
CHAPTER

Our First Python
Forensics App 3
CHAPTER CONTENTS

Introduction ... 54

Naming Conventions and Other Considerations .. 55

Constants ...55

Local Variable Name ..55

Global Variable Name ..55

Functions Name ..55

Object Name ...55

Module ...55

Class Names ...56

Our First Application “One-Way File System Hashing” .. 56

Background ..56

One-way Hashing algorithms’ Basic Characteristics 56

Popular Cryptographic Hash Algorithms? .. 57

What are the Tradeoffs Between One-Way Hashing Algorithms? 57

What are the Best-use Cases for One-Way Hashing Algorithms in Forensics? ... 57

Fundamental Requirements ..58

Design Considerations ..59

Program Structure ... 61

Main Function .. 62

ParseCommandLine .. 62

WalkPath Function .. 63

HashFile Function ... 63

CSVWriter (Class) .. 63

Logger ... 63

Writing the Code ... 63

Code Walk-Through .. 64

Examining Main—Code Walk-Through ...64

ParseCommandLine() ...66

ValiditingDirectoryWritable ...69

WalkPath ..69

HashFile ...71

CSVWriter ...74

Full Code Listing Pfish.py ..75

Full Code Listing _Pfish.py ...76

Python Forensics

© 2014 Elsevier Inc. All rights reserved.
53

Results Presentation .. 83

Chapter Review .. 86

Summary Questions .. 89

Looking Ahead ... 89

Additional Resources ... 89

INTRODUCTION
In 1998, I authored a paper entitled “Using SmartCards and Digital Signatures to

Preserve Electronic Evidence” (Hosmer, 1998). The purpose of the paper was to

advance the early work of Gene Kim, creator of the original Tripwire technology

(Kim, 1993) as a graduate student at Purdue. I was interested in advancing the model

of using one-way hashing technologies to protect digital evidence, and specifically I

was applying the use of digital signatures bound to a SmartCard that provided two-

factor authenticity of the signing (Figure 3.1).

Years later I added trusted timestamps to the equation adding provenance, or

proof of the exact “when” of the signing.

Two-factor authentication combines a secure physical device such as a SmartCard with a
password that unlocks the capability of the card’s. This yields “something held” and “some-
thing known.” In order to perform applications like signing, you must be in possession of the
SmartCard and you must know the pin or password that unlocks the cards function.

Thus, my interest in applying one-way hashing methods, digital signature algo-

rithms, and other cryptographic technologies to the field of forensics has been a 15-

year journey . . . so far. The application of these technologies to evidence preserva-

tion, evidence identification, authentication, access control decisions and network

protocols continues today. Thus I want to make sure that you have a firm understand-

ing of the underlying technologies and the many applications for digital investiga-

tion, and of course the use of Python forensics.

FIGURE 3.1

Cryptographic SmartCard.

54 CHAPTER 3 Our First Python Forensics App

Figure 3.1

Before I dive right in and start writing code, as promised I want to set up some

ground rules for using the Python programming language in forensic applications.

NAMING CONVENTIONS AND OTHER CONSIDERATIONS
During the development of Python forensics applications, I will define the rules and

naming conventions that are being used throughout the cookbook chapters in the

book. Part of this is to compensate for Python’s lack of the enforcement of strongly

typed variables and true constants. More importantly it is to define a style that will

make the programs more readable, and easier to follow, understand, and modify or

enhance.

Therefore, here are the naming conventions I will be using.

Constants
Rule: Uppercase with underscore separation

Example: HIGH_TEMPERATURE

Local variable name
Rule: Lowercase with bumpy caps (underscores are optional)

Example: currentTemperature

Global variable name
Rule: Prefix gl lowercase with bumpy caps (underscores are optional)

Note: Globals should be contained to a single module

Example: gl_maximumRecordedTemperature

Functions name
Rule: Uppercase with bumpy caps (underscores optional) with active voice

Example: ConvertFarenheitToCentigrade(. . .)

Object name
Rule: Prefix ob_ lowercase with bumpy caps

Example: ob_myTempRecorder

Module
Rule: An underscore followed by lowercase with bumpy caps

Example: _tempRecorder

55Naming Conventions and Other Considerations

Class names
Rule: Prefix class_ then bumpy caps and keep brief

Example: class_TempSystem

You will see many of these naming conventions in action during this chapter.

OUR FIRST APPLICATION “ONE-WAY FILE SYSTEM
HASHING”
The objective for our first Python Forensic Application is as follows:

1. Build a useful application and tool for forensic investigators.

2. Develop several modules along the way that are reusable throughout the book

and for future applications.

3. Develop a solid methodology for building Python forensic applications.

4. Begin to introduce more advanced features of the language.

Background
Before we can build an application that performs one-way file system hashing I need

to better define one-way hashing. Many of you reading this are probably saying, “I

already know what a one-way hashing is, let’s move on.” However, this is such an

important underpinning for computer forensics it is worthy of a good definition, pos-

sibly even a better one that you currently have.

One-way hashing algorithms’ basic characteristics
1. The one-way hashing algorithm takes a stream of binary data as input; this could

be a password, a file, an image of a hard drive, an image of a solid state drive, a

network packet, 1’s and 0’s from a digital recording, or basically any continuous

digital input.

2. The algorithm produces a message digest which is a compact representation of

the binary data that was received as input.

3. It is infeasible to determine the binary input that generated the digest with only

the digest. In other words, it is not possible to reverse the process using the digest

to recover the stream of binary data that created it.

4. It is infeasible to create a new binary input that will generate a given message

digest.

5. Changing a single bit of the binary input data will generate a unique message

digest.

6. Finally, it is infeasible to find two unique arbitrary streams of binary data that

produce the same digest.

56 CHAPTER 3 Our First Python Forensics App

Popular cryptographic hash algorithms?
There are a number of algorithms that produce message digests. Table 3.1 provides

background on some of the most popular algorithms.

What are the tradeoffs between one-way hashing algorithms?
The MD5 algorithm is still in use today, and for many applications the speed, con-

venience, and interoperability havemade it the algorithm of choice. Due to attacks on

the MD5 algorithm and the increased likelihood of collisions, many organizations

are moving to SHA-2 (256 and 512 bits are the most popular sizes). Many organi-

zations have opted to skip SHA-1 as it suffers from some of the same weaknesses

as MD5.

Considerations for moving to SHA-3 are still in the future, and it will be a couple

of years before broader adoption is in play. SHA-3 is completely different and was

designed to be easier to implement in hardware to improve performance (speed

and power consumption) for use in embedded or handheld devices. We will see

how quickly the handheld devices’ manufacturers adopt this newly established

standard.

What are the best-use cases for one-way hashing algorithms in forensics?
Evidence preservation:When digital data are collected (for example, when imaging

a mechanical or solid state drive), the entire contents—in other words every bit

collected—are combined to create a unique one-way hashing value. Once completed

the recalculation of the one-way hashing can be accomplished. If the new calculation

matches the original, this can prove that the evidence has not been modified. This

Table 3.1 Popular One-Way Hashing Algorithms

Algorithm Creator
Length
(Bits)

Related
standard

MD5 Ronald Rivest 128 RFC 1321

SHA-1 NSA and published by NIST 160 FIPS Pub 180

SHA-2 NSA and published by NIST 224
256
384
512

FIPS Pub 180-2
FIPS Pub 180-3
FIPS PUB 180-4

RIPEMD-160 Hans Dobbertin 160 Open Academic
Community

SHA-3 Guido Bertoni, Joan Daemen,
Michaël Peeters, and Gilles Van
Assche

224, 256,
384, 512

FIPS-180-5

57Our First Application “One-Way File System Hashing”

assumes of course that the original calculated hash value has been safeguarded

against tampering since there is no held secret and the algorithms are available. Any-

one could recalculate a hash, therefore the chain of custody of digital evidence,

including the generated hash, must be maintained.

Search: One-way hashing values have been traditionally utilized to perform

searches of known file objects. For example, if law enforcement has a collection

of confirmed child-pornography files, the hashes could be calculated for each file.

Then any suspect system could be scanned for the presence of this contraband by

calculating the hash values of each file and comparing the resulting hashes to the

known list of contraband hash values (those resulting from the child-pornography

collection). If matches are found, then the files on the suspect system matching

the hash values would be examined further.

Black Listing: Like the search example, it is possible to create a list of known bad

hash files. These could represent contraband as with CP example, they could match

knownmalicious code or cyber weapon files or the hashes of classified or proprietary

documents. The discovery of hashes matching any of these Black Listed items would

provide investigators with key evidence.

White Listing: By creating a list of known good or benign hashes (operating sys-

tem or application executables, vendor supplied dynamic link libraries or known

trustworthy application download files), investigators can use the lists to filter out

files that they do not have to examine, because they were previously determined

as a good file. Using this methodology you can dramatically reduce the number

of files that require examination and then focus your attention on files that are not

in the known good hash list.

Change detection: One popular defense against malicious changes to websites,

routers, firewall configuration, and even operating system installations is to hash

a “known good” installation or configuration. Then periodically you can re-scan

the installation or configuration to ensure no files have changed. In addition, you

must of course make sure no files have been added or deleted from the “known

good” set.

Fundamental requirements
Now that we have a better understanding of one-way hashing and its uses, what are

the fundamental requirements of our one-way file system hash application?

When defining requirements for any program or application I want to define them

as succinctly as possible, and with little jargon, so anyone familiar with the domain

could understand them—even if they are not software developers. Also, each

requirement should have an identifier such that could be traced from definition,

through design, development, and validation. I like to give the designers and devel-

opers room to innovate, thus I try to focus on WHAT not HOW during requirements

definition (Table 3.2).

58 CHAPTER 3 Our First Python Forensics App

Design considerations
Now that I have defined the basic requirements for the application I need to factor in

the design considerations. First, I would like to leverage or utilize as many of the

built-in functions of the Python Standard Library as possible. Taking stock of the

core capabilities, I like to map the requirements definition to Modules and Functions

that I intend to use. This will then expose any new modules either from third party

modules or new modules that need to be developed (Table 3.3).

One of the important steps as a designer or at least one of the fun parts is to name

the program. I have decided to name this first program p-fish short for Python-file
system hashing.

Next, based on this review of Standard Library functions I must define what mod-

ules will be used in our first application:

1. argparse for user input

2. os for file system manipulation

3. hashlib for one-way hashing

4. csv for result output (other optional outputs could be added later)

5. logging for event and error logging

6. Along with useful miscellaneous modules like time, sys, and stat

Table 3.2 Basic Requirements

Requirement
number

Requirement
name Short description

000 Overview The basic capability we are looking for is a forensic
application that walks the file system at a defined
starting point (for example, c:\ or /etc) and then
generates a one-way hashing value for every file
encountered

001 Portability The application shall support Windows and Linux
operating systems. As a general guideline,
validation will be performed on Windows 7,
Windows 8, and Ubuntu 12.04 LTS environments

002 Key functions In addition to the one-way hashing generation, the
applicationshall collectsystemmetadataassociated
with each file that is hashed. For example, file
attributes, file name, and file path at a minimum

003 Key results The application shall provide the results in a
standard output file format that offers flexibility

004 Algorithm
selection

The application shall provide a wide diversity when
specifying the one-way hashing algorithm(s) to be
used

005 Error handling The application must support error handling and
logging of all operations performed. This will
include a textual description and a timestamp

59Our First Application “One-Way File System Hashing”

Table 3.3 Standard Library Mapping

Requirement Design considerations Library selection

User input
(000, 003,
004)

Each of these requirements
needs input from the user to
accomplish the task. For
example, 000 requires the user to
specify the starting directory path.
003 requires that the user specify
a suitable output format. 004
requires us to allow the user to
specify the hash algorithm.
Details of the exception handling
or default settings need to be
defined (if allowed)

For this first program I have
decided to use the command
line parameters to obtain input
from the user. Based on this
design decision I can leverage
the argparse Python Standard
Library module

Walk the file
system
(000, 001)

This capability requires the
program to traverse the directory
structure starting at a specific
starting point. Also, this must
work on both Windows and Linux
platforms

The OS Module from the
Standard Library provides key
methods that provide the ability
to walk the file system, OS also
provides abstraction which will
provide cross platform
compatibility. Finally, this module
contains cross platform
capabilities that provide access
to metadata associated with files

Meta data
collection
(003)

This requires us to collect the
directory path, filename, owner,
modified/access/created times,
permissions, and attributes such
as read only, hidden, system or
archive

File hashing
(000)

I must provide flexibility in the
Hashing algorithms that the users
could select. I have decided to
support the most popular
algorithms such as MD5 and
several variations of SHA

The Standard Library module
hashlib provides the ability to
generate one-way hashing
values. The library supports
common hash algorithms such
as “md5,” “sha1,” “sha224,”
“sha256,” “sha384,” “sha512.”
This should provide a sufficient
set of selection for the user

Result output
(003)

To meet this requirement I must
be able to structure the program
output to support a format that
provides flexibility

The Standard Library offers
multiple options that I could
leverage. For example, the csv
module provides the ability to
create comma separated value
output, whereas the json
module (Java Object Notation)
provides encoder and decoders
for JSON objects and finally the
XML module could be leveraged
to create XML output

Continued

60 CHAPTER 3 Our First Python Forensics App

Program structure
Next, I need to define the structure of our program, in other words how I intend to put

the pieces together. This is critical, especially if our goal is to reuse components of

this program in future applications. One way to compose the components is with a

couple simple diagrams as shown in Figures 3.2 and 3.3.

Table 3.3 Standard Library Mapping—cont’d

Requirement Design considerations Library selection

Logging and
error handling

I must expect that errors will occur
during our walk of the file system,
for example I might not have
access to certain files, or certain
files may be orphaned, or certain
files maybe locked by the
operating system or other
applications. I need to handle
these error conditions and log any
notable events. For example, I
should log information about the
investigator, location, date and
time, and information that
pertains to the system that are
walked

The Python Standard Library
includes a logging facility
which I can leverage to report
any events or errors that occur
during processing

p-fish

Program Arguments

user

Event
and
Error Log

p-fish
Report

p-fish context diagram

FIGURE 3.2

Context diagram: Python-file system hashing (p-fish).

61Our First Application “One-Way File System Hashing”

Figure 3.2

The context diagram is very straightforward and simply depicts the major inputs

and outputs of the proposed program. A user specifies the program arguments, p-fish

takes those inputs and processes (hashes, extracts metadata, etc.) the file system pro-

duces a report and any notable events or errors to the “p-fish report” and the “p-fish

event and error log” files respectively.

Turning to the internal structure I have broken the program down into five major
components. The Main program, ParseCommandLine function, WalkPath function,
HashFile functions, CSVWriter class and logger (note logger is actually the Python
logger module), that is utilized by the major functions of pfish. I briefly describe the
operation of each below and during the code walk through section a more detailed
line by line explanation of how each function operates is provided.

Main function
The purpose of the Main function is to control the overall flow of this program. For
example, within Main I set up the Python logger, I display startup and completion
messages, and keep track of the time. In addition, Main invokes the command line
parser and then launches the WalkPath function. Once WalkPath completesMain will
log the completion and display termination messages to the user and the log.

ParseCommandLine
In order to provide smooth operation of p-fish, I leverage parseCommandLine to not
only parse but also validate the user input. Once completed, information that is ger-
mane to program functions such as WalkPath, HashFile, and CSVWrite is available
from parser-generated values. For example, since the hashType is specified by the
user, this value must be available to HashFile. Likewise the CSVWriter needs the
path where the resulting pfish report will be written, and WalkPath requires the start-
ing or rootPath to start the walk.

Main

Program
Arguments

Event
and
Error Log

resultRecords

p-fish internal structure

WalkPath

HashFile

LogEvents

rootPath

Generate
Report

P-fish
Report

fileName

eventValue

eventValue

logName

rootPath
hashType
reportName hashType

ReportName

FIGURE 3.3

p-fish internal structure.

62 CHAPTER 3 Our First Python Forensics App

Figure 3.3

WalkPath function
The WalkPath function must start at the root of the directory tree or path and traverse
every directory and file. For each valid file encountered it will call the HashFile

function to perform the one-way hashing operations. Once all the files have been
processed WalkPath will return control back to Main with the number of files suc-
cessfully processed.

HashFile function
The HashFile function will open, read, hash, and obtain metadata regarding the file
in question. For each file, a row of data will be sent to the CSVWriter to be included in
the p-fish report. Once the file has been processed, HashFilewill return control back
to WalkPath in order to fetch the next file.

CSVWriter (class)
In order to provide an introduction to class and object usage I decided to create
CSVWriter as a class instead of a simple function. You will see more of this in
upcoming cookbook chapters but CSVWriter sets up nicely for a class/object dem-
onstration. The csv module within the Python Standard Library requires that the
“writer” be initialized. For example, I want the resulting csv file to have a header
row made up of a static set of columns. Then subsequent calls to writer will contain
data that fills in each row. Finally, once the program has processed all the files the
resulting csv report must be closed. Note that as I walk through the program code you
may wonder why I did not leverage classes and objects more for this program. I cer-
tainly could have, but felt for the first application I would create a more function-
oriented example.

Logger
The built-in Standard Library logger provides us with the ability to write messages to

a log file associated with p-fish. The program can write information messages, warn-

ing messages, and error messages. Since this is intended to be a forensic application,

logging operations of the program is vital. You can expand the program to log addi-

tional events in the code, they can be added to any of the _pfish functions.

Writing the code
I decided to create two files, mainly to show you how to create your own Python
module and also to give you some background on how to separate capabilities.
For this first simple application, I created (1) pfish.py and (2) _pfish.py. As you
may recall, all modules that are created begin with an underscore and since
_pfish.py contains all the support functions for pfish I simply named it _pfish.py.
If you would like to split out the modules to better separate the functions you could
create separate modules for the HashFile function, the WalkPath function, etc. This
is a decision that is typically based on how tightly or loosely coupled the functions
are, or better stated, whether you wish to reuse individual functions later that need to
standalone. If that is the case, then you should separate them out.

In Figure 3.4 you can see my IDE setup for the project pfish. You notice the pro-

ject section to the far upper right that specifies the files associated with the project. I

also have both files open—you can see the two tabs far left about half way down

63Our First Application “One-Way File System Hashing”

where I can view the source code in each of the files. As you would expect in the

upper left quadrant, you can see the program is running and the variables are avail-

able for inspection. Finally, in the upper center portion of the screen you can see the

current display messages from the program reporting that the command line was pro-

cessed successfully and the welcome message for pfish.

CODE WALK-THROUGH
I will be inserting dialog as I discuss each code section. The code walk-through will

give you an in-depth look at all the code associated with the program. I will be first

walking through each of the key functions and then will provide you with a complete

listing of both files.

Examining main—code walk-through
The embedded commentary is represented in italics, while the code itself is repre-

sented in a fixed-sized font.

p-fish : Python File System Hash Program

Author: C. Hosmer

July 2013

Version 1.0

#

FIGURE 3.4

p-fish WingIDE setup.

64 CHAPTER 3 Our First Python Forensics App

Figure 3.4

The main program code is quite straightforward. At the top as you would

expect, you see the import statements that make the Python Standard Library mod-

ules available for our use. What you have not seen before is the import statement

referencing our own module in this case _pfish. Since I will be calling functions

from Main that exist in our module, the module must import our own module

_pfish.

import logging # Python Library logging functions
import time # Python Library time manipulation functions

import sys # Python Library system specific parameters

import _pfish # _pfish Support Function Module

if __name__ ¼¼'__main__':

PFISH_VERSION ¼'1.0'

Turn on Logging

Next, you can see my initialization of the Python logging system. In this example I

have hard-wired the log to be stored in the file aptly named pFishLog.log. I set the

logging level to DEGUG and specified that I wanted the Time and Date recorded

for each log event. By setting the level to DEBUG (which is the lowest level) this

will ensure all messages sent to the logger will be visible.

logging.basicConfig(filename¼'pFishLog.log',level¼logging.

DEBUG,format¼'%(asctime)s %(message)s')

Next, I pass control to process the command line arguments by calling the _pfish.

ParseCommandLine() function. I must prefix the function with _pfish, since

the function exists in the _pfish module. If the parse is successful, the function

will return here, if not, it will post a message to the user and exit the program.

I will take a deeper look at the operation of ParseCommandLine() in the next

section.

Process the Command Line Arguments
_pfish.ParseCommandLine()

I need to record the current starting time of the application in order to calculate

elapsed time for processing. I use the Standard Library function time.time() to

acquire the time elapsed in seconds since the epoch. Note, forensically this is the

time of the system we are running on, therefore if the time is a critical element in

your investigation you should sync your system clock accordingly.

Record the Starting Time
startTime ¼ time.time()

Next the program posts a message to the log reporting the start of the scan and

display this on the user screen only if the verbose option was selected on the com-

mand line (more about this when I examine the ParseCommandLine function).

Notice that I used a CONSTANT to hold the version number instead of just embed-

ding a magic number. Now we can just modify the CONSTANT in the future. Then

anywhere PFISH_VERSION is used it will display the proper version number. I also

logged the system platform and version in case there is a question in the future

65Code Walk-Through

about the system that was used to process these data. This would be a great place

to add information about the organization, investigator name, case number, and

other information that is relevant to the case.

Post the Start Scan Message to the Log
logging.info('Welcome to p-fish version 1.0 . . . New Scan Started')

_pfish.DisplayMessage('Welcome to p-fish . . . version 1.0')

Note, since I created a constant PFISH_VERSION, we could use that to make the

source code easier to maintain. That would look something like:

_pfish.DisplayMessage(‘Welcome to p-fish . . . ‘þ PFISH_VERSION)

Record some information regarding the system

logging.info('System:'+ sys.platform)

logging.info('Version:'+ sys.version)

Now the main program launches the WalkPath function within the _pfish mod-

ule that will traverse the directory structure starting at the predefined root path.

This function returns the number of files that were successfully processed by

WalkPath and HashFile. As you can see I use this value along with the ending

time to finalize the log entries. By subtracting the startTime from the endTime

I can determine the number of seconds it took to perform the file system hashing

operations. You could convert the seconds into days, hours, minutes, and seconds

of course.

Traverse the file system directories and hash the files
filesProcessed ¼ _pfish.WalkPath()

Record the end time and calculate the duration

endTime ¼ time.time()

duration ¼ endTime - startTime

logging.info('Files Processed:'+ str(filesProcessed))

logging.info('Elapsed Time:'+ str(duration) +'seconds')

logging.info('Program Terminated Normally')

_pfish.DisplayMessage("Program End)"

ParseCommandLine()
In the design section I made a couple of decisions that drove the development:

1. I decided that this first application would be a command line program.

2. I decided to provide several options to the user to manipulate the behavior of the

program. This has driven the design and implementation of the command line

options.

Based on this I provided the following command line options to the program.

66 CHAPTER 3 Our First Python Forensics App

Option Description Notes

-v Verbose, if this option is specified then
any calls to the DisplayMessage()
function will be displayed to the
standardoutputdevice, otherwise the
program will run silently

--MD5
--SHA256
--SHA512

Hash type selection, the user must
specify the one-way hashing
algorithm that would be utilized

The selection is mutually exclusive
and at least one must be selected
or the program will abort

-d rootPath, this allows the user to
specify the starting or root path for
the walk

The directory must exist and must
be readable or the program will
abort

-r reportPath, this allows the user to
specify the directory where the
resulting .csv file will be written

The directory must exist and must
be writable or the program will
abort

Even though at first some of these requirements might seem difficult, the arg-

parse Standard Library provides great flexibility in handling them. This allows us
to catch any possible user errors prior to program execution and also provides us with
a way to report problems to the user to handle the exceptions.

def ParseCommandLine():

The majority of the process of using argparse is knowing how to setup the parser.

If you set the parser up correctly it will do all the hard work for you. I start by

creating a new parser named “parser” and simply give it a description. Next, I

add a new argument in this case –v or verbose. The option is –v and the resulting

variable that is used is verbose. The help message associated with the argument

is used by the help system to inform the user on how to use pfish. The –h option is

built-in and requires no definition.

parser ¼ argparse.ArgumentParser('Python file system hashing ..

p-fish')

parser.add_argument('-v','--verbose'help¼'allows progress messages to

be displayed', action¼'store_true')

The next section defines a mutually exclusive group of arguments for selecting the

specific hash type the user would like to generate. If you wanted to add in another

option, for example sha384, you would simply add another argument to the group

and follow the same format. Since I specified under the add_mutually_exclusi-

ve_group the option required¼True, argparse will make sure that the user

has only specified one argument and at least one.

#setupagroupwheretheselectionismutuallyexclusive##andrequired.

group ¼ parser.add_mutually_exclusive_group(required¼True)

group.add_argument('--md5',help ¼'specifies MD5 algorithm',

action¼'store_true')

67Code Walk-Through

group.add_argument('--sha256', help ¼'specifies SHA256

algorithm', action¼'store_true')
group.add_argument('--sha512', help ¼'specifies SHA512

algorithm', action¼'store_true')

Next I need to specify the starting point of our walk, and where the report should be

created. This works the same as the previous setup, except I have added the type

option. This requires argparse to validate the type I have specified. In the case of

the –d option, I want to make sure that the rootPath exists and is readable. For

the reportPath, it must exist and be writable. Since argparse does not have built-

in functions to validate a directory, I created the functions ValidateDirectory()

and ValidateDirectoryWritable(). They are almost identical and they use

Standard Library operating system functions to validate the directories as defined.

parser.add_argument('-d','--rootPath', type¼
ValidateDirectory, required¼True, help¼"specify the root

path for hashing)"

parser.add_argument('-r','--reportPath', type¼
ValidateDirectoryWritable, required¼True, help¼"specify the

path for reports and logs will be written)"

create a global object to hold the validated arguments,

these will be available then to all the Functions

within # the _pfish.py module

global gl_args

global gl_hashType

Now the parser can be invoked. I want to store the resulting arguments (once val-

idated) in a global variable so they can be accessible by the functions within the

_pfish module. This would be a great opportunity to create a class to handle this

which would avoid the use of the global variables. This is done in Chapter 4.

gl_args ¼ parser.parse_args()

If the parser was successful (in other words argparse validated the command line

parameters), I want to determine which hashing algorithm the user selected. I do

that by examining each value associated with the hash types. If the user selected

sha256 for example, the gl_args.sha256 would be True and md5 and sha512

would be false. Therefore, by using a simple if/elif language routine I can deter-

mine which was selected.

if gl_args.md5:
gl_hashType ¼'MD5'

elif gl_args.sha256:

gl_hashType ¼'SHA256'

elif gl_args.sha512:

gl_hashType ¼'SHA512'

else:

gl_hashType ¼ "Unknown"

68 CHAPTER 3 Our First Python Forensics App

logging.error('Unknown Hash Type Specified')

DisplayMessage("Command line processed: Successfully)"

return

ValiditingDirectoryWritable
As mentioned above, I needed to create functions to validate the directories provided
by the users for both the report and starting or root path of theWalk. I accomplish this
by leveraging the Python Standard Library module os. I leverage both the os.path.

isdir and os.access methods associated with this module.

def ValidateDirectoryWritable(theDir):

I first check to see if in fact the directory string that the user provided exists. If the

test fails then I raise an error within argparse and provide the message “Direc-

tory does not exist.” This message would be provided to the user if the test fails.

Validate the path is a directory
if not os.path.isdir(theDir):

raise argparse.ArgumentTypeError('Directory does not

exist')

Next I validate that write privilege is authorized to the directory and once again if

the test fails I raise an exception and provide a message.

Validate the path is writable
if os.access(theDir, os.W_OK):

return theDir

else:

raiseargparse.ArgumentTypeError('Directoryis not writable')

Now that I have completed the implementation of the ParseCommandLine func-
tion, let us examine a few examples of how the function rejects improper command
line arguments. In Figure 3.5, I created four improperly formed command lines:

(1) I mistyped the root directory as TEST_DIR instead of simply TESTDIR

(2) I mistyped the –sha512 parameter as –sha521

(3) I specified two hash types –sha512 and –md5

(4) Finally, I did not specify any hash type

As you can see in each case, ParseCommandLine rejected the command.
In order to get the user back on track they simply have to utilize the –h or help

option as shown in Figure 3.6 to obtain the proper command line argument

instructions.

WalkPath
Now let us walk through the WalkPath function that will traverse the directory struc-
ture, and for each file will call the HashFile function. I think you will be pleasantly
surprised how simple this is.

69Code Walk-Through

def WalkPath():

I first initialize the variable processCount in order to count the number of suc-

cessfully processed files and I post a message to the log file to document the root

path value.

processCount ¼ 0
errorCount ¼ 0

log.info('Root Path:'+ gl_args.rootPath)

FIGURE 3.6

pfish –h command.

FIGURE 3.5

Demonstration of ParseCommandLine.

70 CHAPTER 3 Our First Python Forensics App

Figure 3.6
Figure 3.5

Next I initialize the CSVWriter with the reportPath provided on the command

line by the user. I also provide the hashType selected by the user so it can be

included in the Header line of the CSV file. I will cover the CSVWriter class later

in this chapter.

oCVS ¼ _CSVWriter(gl_args.reportPath+'fileSystemReport.csv',

gl_hashType)

Create a loop that process all the files starting

at the rootPath, all sub-directories will also be

processed

Next I create a loop using the os.walkmethod and the rootpath specified by the

user. This will create a list of file names that is processed in the next loop. This is

done for each directory found within the path.

for root, dirs, files in os.walk(gl_args.rootPath):

for each file obtain the filename and call the

HashFile Function

The next loop processes each file in the list of files and calls the function HashFile

with the file name joined with the path, along with the simple file name for use by

HashFile. The call also passes HashFile with access to the CVS writer so that

the results of the hashing operations can be written to the CVS file.

for file in files:
fname ¼ os.path.join(root, file)

result ¼ HashFile(fname, file, oCVS)

if successful then increment ProcessCount

The process and error counts are incremented accordingly

if result is True:
processCount +¼ 1

if not successful, the increment the ErrorCount

else:

errorCount +¼ 1

Once all the directories and files have been processed the CVSWriter is closed

and the function returns to the main program with the number of successfully pro-

cessed files.

oCVS.writerClose()
return(processCount)

HashFile
Below is the code for the HashFile function, it is clearly the longest for this program,
but also quite simple and straightforward. Let us walk through the process.

def HashFile(theFile, simpleName, o_result):

71Code Walk-Through

For each file several items require validation before we attempt to hash the file.

(1) Does the path exist

(2) Is the path a link instead of an actual file

(3) Is the file real (making sure it is not orphaned)

For each of these tests there is a corresponding log error that is posted to the log

file if failure occurs. If the file is bypassed the program will simply return to

WalkFile and process the next file.

Verify that the path is valid
if os.path.exists(theFile):

#Verify that the path is not a symbolic link

if not os.path.islink(theFile):

#Verify that the file is real

if os.path.isfile(theFile):

The next part is a little tricky. Even through our best efforts to determine the existence

of the file, there may be cases where the file cannot be opened or read. This could be

caused by permission issues, the file is locked or possibly corrupted. Therefore, I uti-

lize the try methods while attempting to open and then read from the files. Note that

I’m careful to open the file as read-only the “rb” option. Once again if an error

occurs a report is generated and logged and the program moves on to the next file.

try:
#Attempt to open the file

f ¼ open(theFile,'rb')

except IOError:

#if open fails report the error

log.warning('Open Failed:'+ theFile)

return

else:

try:

Attempt to read the file

rd ¼ f.read()

except IOError:

if read fails, then close the file and

report error

f.close()

log.warning('Read Failed:'+ theFile)

return

else:

#success the file is open and we can

#read from it

#lets query the file stats

Once the file has been successfully opened and verified that reading from the file

is allowed, I extract the attributes associated with the file. These include owner,

group, size, MAC times, and mode. I will include these in the record that is posted

to the CSV file.

72 CHAPTER 3 Our First Python Forensics App

theFileStats ¼ os.stat(theFile)
(mode, ino, dev, nlink, uid, gid, size,

atime, mtime, ctime) ¼ os.stat(theFile)

Display progress to the user

DisplayMessage("Processing File: " + theFile)

convert the file size to a string

fileSize ¼ str(size)

convert the MAC Times to strings

modifiedTime ¼ time.ctime(mtime)

accessTime ¼ time.ctime(atime)

createdTime ¼ time.ctime(ctime)

convert the owner, group and file mode

ownerID ¼ str(uid)

groupID ¼ str(gid)

fileMode ¼ bin(mode)

Now that the file attributes have been collected the actual hashing of the file

occurs. I need to hash the file as specified by the user (i.e., which one-way hashing

algorithm should be utilized). I’m using the Python Standard Library module

hashlib as we experimented with in Chapter 2.

#process the file hashes

if gl_args.md5:

#Calcuation the MD5

hash ¼ hashlib.md5()

hash.update(rd)

hexMD5 ¼ hash.hexdigest()

hashValue ¼ hexMD5.upper()

elif gl_args.sha256:

#Calculate the SHA256

hash¼hashlib.sha256()

hash.update(rd)

hexSHA256 ¼ hash.hexdigest()

hashValue ¼ hexSHA256.upper()

elif gl_args.sha512:

#Calculate the SHA512

hash¼hashlib.sha512()

hash.update(rd)

hexSHA512 ¼ hash.hexdigest()

hashValue ¼ hexSHA512.upper()

else:

log.error('Hash not Selected')

#File processing completed

#Close the Active File

73Code Walk-Through

Now that processing of the file is complete the file must be closed. Next I use the

CSV class to write out the record to the report file and return successfully to the

caller in this case WalkPath.

f.close()

write one row to the output file

o_result.writeCSVRow(simpleName,

theFile, fileSize, modifiedTime,

accessTime, createdTime, hashValue,

ownerID, groupID, mode)

return True

This section posts the warning messages to the log file relating to problems

encountered processing the file.

else:
log.warning('['+ repr(simpleName) +', Skipped NOT a File'+']')

return False

else:

log.warning('['+ repr(simpleName) +', Skipped Link

NOT a File'+']')

return False

else:

log.warning('['+ repr(simpleName) +', Path does NOT exist'+']')

return False

CSVWriter
The final code walk-through section I will cover in this chapter is the CSVWriter. As I
mentioned earlier, I created this code as a class instead of a function to make this
more useful and to introduce you to the concept of classes in Python. The class only
has three methods, the constructor or init, writeCSVRow, and writerClose. Let us
examine each one.

class _CSVWriter:

The constructor or init method accomplishes three basic initializations:

(1) Opens the output csvFile

(2) Initializes the csv.writer

(3) Writes the header row with the names of each column

If any failure occurs during the initialization an exception is thrown and a log

entry is generated.

def __init__(self, fileName, hashType):
try:

create a writer object and write the header row

self.csvFile ¼ open(fileName,'wb')

74 CHAPTER 3 Our First Python Forensics App

self.writer ¼ csv.writer(self.csvFile,

delimiter¼',', quoting¼csv.QUOTE_ALL)

self.writer.writerow(('File','Path','Size',

'Modified Time','Access Time','Created Time',

hashType,'Owner','Group','Mode'))

except:

log.error('CSV File Failure')

The second method writeCSVRow receives a record from HashFile upon success-

ful completion of each file hash. The method then uses the csv writer to actually

place the record in the report file.

def writeCSVRow(self, fileName, filePath, fileSize, mTime,
aTime, cTime, hashVal, own, grp, mod):

self.writer.writerow((fileName, filePath,

fileSize, mTime, aTime, cTime, hashVal, own,

grp, mod))

Finally, the writeClose method, as you expect, simply closes the csvFile.

def writerClose(self):
self.csvFile.close()

Full code listing pfish.py
#

p-fish : Python File System Hash Program

Author: C. Hosmer

July 2013

Version 1.0

#

import logging # Python Standard Library Logger

import time # Python Standard Library time functions

import sys # Python Library system specific parameters

import _pfish # _pfish Support Function Module

if __name__ ¼¼'__main__':

PFISH_VERSION ¼'1.0'

Turn on Logging

logging.basicConfig(filename¼'pFishLog.log',level¼logging.DEBUG,

format¼'%(asctime)s %(message)s')

Process the Command Line Arguments

_pfish.ParseCommandLine()

Record the Starting Time

75Code Walk-Through

startTime ¼ time.time()

Record the Welcome Message

logging.info('')

logging.info('Welcome to p-fish version'+ PFISH_VERSION +'. . . New Scan

Started')

logging.info('')

_pfish.DisplayMessage('Welcome to p-fish . . . version'+

PFISH_VERSION)

Record some information regarding the system

logging.info('System:'+ sys.platform)

logging.info('Version:'+ sys.version)

Traverse the file system directories and hash the files

filesProcessed ¼ _pfish.WalkPath()

Record the end time and calculate the duration

endTime ¼ time.time()

duration ¼ endTime - startTime

logging.info('Files Processed:'+ str(filesProcessed))

logging.info('Elapsed Time:'+ str(duration) +'seconds')

logging.info('')

logging.info('Program Terminated Normally')

logging.info('')

_pfish.DisplayMessage("Program End")

Full code listing _pfish.py
#

pfish support functions, where all the real work gets done

#

Display Message() ParseCommandLine() WalkPath()

HashFile() class _CVSWriter

ValidateDirectory() ValidateDirectoryWritable()

#

import os #Python Standard Library - Miscellaneous

operating system interfaces

import stat #Python Standard Library - functions for

interpreting os results

import time #Python Standard Library - Time access and

conversions functions

import hashlib #Python Standard Library - Secure hashes and

message digests

import argparse #Python Standard Library - Parser for command-

line options, arguments

import csv #Python Standard Library - reader and writer for

csv files

76 CHAPTER 3 Our First Python Forensics App

import logging #Python Standard Library – logging facility

log ¼ logging.getLogger('main._pfish')

#

Name: ParseCommand() Function

#

Desc: Process and Validate the command line arguments

use Python Standard Library module argparse

#

Input: none

#

Actions:

Uses the standard library argparse to process the

command line

establishes a global variable gl_args where any of the

functions can

obtain argument information

#

def ParseCommandLine():

parser ¼ argparse.ArgumentParser('Python file system hashing ..

p-fish')

parser.add_argument('-v','—verbose', help¼'allows progress messages

to be displayed', action¼'store_true')
setup a group where the selection is mutually exclusive and

required.

group ¼ parser.add_mutually_exclusive_group(required¼True)

group.add_argument('--md5', help ¼'specifies MD5 algorithm',

action¼'store_true')
group.add_argument('--sha256', help ¼'specifies SHA256

algorithm', action¼'store_true')
group.add_argument('--sha512', help ¼'specifies SHA512

algorithm', action¼'store_true')
parser.add_argument('-d','--rootPath', type¼
ValidateDirectory, required¼True, help¼"specify the root

path for hashing")

parser.add_argument('-r','--reportPath', type¼
ValidateDirectoryWritable, required¼True, help¼"specify the

path for reports and logs will be written")

createa globalobject to hold the validated arguments, these willbe

available then

to all the Functions within the _pfish.py module

global gl_args

global gl_hashType

gl_args ¼ parser.parse_args()

77Code Walk-Through

if gl_args.md5:

gl_hashType ¼'MD5'

elif gl_args.sha256:

gl_hashType ¼'SHA256'

elif gl_args.sha512:

gl_hashType ¼'SHA512'

else:

gl_hashType ¼ "Unknown"

logging.error('Unknown Hash Type Specified')

DisplayMessage("Command line processed: Successfully")

return

End ParseCommandLine¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼

#

Name: WalkPath() Function

#

Desc: Walk the path specified on the command line

use Python Standard Library module os and sys

#

Input: none, uses command line arguments

#

Actions:

Uses the standard library modules os and sys

to traverse the directory structure starting a root

path specified by the user. For each file discovered,

WalkPath

will call the Function HashFile() to perform the file

hashing

#

def WalkPath():

processCount ¼ 0

errorCount ¼ 0

oCVS ¼ _CSVWriter(gl_args.reportPath+'fileSystemReport.csv',

gl_hashType)

Create a loop that process all the files starting

at the rootPath, all sub-directories will also be

processed

log.info('Root Path:'+ gl_args.rootPath)

for root, dirs, files in os.walk(gl_args.rootPath):

for each file obtain the filename and call the HashFile Function

for file in files:

fname ¼ os.path.join(root, file)

78 CHAPTER 3 Our First Python Forensics App

result ¼ HashFile(fname, file, oCVS)

if hashing was successful then increment the ProcessCount

if result is True:

processCount +¼ 1

if not successful, the increment the ErrorCount

else:

ErrorCount +¼ 1

oCVS.writerClose()

return(processCount)

#End WalkPath¼¼

#

Name: HashFile Function

#

Desc: Processes a single file which includes performing a hash of the

file

and the extraction of metadata regarding the file processed

use Python Standard Library modules hashlib, os, and sys

#

Input: theFile ¼ the full path of the file

simpleName ¼ just the filename itself

#

Actions:

Attempts to hash the file and extract metadata

Call GenerateReport for successful hashed files

#

def HashFile(theFile, simpleName, o_result):

Verify that the path is valid

if os.path.exists(theFile):

#Verify that the path is not a symbolic link

if not os.path.islink(theFile):

#Verify that the file is real

if os.path.isfile(theFile):

try:

#Attempt to open the file

f ¼ open(theFile,'rb')

except IOError:

#if open fails report the error

log.warning('Open Failed:'+ theFile)

return

else:

try:

Attempt to read the file

79Code Walk-Through

rd ¼ f.read()

except IOError:

if read fails, then close the file and

report error

f.close()

log.warning('Read Failed:'+ theFile)

return

else:

#success the file is open and we can read from it

#lets query the file stats

theFileStats ¼ os.stat(theFile)

(mode, ino, dev, nlink, uid, gid, size, atime,

mtime, ctime) ¼ os.stat(theFile)

#Print the simple file name

DisplayMessage("Processing File: " + theFile)

print the size of the file in Bytes

fileSize ¼ str(size)

#print MAC Times

modifiedTime ¼ time.ctime(mtime)

accessTime ¼ time.ctime(atime)

createdTime ¼ time.ctime(ctime)

ownerID ¼ str(uid)

groupID ¼ str(gid)

fileMode ¼ bin(mode)

#process the file hashes

if gl_args.md5:

#Calcuation and Print the MD5

hash ¼ hashlib.md5()

hash.update(rd)

hexMD5 ¼ hash.hexdigest()

hashValue ¼ hexMD5.upper()

elif gl_args.sha256:

hash¼hashlib.sha256()

hash.update(rd)

hexSHA256 ¼ hash.hexdigest()

hashValue ¼ hexSHA256.upper()

elif gl_args.sha512:

#Calculate and Print the SHA512

hash¼hashlib.sha512()

hash.update(rd)

hexSHA512 ¼ hash.hexdigest()

hashValue ¼ hexSHA512.upper()

else:

log.error('Hash not Selected')

80 CHAPTER 3 Our First Python Forensics App

#File processing completed

#Close the Active File

print "¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼"

f.close()

write one row to the output file

o_result.writeCSVRow(simpleName, theFile,

fileSize,modifiedTime, accessTime, createdTime,

hashValue, ownerID, groupID, mode)

return True

else:

log.warning('['+ repr(simpleName) +', Skipped NOT a

File'+']')

return False

else:

log.warning('['+ repr(simpleName) +', Skipped Link NOT a

File'+']')

return False

else:

log.warning('['+ repr(simpleName) +', Path does NOT

exist'+']')

return False

End HashFile Function ¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
#

Name: ValidateDirectory Function

#

Desc: Function that will validate a directory path as

existing and readable. Used for argument validation only

#

Input: a directory path string

#

Actions:

if valid will return the Directory String

#

if invalid it will raise an ArgumentTypeError within

argparse

which will in turn be reported by argparse to the user

#

def ValidateDirectory(theDir):

Validate the path is a directory

if not os.path.isdir(theDir):

raise argparse.ArgumentTypeError('Directory does not exist')

Validate the path is readable

if os.access(theDir, os.R_OK):

return theDir

else:

81Code Walk-Through

raise argparse.ArgumentTypeError('Directory is not readable')

#End ValidateDirectory ¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
#

Name: ValidateDirectoryWritable Function

#

Desc: Function that will validate a directory path as

existing and writable. Used for argument validation only

#

Input: a directory path string

#

Actions:

if valid will return the Directory String

#

if invalid it will raise an ArgumentTypeError within

argparse

which will in turn be reported by argparse to the user

#

def ValidateDirectoryWritable(theDir):

Validate the path is a directory

if not os.path.isdir(theDir):

raise argparse.ArgumentTypeError('Directory does not exist')

Validate the path is writable

if os.access(theDir, os.W_OK):

return theDir

else:

raise argparse.ArgumentTypeError('Directory is not writable')

#End ValidateDirectoryWritable ¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼

#¼¼¼
#

Name: DisplayMessage() Function

#

Desc: Displays the message if the verbose command line option is present

#

Input: message type string

#

Actions:

Uses the standard library print function to display the

message

#

def DisplayMessage(msg):

if gl_args.verbose:

print(msg)

82 CHAPTER 3 Our First Python Forensics App

return

#End DisplayMessage¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
#

Class: _CSVWriter

#

Desc: Handles all methods related to comma separated value operations

#

Methods constructor: Initializes the CSV File

writeCVSRow: Writes a single row to the csv file

writerClose: Closes the CSV File

class _CSVWriter:

def __init__(self, fileName, hashType):

try:

create a writer object and then write the header row

self.csvFile ¼ open(fileName,'wb')

self.writer ¼ csv.writer(self.csvFile, delimiter¼',',
quoting¼csv.QUOTE_ALL)

self.writer.writerow(('File','Path','Size','Modified Time',

'Access Time','Created Time', hashType,'Owner','Group','Mode'))

except:

log.error('CSV File Failure')

def writeCSVRow(self, fileName, filePath, fileSize, mTime, aTime,

cTime, hashVal, own, grp, mod):

self.writer.writerow((fileName, filePath, fileSize, mTime,

aTime, cTime, hashVal, own, grp, mod))

def writerClose(self):

self.csvFile.close()

RESULTS PRESENTATION
Now that the walk-through has been completed and I have gone through a deep dive

into the code, let us take a look at the results. In Figure 3.7, I executed the program

with the following options:

C:\p-fish>Python pfish.py --md5 -d “c:\\p-fish\\TESTDIR\\” -r “c:\\p-fish\\” –v

The –v or verbose option was selected and the program displayed information

regarding every file processed was selected as expected.

In Figure 3.8, I examine the c:\p-fish directory and discover that two files were

created there, which are the two resulting files for the pfish.py.

1. fileSystemReport.csv

2. pFishLog.log

83Results Presentation

By choosing to leverage the Python csv module to create the report file Windows
already recognizes it as a file that Microsoft Excel can view. Opening the file we
see the results in Figure 3.9, a nicely formatted column report that can now
manipulate with Excel (sort columns, search for specific values, arrange in date
order, and examine each of the results). You notice that the hash value is in a
column named MD5 that is labeled as such because I passed the appropriate head-
ing value during the initialization of the csv.

FIGURE 3.7

Test run of pfish.py.

FIGURE 3.8

Result directory after pfish execution.

84 CHAPTER 3 Our First Python Forensics App

Figure 3.7
Figure 3.8

FIGURE 3.9

Examining the Result File with Microsoft Excel.

8
5

R
e
su
lts

P
re
se
n
ta
tio
n

Figure 3.9

The generated pFishLog.log file results are depicted in Figure 3.10. As expected

we find the welcome message, the details regarding the Windows environment,

the root path that was specified by the user, the number of files processed,

and the elapsed time of just under 1 s. In this example no errors were encountered

and the program terminated normally.

Moving to a Linux platform for execution only requires us to copy two Python

Files.

1. pfish.py

2. _pfish.py

Execution under Linux (Ubuntu version 12.04 LTS in this example) works without
changing any Python code and produces the following results shown in

Figures 3.11–3.13.

You notice that the pFishLog file under Linux has a number of warnings; this is

due to lack of read access to many of the files within the /etc directory at the user

privilege level I was running and due to some of the files being locked because they

were in use.

CHAPTER REVIEW
In this chapter I created our first useable Python forensics application. The pfish.py
program executes on both Windows and Linux platforms and through some ingenu-
ity I only used Python Standard Library modules to accomplish this along with our
own code. I also scratched the surface with argparse allowing us to not only parse
the command line but also validate command line parameters before they were used
by the application.

I also enabled the Python logger and reported events and errors to the logging
system to provide a forensic record of our actions. I provided the user with the capa-
bility of selecting among the most popular one-way hashing algorithms and the pro-
gram extracted key attributes of each file that was processed. I also leveraged the cvs

module to create a nicely formatted output file that can be opened and processed by
standard applications on both Windows and Linux systems. Finally, I implemented
our first class in Python with many more to come.

FIGURE 3.10

Contents of the pFishLog file.

86 CHAPTER 3 Our First Python Forensics App

Figure 3.10

FIGURE 3.11

Linux Command Line Execution.

8
7

C
h
a
p
te
r
R
e
vie

w

Figure 3.11

FIGURE 3.12

Linux Execution Results pfish Result File.

8
8

C
H
A
P
T
E
R
3

O
u
r
F
irst

P
yth

o
n
F
o
re
n
sic

s
A
p
p

Figure 3.12

SUMMARY QUESTIONS
1. If you wanted to add additional one-way hashing algorithms, which functions

would you need to modify? Also, by using just the Python Standard Library what

other one-way hashing algorithms are readily available.

2. If you wanted to eliminate the need of the two global variables how could you

easily accomplish this by using classes? What function would you convert to a

class and what methods would you need to create?

3. What other events or elements do you think should be logged? Howwould you go

about doing that?

4. What additional columns would you like to see in the report and how would you

obtain the additional information?

5. What additional information (such as Investigator name or case number) should

be included in the log. How would you obtain that information?

LOOKING AHEAD
In Chapter 4, I will be continuing with the cookbook section by tackling searching

and indexing of forensic data.

Additional Resources
Hosmer C. Using SmartCards and digital signatures to preserve electronic evidence. In: SPIE

proceedings, vol. 3576. Forensic Technologies for Crime Scene and the Laboratory I. The

paper was initially presented at the investigation and forensic science technologies sym-

posium; 1998. Boston, MA, http://proceedings.spiedigitallibrary.org/proceeding.aspx?

articleid¼974141 [01.11.1998].

Kim G. The design and implementation of tripwire: a file system integrity checker. Purdue

ePubs computer science technical reports, 1993. http://docs.lib.purdue.edu/cstech/1084/.

FIGURE 3.13

Linux Execution Results pFishLog File.

89Additional Resources

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=974141
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=974141
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=974141
http://docs.lib.purdue.edu/cstech/1084/
Figure 3.13

This page intentionally left blank

