant value is FALSE, or 0.

In Example 3.6, the first string represents the plaintext
and the second line represents the cipher. The third line
represents the ciphertext. If, and only exactly if, just one of



A Cryptography Primer Chapter | 3 49

EXAMPLE 3.6 Lines 1 and 2 Are Combined With an XOR Operand to Produce Line 3

Line 1, plaintextt T001 110101101111
Line 2, random cipher “:100011010100100 1
Line 3, XOR ciphertextt 0001000000100100

the items has a value of TRUE, the results of the XOR
operation will be true.

Without the cipher, and if the cipher is truly random,
decoding the string becomes impossible. However, as in the
one-time pad, if the same cipher is used, then (1) the
cryptography becomes vulnerable to a known text attack,
and (2) it becomes vulnerable to statistical analysis.
Example 3.7 demonstrates this by showing exactly where
the statistical aberration can be culled in the stream. If we
know they both used the same cipher, can anyone solve for
Plaintext A and Plaintext B?

EXAMPLE 3.7 Where the Statistical Aberration Can
Be Culled in the Stream
To reconstruct the cipher if the plaintext is known, Plain-
textA can be XOR'd to ciphertextB to produce cipherAl
Clearly, in a situation where plaintext may be captured,
using the same cipher key twice could completely expose
the message. By using statistical analysis, the unique pos-
sibilities for PlaintextA and PlaintextB will emerge; unique
possibilities means that for ciphertext = x, where the cipher
is truly random, this should be at about 50% of the sample.
Additions of ciphertext n+ 1 will increase the possibilities
for unique combinations because, after all, these binary
streams must be converted to text and the set of binary
stream possibilities that will combine into ASCII characters
is relatively small. Using basic programming skills, you can
develop algorithms that will sort through these data quickly
and easily to produce a deciphered result. An intelligent
person with some time on her hands could sort it out on
paper or on an Excel spreadsheet. When the choice is “The
red house down the street from the green house is where we
will meet” or a bunch of garbage, it begins to become
apparent how to decode the cipher.

CipherA and PlaintextA are XOR'd
ciphertextA:

PlaintextA: 0000000011 111111

cipherA: 1111111100000000

ciphertextA: 11T 111111111111 11

PlaintextB and cipherA are XOR'd to produce
ciphertextB:

ciphertextB: 000000001111 1111

cipherA:1111111100000000

PlaintextB: 1111111100000000

|<—— Column T ——>||<——Column 2 — |

Note: Compare ciphertextA to ciphertextB!

to produce

Block Ciphers

Block ciphers work in a way similar to polyalphabetic
ciphers, with the exception that a block cipher pairs
together two algorithms for the creation of ciphertext and
its decryption. It is also somewhat similar in that, whereas
the polyalphabetic cipher uses a repeating key, the block
cipher uses a permutating yet repeating cipher block.
Each algorithm uses two inputs: a key and a “block” of
bits, each of a set size. Each output block is the same size
as the input block, the block being transformed by the
key. The key, which is algorithm based, is able to select
the permutation of its bijective mapping from 2n, where n
is equal to the number of bits in the input block. Often
when 128-bit encryption is discussed, it is referring to the
size of the input block. Typical encryption methods
involve use of XOR chaining or some similar operation
(Fig. 3.4).

Block ciphers have been widely used since 1976 in
many encryption standards. As such, for a long time
cracking these ciphers became the top priority of cipher
crackers everywhere. Block ciphers provide the backbone
algorithmic technology behind most modern-era ciphers.

5. THE COMPUTER AGE

Many people consider January 1, 1970, to be the dawn of
the computer age. That is when Palo Alto Research Center
(PARC) in California introduced modern computing; the
graphical user interface (no more command line and punch
cards), networking on an Ethernet, and object-oriented
programming have all been attributed to PARC. The
1970s also featured the UNIX clock, Alan Shepard on the
moon, the US Bicentennial, the civil rights movement,
women’s liberation, Robert Heinlein’s sci-fi classic,
Stranger in a Strange Land, the birth of my wife, and, most
important to this chapter, modern cryptography. The late
1960s and early 1970s changed the face of the modern
world at breakneck speed. Modern warfare reached tenta-
tive heights with radio-guided missiles, and warfare needed
a new hero. And then there was the Data Encryption
Standard (DES); in a sense, DES was the turning point for
cryptography, in that for the first time it fully leveraged the
power of modern computing in its algorithms. The sky
appeared to be the limit, but, unfortunately for those who
wanted to keep their information secure, decryption tech-
niques were not far behind.



50 PART | I Overview of System and Network Security: A Comprehensive Introduction

-

Plaintext

‘I

Ciphertext

\_

Cipher-Block Chaining (CBC)

Ciphertext

Ciphertext /

FIGURE 3.4 XOR chaining, or cipher-block chaining, is a method in which the next block of plaintext to be encrypted is XOR’d with the previous block

of ciphertext before being encrypted.

Data Encryption Standard

In the mid-1970s, the US Government issued a public speci-
fication, through its National Bureau of Standards (NBS),
called the DES. This could perhaps be considered the dawn of
modern cryptography because it was likely the first block ci-
pher, or at least its first widespread implementation. However,
the 1970s were a relatively untrusting time. “Big Brother”
loomed right around the corner (as per George Orwell’s
1984), and most people did not understand or necessarily trust
DES. Issued under the NBS, now called the National Institute
of Standards and Technology (NIST), hand in hand with the
National Security Agency (NSA), DES led to tremendous
interest in the reliability of the standard among academia’s
ivory towers. A shortened key length and the implementation
of substitution boxes, or “S-boxes,” in the algorithm led many
to think that the NSA had deliberately weakened the algo-
rithms and left a security “back door” of sorts.

The use of S-boxes in the standard was not generally
understood until the design was published in 1994 by Don
Coppersmith. The S-boxes, it turned out, had been delib-
erately designed to prevent a sort of cryptanalysis attack
called differential cryptanalysis, as was discovered by IBM
researchers in the early 1970s; the NSA had asked IBM to
keep quiet about it. In 1990 the method was “re”-discovered
independently, and when used against DES, the usefulness
of the S-boxes became readily apparent.

Theory of Operation

DES used a 64-bit block cipher combined with a mode of
operation based on cipher-block chaining (CBC) called the
Feistel function. This consisted of an initial expansion
permutation followed by 16 rounds of XOR key mixing via
subkeys and a key schedule, substitution (S-boxes), and
permutation.” In this strategy, a block is increased from 32

8. A. Sorkin, Lucifer: a cryptographic algorithm, Cryptologia 8 (1) (1984)
22-35.

to 48 bits (expansion permutation). Then the 48-bit block is
divided in half. The first half is XORs, with parts of the key
according to a key schedule. These are called subkeys.
Fig. 3.5 shows this concept in a simplified format.

The resulting cipher is then XOR’d with the half of the
cipher that was not used in step 1. The two halves switch
sides. Substitution boxes reduce the 48 bits down to 32 bits
via a nonlinear function, and then a permutation, according
to a permutation table, takes place. Then the entire process
is repeated 16 times, except in the last step the two halves
are not flipped. Finally, this diffusive strategy produced via
substitution, permutation, and key schedules creates an
effective ciphertext. Because a fixed-length cipher, a block
cipher, is used, the permutations and the S-box introduce
enough confusion that the cipher cannot be deduced through
brute force methods without extensive computing power.

With the increase in size of hard drives and computer
memory, the need for disk space and bandwidth still de-
mands that a block-cipher algorithm be portable. DES,
Triple DES, and the AES all provide or have provided
solutions that are secure and practical.

Implementation

Despite the controversy at the time, DES was implemented.
It became the encryption standard of choice until the late
1990s, when it was broken, when Deep Crack and
distributed.net broke a DES key in 22 h 15 min. Later that
year, a new form of DES called Triple DES, which encrypted
the plaintext in three iterations, was published. It remained in
effect until 2002, when it was superseded by AES.

Rivest, Shamir, and Adleman

The release of DES included the creation and release of
Ron Rivest, Adi Shamir, and Leonard Adleman’s encryp-
tion algorithm [Rivest, Shamir, and Adleman (RSA)].
Rivest, Shamir, and Adleman, based at the Massachusetts
Institute of Technology, publicly described the algorithm in



A Cryptography Primer Chapter | 3 51

Feistel Structure of DES (Simplified)

1. Plaintext 0 0 0 O
2. Expanded plaintext A)* 0 0 0 O
3. Cipher 1 0 1 O
4. Ciphertext A 1 0 1 0
5. Expanded Plaintext B) 0o 0 1 1
6. Cipher from Step 1: 1 0 1 0
7. Ciphertext B 1 0 O 1
8. Cipher (B,A) 100111

9. Substitution (S—box) 000 1

10. Permutation P—Box 0100

‘B °E Expanded Plaintext B:
o o0 > > > 0 0 1 1 1 1
0 1
0o 1 Key Schedule
1. 101000
1 1 2. 100101
0 0
1 1 .
15.010100
01000 16. 101101
10 0 1
0110

Key (16 parts) : 101000 010101 101011 ... 010100 100101 101010 101101

10 0101 1001

1 0001 1100

Permutation Box (P-Box)

*A bijective function is applied to expand from 32 bits (represented here by 8
bits) to 48 bits. A function is bijective if inverse relation f~! (x) is also a

function. Reduction is achieved through the S—box operation.

** This S—box is reduced to include only the four bits that are in our cipher.
Typical S—boxes are as large as needed and may be based partially on the key.

FIGURE 3.5 The Feistel function with a smaller key size. DES, Data Encryption Standard.

1977. RSA is the first encryption standard to introduce (to
public knowledge) the new concept of digital signing. In
1997 it was revealed through declassification of papers that
Clifford Cocks, a British mathematician working for the
UK Government Communications Headquarters, had
written a paper in 1973 describing this process. Assigned
top secret status, the work had never previously seen the
light of day. Because it was submitted in 1973, the method
had been considered unattainable, because computing po-
wer at the time could not handle its methods.

Advanced Encryption Standard
(or Rijndael)

AES represents one of the latest chapters in the history of
cryptography. Once it became clear that neither DES nor its
answer to its weaknesses, “Triple-DES,” could -carry
encryption through to the 21st century, a decree went out
from the NIST so that a new standard might be achieved.
AES won out over the other standards for several reasons, and
it is currently one of the most popular encryption standards.

For people involved in any security work, its occurrence on
the desktop is frequent. It also enjoys the free marketing and
acceptance that it received when it was awarded the title of
official cryptography standard in 2001.” This designation
went into effect in May of the following year.

To a large degree, this part of the chapter is merely a
rehashing/book report on the Federal Information Processing
Standards (FIPS) 197 standard, because this appears to be
one of the more authoritative guides available, short of the
authors themselves. It provides a few original examples
and some observations made by the author during his
examination of the standard.

Similar to DES, AES encrypts plaintext in a series of
rounds, involves the use of a key and block sizes, and
leverages substitution and permutation boxes. It differs
from DES in the following respects:

e It supports 128-bit block sizes.
e The key schedule is based on the S-box.

9. U.S. FIPS PUB 197 (FIPS 197), November 26, 2001.



52 PART | I Overview of System and Network Security: A Comprehensive Introduction

e It expands the key, not the plaintext.
e It is not based on a Feistel cipher.
e It is extremely complex.

The AES algorithms are to symmetric ciphers what a
bowl of spaghetti is to the shortest distance between two
points. Through a series of networked XOR operations,
key substitutions, temporary variable transformations,
increments, iterations, expansions, value swapping, S-
boxing, and the like, a strong encryption is created that,
with modern computing, creates a cipher that in itself is
impossible to break. Like all ciphers, though, AES is only as
strong as its weakest link, which is the password routine.
This weakness will be explored toward the end of this part of
the chapter.

Overview

Simply put, it works like this: First, the idea is to confuse
the real message and the encrypted message. Like other
encryption methods, it uses the XOR to do this. AES
requires 128, 192, or 256 bits to work; however, one must
have a “key” with which to start. This might be a pass-
word or a string of random numbers stored on a card, or
any input derived from an unchanging but unique thing,
such as your retina. From there, the “key” needs to be
both obfuscated and expanded to match the correct block
size, and to be parceled up into the little packages, or
blocks, that will be used in later operations of the
encryption sequence. To accomplish this, a procedure
called Password-Based Key Derivation Function
(PBKDF2) is used.'’ Enciphering is then achieved by
using an XOR and hashing the bits together repeatedly
through a shift row offset. This effectively “shuffles the
deck.”

Next, introduce diffusion using a simple column
transposition to rearrange the bits until they are no longer
sensible as letters, and then hashing the bits using sub-
stitution (XOR). Furthermore, AES employs a key
expansion and multiple rounds. For example, if you XOR
a string and produce ciphertext, you have successfully
obfuscated the message. If you want anyone to read it, just
give them the key and they can reverse the XOR to get the
correct text. The problem arises in portability: We want
people to be able to decrypt our messages, but only if they
have the pass key. This is where things get tricky, because
we have to have a key that is long (128 or 256 bits), but
that can be generated from a password that is reasonably
short, so that we can remember it. Ultimately, this is the
weakness of AES or actually the gateway into it: that is,
the weak link.

The FIPS 197 standard canonicalizes the Rijndael al-
gorithm (Fig. 3.6) [3,4], which is a symmetric block cipher
with the capability of processing blocks of 128 bits. To do
this, it employs a multistep operation, enciphering the
plaintext blocks using cipher keys with lengths of 128, 192,
and 256 bits. The Rijndael algorithm possesses the ability
to handle additional block sizes and key lengths, so
although the capability exists, it is not part of the published
FIPS 197 standard. This part of the chapter will cover the
following topics:

1. some definitions that have not yet been covered

a brief discussion of the notation and conventions used
some mathematical properties of the algorithm

a brief discussion of how a password becomes a 128 (or
longer) cipher key

5. a summary of the algorithm specification, including the
key expansion, encryption, and decryption routines
implementation issues

7. a step-by-step example from FIPS 197

E il

&

The Basics of Advanced Encryption
Standard

The basic unit of encryption is the byte. If you read the
beginning of this part of the chapter, you already know that
the cipher key must be in the form of 128, 192, or 256 bits,
which is 16, 24, or 32 bytes, respectively. All bit values are
0 or 1; NULL values are disallowed. This of course may
spark the question, “How, then, do NULL values get
encrypted in BIT columns in a database?” In Microsoft
SQL Server, an additional “hidden” column called a
NULLmap exists; if a value is NULL, it will be set to 1
otherwise, 0.

AES encryption operates at the byte level, with each
4 bits represented (for convenience here) hexidecimally so
that the following is true:

Binary value.hexidecimal value

For example, the value 1100 1101 would be represented
as/xCD. XOR’d, with 0111 0110/x76, would result in 1011
1011, or/xBB. (Note how obfuscating it is that two
completely different pairs can XOR to the same value.)

6. HOW ADVANCED ENCRYPTION
STANDARD WORKS

The following describes each step of the cipher. It is a
simplification, intended to provide a solid foundation for
future study of the standard.

10. RSA Laboratories Public-Key Cryptography Standards (PKCS) #5:
Password-Based Cryptography Specification, Version 2.0. Network
Working Group, B. Kaliski.

11. P.S. Randall, Misconceptions around Null Bitmap Size, 2012. http:/
www.sqlskills.com/BLOGS/PAUL/post/Misconceptions-around-null-bitmap-
size.aspx.



A Cryptography Primer Chapter | 3 53

A &w\;\e o% R\sw‘:%\ )‘\v\*‘\?\"w\'m

rom FIR¢-197 ,Secvion

(5 1}
THL B A ) e ®Kaxtaq?, 1))
= (1141‘ +\
f\‘P(esse& (0N H X \

cote {1011 \ous {1eay nodolo Ooo\\ Ocu\\\a\\

ey $or AR}
')Bou Mk 0 5‘\%3& o) Yoe Temamdes 1y 8 bikg
s:_‘,‘){’ *1543\':94 '
28ryhaqdrxs Bx"q- Or*»x"v 07°

AL OISO s Ox+\

skl x®, 22y x8 » 2o xS

ske1r 040, X400 +0 +010+Or YN0 0 & |

Shgsey A 3 'Y 4

dee6> o T+tx oo L
8bs o demee, sodome |

S“(?\' ’xﬁ %S. *u x“ xs \\uo\ooo\ o< iC\\\gx
: W =

Shp 2 Mdkyplg 2° by (2® ¥ % )
S*q 1 Su\a\cét \-\=6 (\-0=\j O+ \, o-oao\
Sep h: Using Remionder, 28 e iado 1"« %3
StepS: V\u“’\Q\&'X} LS (y‘vx" +'x3‘\-x‘\\3
Sep6: Sobheadt
*Remamder cam now be C)(?(cskcs w 8 ks,

FIGURE 3.6 Handwritten example of polynomial expansion using the Rijndael/Advanced Encryption Standard encryption algorithm.

Bytes

Programmatically, to encipher the plaintext bits, the AES
procedure requires all of the bits to be loaded and arranged
into a two-dimensional array called the State. The State has
four rows in it, and each row contains 4 bytes. This is a
total of 16 bytes, or 128 bits.

Note: You might ask, “128 bits is great, but how did we
go from a 32-bit password typed by a user to a 128-bit
cipher key?” This can be done in a number of ways, and
an industrious engineer may certainly write his own method
for it, but for the readers of this book, check out the
PBKDEF2. This is a key derivation function that is part of
RSA Laboratories Public Key Cryptography Standards. It
replaces an earlier standard, PBKDF1, which could only
produce derived keys up to 160 bits long.

The bytes are arranged in columns, so that the first
column, first row (let us call it A1) has, right “beneath” it,
A2, which would b the second byte of the string to be
encrypted. The actual FIPS standard has more dramatic
notations for this, but essentially what is happening is that

in the State, bytes are referred to by row and by column,
and they are loaded top to bottom, left to right. Each col-
umn of 4 bytes in the State is referred to as Word. Then it
starts to do some math.

Math

The AES standard employs the mathematical operations
of both addition and multiplication. Addition using the
XOR has already been covered heavily in this chapter.
For examples see Table 3.6. This standard also relies
heavily on prime, or irreducible, polynomials to allow
for enciphering of the bits and to keep things nice
and tidy in 128-bit buckets. It is important that for
reversibility, all of the multiplication operations, where
strings of bits are represented as polynomials which can
then be manipulated, allowing for the shifting of bits,
remain irreducible.

For example, multiply together the primes 3, 7, and 17,
and the resulting number is easily calculated as 357. By
factoring it, you can easily derive the exact three numbers



54 PART | I Overview of System and Network Security: A Comprehensive Introduction

used in the original equation. Now multiply together 2, 8,
and 16, and you get 256. Unfortunately, if you try to invert
the operation, with the requirement that you want only three
factors, you can arrive at 4, 4, and 16. Perhaps this is fine if
you are writing a data-scrambling application, but an
encryption utility is only as good as its ability to invert the
cipher and decrypt the string. The AES standard outlines
the mathematical polynomials used in the multiplication
operations, and it defines them as being irreducible. For
example, the purpose of one of the polynomial expressions
in AES is simply to rotate the word, so that [b0, b1, b2, b3]
is transformed into [bl, b2, b3, b0]. An irreducible poly-
nomial is used so that no matter what the input produces,
the inverse operation performed against the output cipher-
text yields the correct input. The cipher key becomes the
solution for an extremely long equation, a solution that has
such great uniqueness that it cannot be guessed easily or
quickly.

Fig. 3.5 provides an example of the actual mathematics
behind the first expansion of the FIPS 197 standard. In it,
each power of x takes a bit position, numbered as follows:
7654 3210. So, x’ turns on the bit in position 7, x° in po-
sition 6, and x° (i.e., 1) takes the zeroth position. Hence,
x” 4+ x® 4 1= 1100 0001. This is why the remainder has to
have x to the power of 7 or less, so it can be expressed in 8
bits. According to the standard, “these bytes are interpreted
as finite field elements using a polynomial representation.”
Frequently, to conserve space or just to make things look
less ridiculously binary, a hexadecimal value may be used.
Table 3.10 demonstrates the conversion of binary to base
16, aka “hexidecimal.”

In the Beginning

In the beginning, there are bits, and the bits have a
physicality that is linear. That is, they are all lined up in
one continuous string on the disk, unless the disk is
fragmented, but that is another story. You should always
keep your disks defragmented. Fragmentation is bad and
will affect the performance of processing data for
encryption. If, for example, you are encrypting thousands
of files in a particular folder on the disk, and the files are
all over the place, it will perform poorly. I digress. When a
program that executes AES encryption gets its byte on
your bits, the first thing it does is load them into a series of
arrays called the State. This particular state is good
because it will not take all of your money or tell you that
you did not pay enough taxes last year. What it will do is
provide a place where many different operations can be
executed to encrypt your data better using a 128-bit cipher
key. For the purpose of convenience, although AES can
handle 192- and 256-bit encryption as well, the author
simply refers to the 128-bit model. All operations are
performed against this two-dimensional array of bytes

TABLE 3.10 Binary and Its
Hexadecimal Equivalents

Binary Hex
0000 0

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101 d
1110 e

© 0 N o U A W N =

o L

1111 f

called the State, which contains four rows of bytes; each
row holds Nb bytes, where Nb is the block length
(128, 192, 256) divided by 32.

The State array, s, has two indices. Denoted by the
symbol s, each individual byte has two indices, with its row
number r in the range 0 < r < 4 and its column number c in
the range O < ¢ < Nb. This allows an individual byte of the
State to be referred to as either sr,c or s[r,c]. AES requires
Nb = 4, so that 0 < ¢ < 4. In other words, if you think of
an input, a state, and an output array as being the program
product line, each array will be the same size. AES ex-
plodes the size of the output file.

Rounds

The number of rounds to be executed by the algorithm
depends on the key size. Nr = 10 when Nk =4, Nr = 12
when Nk = 6, and Nr = 14 when Nk = 8. AES, for enci-
pherment, uses a “round” methodology, where each round
consists of four steps:

1. byte substitution driven by a substitution table (S-box)
2. the shifting of rows in the State array by an offset

3. bit and byte shuffling within each column of the State
4. adding a round key to the State

These transformations (and their inverses) are explained
in detail in Sections 5.1.1—5.1.4 and 5.3.1—5.3.4 of FIPS



197. Details and code samples can be found in the standard.
This example is drawn directly from the standard and de-
tails the operations of the cipher itself. Essentially, the
following functions are described in the standard and can
be understood to be the steps taken in each encryption
round. The number of rounds depends on the size of the
encryption key:

1. SubBytes(state)

2. ShiftRows(state)

3. MixColumns(state)

4. AddRoundKey(state, w[round*Nb, (round + 1)*Nb-1])

By now, the reader of this text should realize that public
standards such as FIPS 197 contain a wealth of information
and that the chapters in this book can merely provide (it is
hoped) the background needed to lend clarity to the
material. This part of the chapter is, of course, no substi-
tution for actually reading and adhering to the standard as
published.

Finally, it is conceivable that with so complex a series
of operations, a computer file and block could be combined
in such a way as to produce all zeros. Theoretically, the
AES cipher could be broken by solving massive quadratic
equations that take into consideration every possible vector
and solve 8000 quadratic equations with 1600 binary
unknowns. This sort of an attack is called an algebraic
attack, and, where traditional methods such as differential
or differential cryptanalysis fail, it is suggested that the
strength in AES lies in the current inability to solve
supermultivariate quadratic equations with any sort of
efficiency.

Reports that AES is not as strong as it should be are
currently likely to be overstated and inaccurate, because
anyone can present a paper that is dense and difficult to
understand and claims to achieve the incredible. It is
unlikely that at any time in the near or maybe not so near
future (this author hedges his bets), AES will be broken
using multivariate quadratic polynomials in thousands of
dimensions. Mathematica is very likely one of the most
powerful tools that can solve quadratic equations, and it is
still many years away from being able to perform this
feat.

Ultimately, AES’s biggest drawback is that a user can
trigger an encryption using a password of his or her choice.
Unfortunately, most people choose passwords that are not
strong; they want something they will remember. There are
many IT techs who lost their passwords and rendered
systems inalterable. There have also been many sinister
communications that may pass from an employee to a
future employer, or a competitor with whom he has become
friendly, and has decided to pass secrets. Intellectual
property tort is a real facet of litigation, and to this end,
large consultancies that deal in computer forensics and e-
discovery host rack upon rack of devices that are

A Cryptography Primer Chapter | 3 55

designed specifically to decrypt files that have been
encrypted using AES encryption. They do this not by
attacking the algorithm, but by attacking using brute force.
Hash tables, or rainbow tables, are basically a list of all the
known hash values of common (and not so common)
passwords. For example, one might take every known
phone number in the United States and create a table of all
of their known hashes. One might also create one of every
known child’s name and parse that into the hash tables. For
example, a phone number of 847-555-5555 might be
combined with the name “Ethan” (who is known to live at a
certain address, 233 TreeView), into a password of
233Ethan5555tree! (I added the exclamation point to be
even more “secure”...). In fact, some of the largest con-
sultancy firms that manage large litigations have con-
structed exactly this sort of database of rainbow tables, and
they are generating more and more hashes each day. Pro-
grams that provide entire disk encryption are the bane of
both law enforcement and litigation.

Brute force attacks are the only way to crack in when
no key can (or will) be produced. Why do rainbow tables
work? The spectrum of possible passwords that people
may choose to use because they can remember them is
much smaller than the total number of possible passwords
that exist. By leveraging as much as 7 terabytes of
rainbow tables against an encrypted body, the estimated
success rate of cracking files, speculatively, could be as
high as 60% to 70%. This is a horrible statistic for an
encryption algorithm that is supposedly “unbreakable.” So
perhaps the one take-away from this writing is that there is
still room for improvement; a truly unbreakable system
still does not exist, and although the algorithm of AES
cannot be successfully attacked through decomposition of
the ciphertext, any system that fails to take into account
every attack vector ultimately will be no stronger than its
weakest link.

Finally, let us briefly look at the process used to select
cryptographic mechanisms. This is similar to the process
used to select any IT mechanism.

7. SELECTING CRYPTOGRAPHY: THE
PROCESS

The cryptography selection process is documented in the
system development life cycle (SDLC) model. An organi-
zation can use many SDLC models to develop an infor-
mation system effectively. A traditional SDLC is a linear
sequential model. This model assumes that the system will
be delivered near the end of its development life cycle.
Another SDLC model employs prototyping, which is often
used to develop an understanding of system requirements
without developing a final operational system. More com-
plex models have been developed to address the evolving
complexity of advanced and large information system



56 PART | I Overview of System and Network Security: A Comprehensive Introduction

designs. The SDLC model is embedded in any of the major
system developmental approaches:

e waterfall: The phases are executed sequentially.

e spiral: The phases are executed sequentially, with feed-
back loops to previous phases.

e incremental development: Several partial deliverables
are constructed, and each deliverable has incrementally
more functionality. Builds are constructed in parallel,
using available information from previous builds. The
product is designed, implemented, integrated, and tested
as a series of incremental builds.

e cevolutionary: There is replanning at each phase in the
life cycle, based on feedback. Each phase is divided
into multiple project cycles with deliverable measurable
results at the completion of each cycle.

An Agenda for Action for Selecting the
Cryptographic Process Activities

The following high-level checklist questions should be
addressed in determining the appropriate cryptographic
mechanisms, policies, and procedures for a system (check
all tasks completed):

1. How critical is the system to the organization’s
mission, and what is the impact level?

2. What are the performance requirements for
cryptographic  mechanisms  (communications
throughput and processing latency)?

3. What intersystem and intrasystem compatibility
and interoperability requirements need to be met
by the system (algorithm, key establishment, and
cryptographic and communications protocols)?

4. What are the security/cryptographic objectives
required by the system (content integrity protec-
tion, source authentication required, confidenti-
ality, and availability)?

5. For what period of time will the information need
to be protected?

6. What regulations and policies are applicable in
determining what is to be protected?

7. Who selects the protection mechanisms that are
to be implemented in the system?

8. Are the users knowledgeable about cryptography,
and how much training will they receive?

9. What is the nature of the physical and procedural
infrastructure for the protection of cryptographic
material and information (storage, accounting and
audit, and logistics support)?

10. What is the nature of the physical and procedural
infrastructure for the protection of cryptographic
material and information at the facilities of
outside organizations with which cryptographi-
cally protected communications are required (fa-
cilities and procedures for protection of physical
keying material)?

Security should be incorporated into all phases, from
initiation to disposition, of an SDLC model. The goal of the
selection process is to specify and implement cryptographic
methods that address specific agency/organization needs.

Before selecting a cryptographic method, an organization
should consider the operational environment, application
requirements, types of services that can be provided by each
type of cryptography, and cryptographic objectives that must
be met when selecting applicable products. Based on the
requirements, several cryptographic methods may be
required. For example, both symmetric and asymmetric
cryptography may be needed in one system, each performing
different functions (symmetric encryption, and asymmetric
digital signature and key establishment). In addition, high-
level checklist questions should be addressed in deter-
mining the appropriate cryptographic mechanisms, policies,
and procedures for a system (see checklist: An Agenda for
Action for Selecting the Cryptographic Process Activities).

8. SUMMARY

Today’s IT security environment consists of highly inter-
active and powerful computing devices and interconnected
systems of systems across global networks in which orga-
nizations routinely interact with industry, private citizens,
state and local governments, and the governments of other
nations. Consequently, both private and public sectors
depend on information systems to perform essential and
mission-critical functions. In this environment of increas-
ingly open and interconnected systems and networks,
network and data security are essential for the optimum use
of this IT. For example, systems that carry out electronic
financial transactions and electronic commerce must protect
against unauthorized access to confidential records and the
unauthorized modification of data.

Thus, in keeping with the preceding, this chapter pro-
vided guidance to organizations regarding how to select
cryptographic controls for protecting sensitive information.
However, to provide additional information, products of
other standards organizations (the American National
Standards Institute and International Organization for
Standardization) were briefly discussed.

This chapter was also intended for security individuals
responsible for designing systems and for procuring,
installing, and operating security products to meet identi-
fied security requirements. This chapter may be used by:

e a manager responsible for evaluating an existing system
and determining whether cryptographic methods are
necessary;

e program managers responsible for selecting and inte-
grating cryptographic mechanisms into a system;

e a technical specialist requested to select one or more
cryptographic methods/techniques to meet a specified
requirement;



e a procurement specialist developing a solicitation for a
system or network that will require cryptographic
methods to perform security functionality.

In other words, this chapter provided those individuals
with sufficient information that allowed them to make
informed decisions about the cryptographic methods that
met their specific needs to protect the confidentiality,
authentication, and integrity of data that are transmitted
and/or stored in a system or network. In addition, this
primer also provided information about selecting crypto-
graphic controls and implementing the controls in new or
existing systems.

Finally, let us move on to the real interactive part of this
chapter: review questions/exercises, hands-on projects, case
projects, and the optional team case project. The answers
and/or solutions by chapter can be found in the Online
Instructor’s Solutions Manual.

CHAPTER REVIEW QUESTIONS/
EXERCISES

True/False

1. True or False? For most information technology occu-
pations, knowledge of cryptography is a large part of
a broader skill set and is generally limited to relevant
applications.

2. True or False? Cryptography is built on one overarching
premise: the need for a cipher that can be used reliably
and portably to encrypt text so that through any means
of cryptanalysis (differential, deductive, algebraic, or
the like) the ciphertext can be undone with any avail-
able technology.

3. True or False? In effect, the Vernam stream cipher and
“one-time pad” ciphers are different; in fact, Vernam
later coinvented it.

4. True or False? DES used a 64-bit block cipher com-
bined with a mode of operation based on cipher-block
chaining (CBC) called the Feistel function.

5. True or False? The cryptography selection process is
documented in the system development life cycle
(SDLC) model.

Multiple Choice

1. In essence, computer-based cryptography is the art of
creating a form of communication that embraces the
following precepts, except which two?

A.Can be readily misunderstood by the intended
recipients

B. Cannot be understood by the unintended recipients

C. Can be understood by the unintended recipients

D. Can be readily understood by the intended recipients

A Cryptography Primer Chapter | 3 57

E. Can be adapted and changed easily with relatively
small modifications, such as a changed pass phrase
or word

2. What is known as the method of encryption?

A. Plaintext

B. Clear text

C. Ciphertext

D. Cryptogram

E. Cipher

3. Decryption methods often rely on understanding the
context of the:

A. Cipher

B. Ciphertext

C. Shift cipher

D. Cryptogram

E. Cryptographic algorithms

4. The amount of ciphertext needed to break a cipher suc-
cessfully is known as:

A. Benford’s law

B. Chi-square statistic

C. Polyalphabetic cipher

D. Kerckhoff’s principle

E. Unicity distance

5. One method of teasing out the frequency patterns is
through the application of some sort of mathematical
formula to test a hypothesis against reality. What test
is perhaps one of the most commonly used?

A. Inferential statistics test

B. Chi-square test

C. Statistical test

D. Random binary stream cipher test

E. Block cipher test

EXERCISE

Problem

OpenSSL has a trick in it that mixes uninitialized memory
with the randomness generated by the operating system’s
formal generator. The standard idea here is that it is good
practice to mix different sources of randomness into your
own source. Modern operating systems take several
random things such as disk drive activity and net activity
and mix the measurements into one pool, and then run it
through a fast hash to filter it. Cryptoplumbing, on the
other hand, of necessity involves lots of errors and fixes
and patches. Bug-reporting channels are important, and
apparently this was used. A security team found the bug
with an analysis tool. It was duly reported up to OpenSSL,
but the handover was muffed. The reason it was muffed
was that it was not obvious what was going on. The reason
it was not obvious is that code was too clever for its own
good. It tripped up the analysis tool and the programmers,
and the fix did not alert the OpenSSL programmers.



58 PART | I Overview of System and Network Security: A Comprehensive Introduction

Complexity is always the enemy in security code. So, with
the preceding in mind, as a risk manager, what would you
do to fix the problem?

Hands-On Projects
Project

What is the basic method for using the output of a random
bit generator?

Case Projects
Problem

How would an organization go about generating key pairs
for asymmetric key algorithms?

Optional Team Case Project
Problem

How would an organization go about generating keys for
symmetric key algorithms?



