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1 INTRODUCTION

Anonymity refers to the absence of identifying information of an individual. In the digital 
age, user anonymity is critically important since computers could be used to infer individ-
uals’ lifestyles, habits, whereabouts, and associations from data collected in different daily 
transactions (Chaum, 1985). However, merely removing explicit identifiers may not provide 
sufficient protection. The preliminary reason is that the released information, when combined 
with publicly available information, can also reveal the identity of an individual. A famous 
example is the Netflix crowdsourcing competition. In 2012, Netflix released a data set of us-
ers and their movie ratings. People could download the data and search for patterns. The 
data contained a fake customer ID, together with movie, customer’s rating of the movie and 
the date of the rating. It is claimed that since customer identifiers have been removed, the 
released information would not breach user privacy. However, Narayanan and Shmatikov 
(2008) showed how customers can be identified when the dataset from Netflix is combined 
with some auxiliary data (such as data from IMDB).

Location privacy is also of great concern in the mobile setting. Here we briefly review a case 
related to the location privacy of a location-based social network (LBSN), namely, WeChat, as 
discussed in (Wang et al., 2015). By using a fake GPS position and mobile phone emulation, it is 
possible to reveal the exact location of any WeChat user with the nearby service turned on (Fig. 1).

The previous example raises a question: what kind of information do we wish to protect when 
we talk about privacy protection? In other words, how do we define privacy? Traditional models 
in dealing with data confidentiality are not applicable in this case, since we have to maintain 
data utility. In the Netflix competition example, the data set is released to the public for min-
ing, while in WeChat Nearby service, the user should be able to obtain the list of users nearby.

Over the years, the research community has developed various privacy models, including 
k-anonymity (Sweeney, 2002) and differential privacy (Dwork, 2006). In this chapter, we dis-
cuss these definitions and implications and the techniques to achieve them.



236 11. An InTRoduCTIon To VARIous PRIVACy ModEls

1.1 Organizations

This rest of this chapter is organized as follows. In Section 2, we present the definition 
of k-anonymity and discuss its practical implications. In Section 3, we discuss various tech-
niques to achieve the definition. In Section 4, we discuss differential privacy, including its 
definition and implications. A differentially private mechanism that helps supporting differ-
ential privacy is reviewed in Section 5. We conclude in Section 6.

2 DEFINITION OF k-ANONYMITY

k-anonymity, proposed by Sweeney (2002), is a property of protecting released data 
from reidentification. It can be used, for example, when a private corporation such as 
a bank wants to release a version of data concerning clients’ financial information to 

FIG. 1 WeChat nearby people.
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some public organizations for research purpose. Under this circumstance, released data 
should have the property that individual subjects of the data cannot be reidentified so as 
to protect their privacy. In other words, all the records in the released database should 
remain unlinkable to the clients. Clients’ original data from a bank usually contains 
information such as name, address, and telephone number that can directly identify 
clients. One possible way to hide the identity is by directly removing the sensitive in-
formation from the database. However, it cannot guarantee clients’ privacy. Information 
like zip code, gender, age and race, clients’ identities still can be reidentified. Zip code 
provides an approximate location. Through searching by specific age, gender, and race, 
it is still possible to reveal clients’ identities. Another possible way to achieve reidenti-
fication is called linking attack. Apart from attributes like name and address which can 
directly break the anonymity of data, there are also attributes called quasi-identifier 
(QID) which is used to link released data to external data. Gender, age, race and zip code 
is a typical tuple of QIDs and this tuple of QIDs from released data has high probability 
that also appears in some external data. If there are external tables like voter registration 
lists, then by linking the QIDs from released data to voter data, clients’ identities may be 
revealed (Fig. 2).

k-anonymity requires that in the released data, each record can be mapped to at least 
k records in the original data. In another words, each record from the released data will 
have at least k − 1 identical records in the same released data. For example in Table 1, (a) 
is the original data and (b) is the data derived from (a). (b) has k-anonymity where k = 2. 
In Sweeney (2002), Latanya Sweeney presented the principle of k-anonymity and proved 
that if the released data owns the property of k-anonymity, then the linking attack which 
links the released data to other external data and tries to break the data anonymity can be 
defended. Intuitively, this is because each record in released data will have at least k − 1 
same records.

Last
withdrawal date Zip code

Gender

Age

Race

Financial data External data

Name

Address

......

Last
deposit date

Financial
status

FIG. 2 Linking attack between released data and external data.
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3 MECHANISMS THAT SUPPORT k-ANONYMITY

After k-anonymity was proposed, various attempts had been made in designing a good 
algorithm that turns a database into a form that satisfied this definition. The main two tech-
niques used to enforce k-anonymity in released data are generalization and suppression. 
Generalization consists of replacing attributes considered to be QIDs with a more general 
value. In Table 1, the values of gender, age, and zip code from (a) are all substituted by a 
generalized version in (b). Generalization can be applied in levels from a single cell to a tuple 
of attributes to achieve k-anonymity. Suppression consists of removing sensitive attributes to 
reduce the amount of generalization when achieving k-anonymity. Same as generalization, 
suppression can also be applied in cells or whole attributes. The combination of general-
ization and suppression has been used to construct different algorithms to help data satisfy 
k-anonymity. The conventional framework of such an algorithm always starts by suppressing 
several sensitive attributes and then partitions tuples of remaining attributes into groups and 
substituting accurate QIDs’ values into generalized ones for each group, which are also called 
equivalent classes. This kind of generalization is homogeneous generalization and has been 
used to address k-anonymity in Iwuchukwu and Naughton (2007), Ghinita et al. (2007), and 
LeFevre et al. (2008). A property of homogeneous generalization is that if an original record ti 
matches the released record tj′ whose corresponding original record is tj, then tj also matches 
ti′. This property is called reciprocity. The most significant point for homogeneous generaliza-
tion is how to divide the equivalent classes. The partitioning strategy will directly influence 

TABLE 1 Example of k-Anonymity (k = 2)

(a) Original Data

Name Gender Race Age Zip Code

Alice Female White 17 21103

Lucy Female Asian 22 21300

Daniel Male Black 27 21110

Kate Female White 15 21102

Rose Female Black 29 21109

Andy Male Asian 24 21304

(b) Sharing Data Derived From (a)

Gender Race Age Zip Code

F or M White 15–19 211*

F or M Asian 20–24 213*

F or M Black 25–29 211*

F or M White 15–19 211*

F or M Black 25–29 211*

F or M Asian 20–24 213*
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the utility of released data. There are two ways to do the partitioning job: global recording 
(full-domain anonymization) (LeFevre et al., 2005, 2006; El Emam et al., 2009) and local re-
cording (Xu et al., 2006; Aggarwal et al., 2010). Global recording means that within a column, 
the same generalization strategy is applied to the equal value. So if two tuples in the original 
data have identical QID values, then they must have the same released value. However, in 
local recording, two tuples with identical QID values may have different generalized val-
ues. Incognito algorithm proposed in LeFevre et al. (2005) uses dynamic programming and 
is shown to be outperformed by previous algorithms on two real-life databases. The main 
idea of Incognito is that any subset of the tuple of QIDs with k-anonymity should also have 
the property of k-anonymity. Mondrian algorithm presented in LeFevre et al. (2006) uses a 
strategy called multidimensional global recording. In Mondrian, each attribute in the dataset 
represents a dimension and each record represents a point in the space. Instead of partition-
ing each records, Mondrian algorithm partitions the space into several regions and in each 
region, there are at least k points.

Algorithms using local recording may guarantee more anonymity in specific situation 
(Ninghui Li and Su, 2011).

Another generalization method is called nonhomogeneous generalization (Wong et al., 
2010; Xue et al., 2012; Doka et al., 2015). For nonhomogeneous generalization, the property 
of reciprocity does not necessarily hold for all records. In Table 2, (b) is the released data 
derived from (a) using homogeneous generalization, and it is clear that (t1′, t2′, t5′) is an equiv-
alent class and (t3′, t4′) is another . In an equivalent class, all the generalized QID values are 
the same. However, in a nonhomogeneous generalized table (c), t1′, t2′ and t5′ have different 

TABLE 2 Example of k-Anonymity (k = 2) From Homogeneous and nonhomogeneous Generalization

(a) Original Data

Tuple ID Gender Age Zip Code

t1 Female 17 21103

t2 Male 29 21110

t3 Male 27 21210

t4 Male 15 21202

t5 Female 22 21109

(b) Sharing Data Generated by Homogeneous Generalization

Tuple ID Gender Age Zip Code

t1′ F or M 17–29 211*

t2′ F or M 17–29 211*

t3′ Male 15–27 212*

t4′ Male 15–27 212*

t5′ F or M 17–29 211*

Continued
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generalized QID values. While both table (b) and (c) have 2-anonymity, (c) offers higher 
data utility since the generalized QID ranges in (c) is either smaller or equivalent to the cor-
responding ones in (b). This illustrates that by using nonhomogeneous generalization, one 
may achieve a higher data utility on the released data.

In Wong et al.’s work (Wong et al., 2010), original data and released data are seen as a graph 
and records from data are vertices. To achieve k-anonymity, each vertex from the graph should 
have exactly k matches in the same graph including the vertex itself. If we consider a matching 
between two vertices as an edge, then the former sentence can be rewritten as each vertex in 
the graph should have out degree and in degree k. So in such graph, there are k disjoint assign-
ments can be extracted and each assignment represents a correspondence between vertices. 
Even though Wong et al.’s work use nonhomogeneous generalization, there is still the require-
ment that the generalized graph should form a ring in their strategy which causes redundancy.

Recently Doka et al. (2015) proposed a new algorithm called freeform generalization to im-
plement k-anonymity in a nonhomogeneous way. They defined the problem as how to obtain 
high data utility in k-anonymity and wanted to solve this problem as an assignment problem 
in a bipartite graph that has two parts, namely, original and released. Each vertex from original 
part should have exactly k matches in the released part, and each vertex in the released part 
should also have k matches in the original part. Doka et al. (2015) proposed an approach to 
constructing the bipartite graph which contains k disjoint components. To construct such graph, 
the idea is choosing k different perfect matchings from all the possible matchings including the 
self-matching from original data to released data for vertices. After choosing, each vertex in the 
released graph should have k possible identities. The construction is secure since each disjoint 
assignment has the same probability 1/k to be the true one for an adversary. So, each time 
the adversary wants to find the identities of the released records, he/she will have k possible 
results. In the construction, each edge between two vertices will be assigned a weight based 
on Global Certainty Penalty (GCP). GCP is used to measure the information loss of matching 
an original record to a released record. The released data should keep k- anonymity and data 
utility. So when choosing the k perfect matchings, the total GCP should be kept as small as pos-
sible. Finally, a greedy algorithm was presented in Doka et al. (2015). The input to the greedy 
algorithm is a weighted completed bipartite graph G = (S, T, E), and the output is a perfect 
match with a total weight close to the minimum. S represents vertices in original data and T 
represents in released data. A successful running of the algorithm is called an iteration. In each 

TABLE 2 Example of k-Anonymity (k = 2) From Homogeneous and nonhomogeneous 
Generalization—cont’d

(c) Sharing Data Generated by Nonhomogeneous Generalization

Tuple ID Gender Age Zip Code

t1′ Female 17–22 2110*

t2′ Male 22–29 211*

t3′ Male 15–27 212*

t4′ Male 15–27 212*

t5′ F or M 17–29 211*
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iteration, the algorithm tries to find perfect matching from S to T with a low total weight. And 
the self-matching from original data to released data with zero GCP will be found out in the 
first iteration. After one iteration, all the selecting edges will be removed from the bipartite 
graph and all the weights (GCP) on the edges will be redefined. After k iterations, k disjoint 
perfect matchings with low GCP will be presented. The algorithm can be used in the real word 
for a practical value k and the complexity for all k iterations is O(kn2), where n is the number of 
records in the original data.

4 DIFFERENTIAL PRIVACY

Since the introduction of k-anonymity, weaknesses of it as a model have been discussed, and 
these weaknesses lead to the proposal of stronger models including ℓ-diversity (Machanavajjhala 
et al., 2007), t-closeness (Li et al., 2007), or β-likeness (Cao and Karras, 2012). In this chapter, we 
do not go into details of these definitions and refer interested readers to the respective papers. 
Informally speaking, the main weakness in k-anonymity is that it does not guarantee proper 
protection of the sensitive attributes. For example, from Table 1(b), an adversary can safely con-
clude that if a target user is of age from 20-29 living in a place with zip code starting with 211, 
the target user is an African American with high probability. Since in the table, only Asians and 
African Americans are of age from 20-29 and all the Asians’ zip codes start with 213.

4.1 Overview

Differential privacy, introduced by Dwork (2006), is an attempt to define privacy from a 
different perspective. This seminal work consider the situation of privacy-preserving data 
mining in which there is a trusted curator who holds a private database D. The curator re-
sponses to queries issued by data analysts. Differential privacy guarantees that the query re-
sults are indistinguishable for two databases that differ only in one entry. From an individual 
point of view, it means that inclusion of one’s information in the private database D would 
not cause noticeable changes in the observed query outcome; thus, privacy is protected. This 
is made possible via adding noise to the query result. The setting is shown in Fig. 3:

Note that it is possible to create a synthetic database by issuing a query that output the 
private database D, as discussed in Chen et al. (2011). However, as pointed out in Clifton and 
Tassa (2013), the utility of this synthetic database maybe too low for it to be useful.

FIG. 3 Privacy-preserving data mining.
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4.2 Definition of Differential Privacy

Now we can recap the definition of differential privacy (Dwork, 2006). We first establish 
the notation. Let  : D R®  be a randomized algorithm with domain D and range R. In con-
crete terms, we can think of   as a mechanism that answers a query to a database. Then we 
can formally define whether or not   provides differential privacy as follows.

Definition 1. A randomized algorithm   is ϵ-differentially private if for all possible sub-
range of  , say S Ì R , and for all databases D1, D2 ∈ D that differs by only one record, the 
probability that   gives the same output on input D1 and D2 with similar probability. More 
formally, 

Pr D S e Pr D S( ( ) ) ( ( ) ).M M1 2Î £ Îε

Here ϵ controls how much information is leaked. For a small ϵ, the answer given by mech-
anism   on two databases that differ by one record is very likely to be the same. In other 
words, whether or not an individual’s information is included in the database would not 
affect the outcome of the query significantly.

Example. Suppose the query we would like to make is whether or not Alice is a smoker. 
Consider mechanism   defined as follows.   first flips a fair coin b ∈ {0, 1}. If b = 0, return 
the true answer. Otherwise, flip another coin b′ = {0, 1}. If b′ = 0, return “yes,” otherwise return 
“no.” Now that there are two possible databases, namely, Alice is a smoker or Alice is not a 
smoker. If Alice is a smoker,   output “yes” with probability 3/4 and “no” with probability 
1/4. If Alice is not a smoker,   output “yes” with probability 1/4 and “no” with probability 
3/4. For any possible outcome, namely, “yes,” or “no,” the probability difference is at most 
three times. In other word,   is (ln 3) differentially private.

Remarks. Perhaps one of the most useful properties of this definition is that differential 
privacy holds during composition. Suppose we have a database D. The data owner releases 
the query result 1( )D . Later, he releases another query result 2 ( )D . If 1  and 2  are 
ϵ1 and ϵ2 differentially private, the outcome of releasing both 1( )D  and 2 ( )D  is (ϵ1 + ϵ2) 
differentially private.

5 LAPLACE MECHANISM TO ACHIEVE DIFFERENTIAL PRIVACY

In general, the more noise we add, the more privacy we can guarantee. However, one 
should bear in mind that one usually aim to get as little noise as possible so as to maintain 
data utility. For query that returns real numbers as response, the Laplace mechanism is one of 
the basic mechanisms to provide differential privacy. We first recall the definition of Laplace 
distribution (Dwork and Roth, 2014).

Definition 2. The Laplace distribution with constant b is defined by the probability density 
function: 

Lap x b
b

e
x
b( | ) .

| |

=
-1

2

Fig. 4 shows a plot of the Laplace distribution with b = 0.045:
Intuitively, the noise added to the answer should be sufficient to cover the maximum effect 

of a single data on the query outcome. Let F be this value. The Laplace mechanism is defined 
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as follows: if f is the actual query result, return f + noise, where noise is drawn from the Laplace 
distribution with b = F/ϵ. This mechanism is ϵ-differentially private.

Example. Suppose the database contains the grade point average (GPA) of all students. 
Assume the goal is to release the average GPA of the students in the database. We further 
assume that there are 1000 students and that the maximum GPA is 4.5. One could easily see 
that the maximum effect F of one record on the final outcome is 4.5/1000 = 0.0045. Assume we 
would like to guarantee 0.1-differential privacy. We add noise following Laplace distribution 
with b = F/ϵ = 0.0045/0.1 = 0.045. The distribution of the noise is given in Fig. 4.

6 CONCLUSION

In this chapter, we presented various definitions in relation to user privacy protections. We 
also discussed the various mechanisms to support these definitions. For an in-depth treat-
ment of the subject, readers are referred to the book by Dwork and Roth (2014).
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