CHAPTER

Our First Python
Forensics App

CHAPTER CONTENTS

INEFOAUCHION ... r e s e s s mn e e e e e e e n e e e e e mn e e nmnnnnan 54
Naming Conventions and Other Considerationsccccccveciiesscenrnincccssceeee s s s cmnnens 55
CONSEANTS it 55
Local Variable NAMEciiuuiiiiiii et 55
Global Variable Namecooviiiiiii e 55
FUNCTIONS NAME oo e e e e e 55
[0 0 =T Al A= 1= SN 55
170 L = PP 55
(012 S V- T4 1= PP 56
Our First Application “One-Way File System Hashing”ccccovioomnicinicnnccnnnceneenne 56
BaCKEIOUNA e e 56
One-way Hashing algorithms’ Basic CharacteristiCSc.ccvueeiieiiiieiineennnnnnn. 56
Popular Cryptographic Hash AIGOHTRMS?ccvuiiiiieiii e 57
What are the Tradeoffs Between One-Way Hashing Algorithms? 57
What are the Best-use Cases for One-Way Hashing Algorithms in Forensics? ...57
Fundamental ReqUIremMENtSuuiiiiii e 58
Design ConsSIAerationscciuieiieiiie e e e e e e e 59
Program SHUCKUIEceeu et a s 61
Main FUNCHION ivvuiiii e a e 62
ParseCommandLinNgoueuuuee e e 62
WalKPath FUNCHOM .v.iveieieeee ettt e et e e e aanes 63
HASHFIIE FUNCHON .vv.iveiee et e e e r e 63
CSVWIEL (ClASS) ..ot 63
F0 7= PP 63
WITEING THE COTE ...vvviiiieie ettt e aaaes 63
Code Walk-TRrOUZNcooviieiiiir it s 64
Examining Main—Code Walk-Throughccooiiiiiiiiiii e, 64
ParseCommandLing()couuiiiiiii e 66
ValiditingDirectoryWritablecooiiiiiiiii e 69
WalKPath .o 69
[=TS T = PN 71
(O g =Y 74
Full Code Listing PiSh.pY .ucvveiiiici e 75
Full Code Listing _PfiSh.pY .ocovvuiii e 76
Python Forensics 53

© 2014 Elsevier Inc. All rights reserved.

-
54

CHAPTER 3 Our First Python Forensics App

Results Presentation
Chapter Reviewcccccvveuneenn.
Summary Questionscc....
Looking Aheadccceereeerrrnnnns
Additional Resources

INTRODUCTION

In 1998, I authored a paper entitled “Using SmartCards and Digital Signatures to
Preserve Electronic Evidence” (Hosmer, 1998). The purpose of the paper was to
advance the early work of Gene Kim, creator of the original Tripwire technology
(Kim, 1993) as a graduate student at Purdue. I was interested in advancing the model
of using one-way hashing technologies to protect digital evidence, and specifically I
was applying the use of digital signatures bound to a SmartCard that provided two-
factor authenticity of the signing (Figure 3.1).

Years later I added trusted timestamps to the equation adding provenance, or
proof of the exact “when” of the signing.

Two-factor authentication combines a secure physical device such as a SmartCard with a
password that unlocks the capability of the card’s. This yields “something held” and “some-
thing known.” In order to perform applications like signing, you must be in possession of the
SmartCard and you must know the pin or password that unlocks the cards function.

Thus, my interest in applying one-way hashing methods, digital signature algo-
rithms, and other cryptographic technologies to the field of forensics has been a 15-
year journey ... so far. The application of these technologies to evidence preserva-
tion, evidence identification, authentication, access control decisions and network
protocols continues today. Thus I want to make sure that you have a firm understand-
ing of the underlying technologies and the many applications for digital investiga-
tion, and of course the use of Python forensics.

SPYRUS

FIGURE 3.1
Cryptographic SmartCard.

Figure 3.1

Naming Conventions and Other Considerations

55

Before I dive right in and start writing code, as promised I want to set up some

ground rules for using the Python programming language in forensic applications.

NAMING CONVENTIONS AND OTHER CONSIDERATIONS

During the development of Python forensics applications, I will define the rules and
naming conventions that are being used throughout the cookbook chapters in the
book. Part of this is to compensate for Python’s lack of the enforcement of strongly
typed variables and true constants. More importantly it is to define a style that will
make the programs more readable, and easier to follow, understand, and modify or

enhance.
Therefore, here are the naming conventions I will be using.

Constants

Rule: Uppercase with underscore separation
Example: HIGH_TEMPERATURE

Local variable name

Rule: Lowercase with bumpy caps (underscores are optional)
Example: currentTemperature

Global variabhle name

Rule: Prefix g/ lowercase with bumpy caps (underscores are optional)
Note: Globals should be contained to a single module
Example: gl_maximumRecordedTemperature

Functions name

Rule: Uppercase with bumpy caps (underscores optional) with active voice
Example: ConvertFarenheitToCentigrade(. . .)

Object name

Rule: Prefix ob_ lowercase with bumpy caps
Example: ob_myTempRecorder

Module

Rule: An underscore followed by lowercase with bumpy caps
Example: _tempRecorder

56

CHAPTER 3 Our First Python Forensics App

Class names

Rule: Prefix class_ then bumpy caps and keep brief
Example: class_TempSystem
You will see many of these naming conventions in action during this chapter.

OUR FIRST APPLICATION “ONE-WAY FILE SYSTEM
HASHING”

The objective for our first Python Forensic Application is as follows:

1. Build a useful application and tool for forensic investigators.

2. Develop several modules along the way that are reusable throughout the book
and for future applications.

3. Develop a solid methodology for building Python forensic applications.

4. Begin to introduce more advanced features of the language.

Background

Before we can build an application that performs one-way file system hashing I need
to better define one-way hashing. Many of you reading this are probably saying, “I
already know what a one-way hashing is, let’s move on.” However, this is such an
important underpinning for computer forensics it is worthy of a good definition, pos-
sibly even a better one that you currently have.

One-way hashing algorithms’ basic characteristics

1. The one-way hashing algorithm takes a stream of binary data as input; this could
be a password, a file, an image of a hard drive, an image of a solid state drive, a
network packet, 1’s and 0’s from a digital recording, or basically any continuous
digital input.

2. The algorithm produces a message digest which is a compact representation of
the binary data that was received as input.

3. It is infeasible to determine the binary input that generated the digest with only
the digest. In other words, it is not possible to reverse the process using the digest
to recover the stream of binary data that created it.

4. Tt is infeasible to create a new binary input that will generate a given message
digest.

5. Changing a single bit of the binary input data will generate a unique message
digest.

6. Finally, it is infeasible to find two unique arbitrary streams of binary data that
produce the same digest.

Our First Application “One-Way File System Hashing” 57

Table 3.1 Popular One-Way Hashing Algorithms
Length Related
Algorithm Creator (Bits) standard
MD5 Ronald Rivest 128 RFC 1321
SHA-1 NSA and published by NIST 160 FIPS Pub 180
SHA-2 NSA and published by NIST 224 FIPS Pub 180-2
256 FIPS Pub 180-3
384 FIPS PUB 180-4
512
RIPEMD-160 Hans Dobbertin 160 Open Academic
Community
SHA-3 Guido Bertoni, Joan Daemen, 224, 256, FIPS-180-5
Michaél Peeters, and Gilles Van 384, 512
Assche

Popular cryptographic hash algorithms?
There are a number of algorithms that produce message digests. Table 3.1 provides
background on some of the most popular algorithms.

What are the tradeoffs between one-way hashing algorithms?

The MD5 algorithm is still in use today, and for many applications the speed, con-
venience, and interoperability have made it the algorithm of choice. Due to attacks on
the MD5 algorithm and the increased likelihood of collisions, many organizations
are moving to SHA-2 (256 and 512 bits are the most popular sizes). Many organi-
zations have opted to skip SHA-1 as it suffers from some of the same weaknesses
as MD5.

Considerations for moving to SHA-3 are still in the future, and it will be a couple
of years before broader adoption is in play. SHA-3 is completely different and was
designed to be easier to implement in hardware to improve performance (speed
and power consumption) for use in embedded or handheld devices. We will see
how quickly the handheld devices’ manufacturers adopt this newly established
standard.

What are the best-use cases for one-way hashing algorithms in forensics?
Evidence preservation: When digital data are collected (for example, when imaging
a mechanical or solid state drive), the entire contents—in other words every bit
collected—are combined to create a unique one-way hashing value. Once completed
the recalculation of the one-way hashing can be accomplished. If the new calculation
matches the original, this can prove that the evidence has not been modified. This

58 CHAPTER 3 Our First Python Forensics App

assumes of course that the original calculated hash value has been safeguarded
against tampering since there is no held secret and the algorithms are available. Any-
one could recalculate a hash, therefore the chain of custody of digital evidence,
including the generated hash, must be maintained.

Search: One-way hashing values have been traditionally utilized to perform
searches of known file objects. For example, if law enforcement has a collection
of confirmed child-pornography files, the hashes could be calculated for each file.
Then any suspect system could be scanned for the presence of this contraband by
calculating the hash values of each file and comparing the resulting hashes to the
known list of contraband hash values (those resulting from the child-pornography
collection). If matches are found, then the files on the suspect system matching
the hash values would be examined further.

Black Listing: Like the search example, it is possible to create a list of known bad
hash files. These could represent contraband as with CP example, they could match
known malicious code or cyber weapon files or the hashes of classified or proprietary
documents. The discovery of hashes matching any of these Black Listed items would
provide investigators with key evidence.

White Listing: By creating a list of known good or benign hashes (operating sys-
tem or application executables, vendor supplied dynamic link libraries or known
trustworthy application download files), investigators can use the lists to filter out
files that they do not have to examine, because they were previously determined
as a good file. Using this methodology you can dramatically reduce the number
of files that require examination and then focus your attention on files that are not
in the known good hash list.

Change detection: One popular defense against malicious changes to websites,
routers, firewall configuration, and even operating system installations is to hash
a “known good” installation or configuration. Then periodically you can re-scan
the installation or configuration to ensure no files have changed. In addition, you
must of course make sure no files have been added or deleted from the “known
good” set.

Fundamental requirements

Now that we have a better understanding of one-way hashing and its uses, what are
the fundamental requirements of our one-way file system hash application?

When defining requirements for any program or application I want to define them
as succinctly as possible, and with little jargon, so anyone familiar with the domain
could understand them—even if they are not software developers. Also, each
requirement should have an identifier such that could be traced from definition,
through design, development, and validation. I like to give the designers and devel-
opers room to innovate, thus I try to focus on WHAT not HOW during requirements
definition (Table 3.2).

Our First Application “One-Way File System Hashing”

59

Table 3.2 Basic Requirements

Requirement Requirement

number name Short description

000 Overview The basic capability we are looking for is a forensic
application that walks the file system at a defined
starting point (for example, c:\ or /etc) and then
generates a one-way hashing value for every file
encountered

001 Portability The application shall support Windows and Linux

operating systems. As a general guideline,
validation will be performed on Windows 7,
Windows 8, and Ubuntu 12.04 LTS environments
002 Key functions In addition to the one-way hashing generation, the
application shall collect system metadata associated
with each file that is hashed. For example, file
attributes, file name, and file path at a minimum

003 Key results The application shall provide the results in a
standard output file format that offers flexibility
004 Algorithm The application shall provide a wide diversity when
selection specifying the one-way hashing algorithm(s) to be
used
005 Error handling The application must support error handling and

logging of all operations performed. This will
include a textual description and a timestamp

Design considerations

Now that I have defined the basic requirements for the application I need to factor in
the design considerations. First, I would like to leverage or utilize as many of the
built-in functions of the Python Standard Library as possible. Taking stock of the
core capabilities, I like to map the requirements definition to Modules and Functions
that I intend to use. This will then expose any new modules either from third party
modules or new modules that need to be developed (Table 3.3).

One of the important steps as a designer or at least one of the fun parts is to name
the program. I have decided to name this first program p-fish short for Python-file
system hashing.

Next, based on this review of Standard Library functions I must define what mod-
ules will be used in our first application:

argparse for user input

os for file system manipulation

hash1ib for one-way hashing

csv for result output (other optional outputs could be added later)
1ogging for event and error logging

Along with useful miscellaneous modules like time, sys, and stat

cupwnN~

60 CHAPTER 3 Our First Python Forensics App

Requirement

Result output
(003)

Table 3.3 Standard Library Mapping

Design considerations

User input Each of these requirements For this first program | have
(000, 003, needs input from the user to decided to use the command
004) accomplish the task. For line parameters to obtain input
example, 000 requires the user to from the user. Based on this
specify the starting directory path. design decision | can leverage
003 requires that the user specify the argparse Python Standard
a suitable output format. 004 Library module
requires us to allow the user to
specify the hash algorithm.
Details of the exception handling
or default settings need to be
defined (if allowed)
Walk the file This capability requires the The 0S Module from the
system program to traverse the directory Standard Library provides key
(000, 001) structure starting at a specific methods that provide the ability
starting point. Also, this must to walk the file system, 0S also
work on both Windows and Linux provides abstraction which will
platforms provide cross platform
Meta data This requires us to collect the compatibility. Finally, this module
collection directory path, filename, owner, contains cross platform
(003) modified/access/created times, capabilities that provide access
permissions] and attributes such to metadata associated with files
as read only, hidden, system or
archive
File hashing | must provide flexibility in the The Standard Library module
(000) Hashing algorithms that the users hash1ib provides the ability to

could select. | have decided to
support the most popular
algorithms such as MD5 and
several variations of SHA

To meet this requirement | must
be able to structure the program
output to support a format that
provides flexibility

Library selection

generate one-way hashing
values. The library supports
common hash algorithms such
as “mdb,” “shal,” “sha224,”
“sha256,” “sha384,” “shab12.”
This should provide a sufficient
set of selection for the user

The Standard Library offers
multiple options that | could
leverage. For example, the csv
module provides the ability to
create comma separated value
output, whereas the json
module (Java Object Notation)
provides encoder and decoders
for JSON objects and finally the
XML module could be leveraged
to create XML output

Continued

Our First Application “One-Way File System Hashing”

61

Requirement

Logging and
error handling

Table 3.3 Standard Library Mapping—cont’d

Design considerations

I must expect that errors will occur
during our walk of the file system,
for example | might not have
access to certain files, or certain
files may be orphaned, or certain
files maybe locked by the
operating system or other
applications. | need to handle
these error conditions and log any
notable events. For example, |
should log information about the
investigator, location, date and
time, and information that
pertains to the system that are
walked

Library selection

The Python Standard Library
includes a 10gging facility
which | can leverage to report
any events or errors that occur
during processing

Program structure
Next, I need to define the structure of our program, in other words how I intend to put
the pieces together. This is critical, especially if our goal is to reuse components of
this program in future applications. One way to compose the components is with a
couple simple diagrams as shown in Figures 3.2 and 3.3.

0

Program\ Arguments

FIGURE 3.2

p-fish context diagram

p-fish
Report

Event
and
Error Log

]

Context diagram: Python-file system hashing (p-fish).

Figure 3.2

62

CHAPTER 3 Our First Python Forensics App

ReportName

Program
Arguments

Generate
Report

rootPath
hashType
reportName

P-fish
Report

hashType

resultRecords

eventValue

Event
and

logName Error Log

p-fish internal structure

FIGURE 3.3
p-fish internal structure.

The context diagram is very straightforward and simply depicts the major inputs
and outputs of the proposed program. A user specifies the program arguments, p-fish
takes those inputs and processes (hashes, extracts metadata, etc.) the file system pro-
duces a report and any notable events or errors to the “p-fish report” and the “p-fish
event and error log” files respectively.

Turning to the internal structure I have broken the program down into five major
components. The Main program, ParseCommandLine function, WalkPath function,
HashFile functions, CSVWriter class and logger (note logger is actually the Python
logger module), that is utilized by the major functions of pfish. I briefly describe the
operation of each below and during the code walk through section a more detailed
line by line explanation of how each function operates is provided.

Main function

The purpose of the Main function is to control the overall flow of this program. For
example, within Main I set up the Python logger, I display startup and completion
messages, and keep track of the time. In addition, Main invokes the command line
parser and then launches the Wa1kPath function. Once Wa1kPath completes Main will
log the completion and display termination messages to the user and the log.

ParseCommandlLine

In order to provide smooth operation of p-fish, I leverage parseCommandLine to not
only parse but also validate the user input. Once completed, information that is ger-
mane to program functions such as WalkPath, HashFile, and CSVWrite is available
from parser-generated values. For example, since the hashType is specified by the
user, this value must be available to HashFile. Likewise the CSVWriter needs the
path where the resulting pfish report will be written, and Wa1kPath requires the start-
ing or rootPath to start the walk.

Figure 3.3

Our First Application “One-Way File System Hashing” 63

WalkPath function

The Wa1kPath function must start at the root of the directory tree or path and traverse
every directory and file. For each valid file encountered it will call the HashFile
function to perform the one-way hashing operations. Once all the files have been
processed WalkPath will return control back to Main with the number of files suc-
cessfully processed.

HashFile function

The HashFi1e function will open, read, hash, and obtain metadata regarding the file
in question. For each file, a row of data will be sent to the CSVWriter to be included in
the p-fish report. Once the file has been processed, HashFi1e will return control back
to WalkPath in order to fetch the next file.

CSVWriter (class)

In order to provide an introduction to class and object usage I decided to create
CSVWriter as a class instead of a simple function. You will see more of this in
upcoming cookbook chapters but CSVWriter sets up nicely for a class/object dem-
onstration. The csv module within the Python Standard Library requires that the
“writer” be initialized. For example, I want the resulting csv file to have a header
row made up of a static set of columns. Then subsequent calls to writer will contain
data that fills in each row. Finally, once the program has processed all the files the
resulting csv report must be closed. Note that as I walk through the program code you
may wonder why I did not leverage classes and objects more for this program. I cer-
tainly could have, but felt for the first application I would create a more function-
oriented example.

Logger

The built-in Standard Library logger provides us with the ability to write messages to
a log file associated with p-fish. The program can write information messages, warn-
ing messages, and error messages. Since this is intended to be a forensic application,
logging operations of the program is vital. You can expand the program to log addi-
tional events in the code, they can be added to any of the _pfish functions.

Writing the code
I decided to create two files, mainly to show you how to create your own Python
module and also to give you some background on how to separate capabilities.
For this first simple application, I created (1) pfish.py and (2) _pfish.py. As you
may recall, all modules that are created begin with an underscore and since
_pfish.py contains all the support functions for pfish I simply named it _pfish.py.
If you would like to split out the modules to better separate the functions you could
create separate modules for the HashFi1e function, the WalkPath function, etc. This
is a decision that is typically based on how tightly or loosely coupled the functions
are, or better stated, whether you wish to reuse individual functions later that need to
standalone. If that is the case, then you should separate them out.

In Figure 3.4 you can see my IDE setup for the project pfish. You notice the pro-
ject section to the far upper right that specifies the files associated with the project. I
also have both files open—you can see the two tabs far left about half way down

64 CHAPTER 3 Our First Python Forensics App

[&5 phish py p-fshaspn Wing TDE alE| =
[e £ Sourcs Dicsser Doty Tovle Windows ol
DoE@ xBE 9 ¢ § B ®mM® eg)00 vy BEE®
<medule>0: plshgy. line 31 =] Debug 0 [stdin, s, e sppears befows - Optien: Project pfahupr 20/ 1din] = Options
e Command line processed: Successfully 3
<dict Ol edicl en=10> p
Wecome to p-fish ... version 1.0 3
\DesitopThe Futuret &
1534 H
L e c00; lan=10~ =
o
(\Desktop|| The Fusuret it
smsn
| . e
;&(zplmm Search | Search in Files | Stack Data ~ | Dabug /0 | Messages | Open Files | Pythen Shel
(etabey _stahm]).
|e ® P
24 # Record the Welcome Message
25 logging.info()
26 logging.info('Welcome to p-fish version 1.0 ... New Scan Started’)
27 logging.info(*)
28 pfish.DisplayMessage{"Wecome to p-fish ... version 1.0")
29
30 # Record some information regarding the system
3 logging.info('System: '+ sys.platform)
32 logging.info('Version: '+ sys.version)
2R}
34 # Traverse the file system directories and hash the files
35 filesProcessed = _pfish.WalkPath()
36
37 # Record the end time and calculate the duration

p-fish WingIDE setup.

where I can view the source code in each of the files. As you would expect in the
upper left quadrant, you can see the program is running and the variables are avail-
able for inspection. Finally, in the upper center portion of the screen you can see the
current display messages from the program reporting that the command line was pro-
cessed successfully and the welcome message for pfish.

CODE WALK-THROUGH

I will be inserting dialog as I discuss each code section. The code walk-through will
give you an in-depth look at all the code associated with the program. I will be first
walking through each of the key functions and then will provide you with a complete
listing of both files.

Examining main—code walk-through

The embedded commentary is represented in italics, while the code itself is repre-
sented in a fixed-sized font.

#p-fish : Python File SystemHash Program
Author: C. Hosmer

#Jduly 2013

#Versionl.0

1

Figure 3.4

Code Walk-Through

The main program code is quite straightforward. At the top as you would
expect, you see the import statements that make the Python Standard Library mod-
ules available for our use. What you have not seen before is the import statement
referencing our own module in this case _pfish. Since I will be calling functions
from Main that exist in our module, the module must import our own module
_pfish.

import logging # Python Library 1ogging functions

import time # Python Library time manipulation functions
import sys # Python Library system specific parameters

import _pfish # _pfish Support Function Module

if__name__=="'_main__":
PFISH_VERSION ='1.0"
Turn on Logging

Next, you can see my initialization of the Python logging system. In this example |
have hard-wired the log to be stored in the file aptly named pFishLog.log. I set the
logging level to DEGUG and specified that [wanted the Time and Date recorded
for each log event. By setting the level to DEBUG (which is the lowest level) this
will ensure all messages sent to the logger will be visible.

logging.basicConfig(filename='pFishLog.log',level=1o0gging.
DEBUG, format='%(asctime)s %(message)s')

Next, I pass control to process the command line arguments by calling the _pfish.
ParseCommandLine() function. I must prefix the function with _pfish, since
the function exists in the _pfish module. If the parse is successful, the function
will return here, if not, it will post a message to the user and exit the program.
I will take a deeper look at the operation of ParseCommandLine() in the next
section.

J# Process the Command Line Arguments
_pfish.ParseCommandLine()

I need to record the current starting time of the application in order to calculate
elapsed time for processing. I use the Standard Library function time.time() to
acquire the time elapsed in seconds since the epoch. Note, forensically this is the
time of the system we are running on, therefore if the time is a critical element in
your investigation you should sync your system clock accordingly.

Record the Starting Time
startTime = time.time()

Next the program posts a message to the log reporting the start of the scan and
display this on the user screen only if the verbose option was selected on the com-
mand line (more about this when I examine the ParseCommandline function).
Notice that I used a CONSTANT to hold the version number instead of just embed-
ding a magic number. Now we can just modify the CONSTANT in the future. Then
anywhere PFISH_VERSION is used it will display the proper version number. I also
logged the system platform and version in case there is a question in the future

65

66 CHAPTER 3 Our First Python Forensics App

about the system that was used to process these data. This would be a great place
to add information about the organization, investigator name, case number, and
other information that is relevant to the case.

Post the Start Scan Message to the Log
logging.info('Welcome to p-fish version1.0... New Scan Started")
_pfish.DisplayMessage('Welcome to p-fish...version1.0")

Note, since I created a constant PFISH VERSION, we could use that to make the
source code easier to maintain. That would look something like:

_pfish.DisplayMessage(‘Welcome to p-fish ... ‘+ PFISH VERSION)

Record some information regarding the system
lTogging.info('System: '+ sys.platform)
logging.info('Version: '+ sys.version)

Now the main program launches the WalkPath function within the _pfish mod-
ule that will traverse the directory structure starting at the predefined root path.
This function returns the number of files that were successfully processed by
WalkPath and HashFile. As you can see I use this value along with the ending
time to finalize the log entries. By subtracting the startTime from the endTime
I can determine the number of seconds it took to perform the file system hashing
operations. You could convert the seconds into days, hours, minutes, and seconds
of course.

Traverse the file systemdirectories and hash the files
filesProcessed = _pfish.WalkPath()

Record the end time and calculate the duration
endTime = time.time()
duration =endTime - startTime

logging.info('Files Processed: '+ str(filesProcessed))
logging.info('Elapsed Time: '+ str(duration) +'seconds")

Togging.info('Program Terminated Normally')

_pfish.DisplayMessage("ProgramEtnd)"

ParseCommandLine()

In the design section I made a couple of decisions that drove the development:

1. T decided that this first application would be a command line program.

2. Idecided to provide several options to the user to manipulate the behavior of the

program. This has driven the design and implementation of the command line
options.

Based on this I provided the following command line options to the program.

Code Walk-Through

67

specify the starting or root path for
the walk

reportPath, this allows the user to
specify the directory where the
resulting .csv file will be written

Option Description Notes
-V Verbose, if this option is specified then

any calls to the DisplayMessage()

function will be displayed to the

standard output device, otherwise the

program will run silently
--MD5 Hash type selection, the user must The selection is mutually exclusive
--SHA256 specify the one-way hashing and at least one must be selected
--SHA512 algorithm that would be utilized or the program will abort
-d rootPath, this allows the user to The directory must exist and must

be readable or the program will
abort

The directory must exist and must
be writable or the program will
abort

Even though at first some of these requirements might seem difficult, the arg-
parse Standard Library provides great flexibility in handling them. This allows us
to catch any possible user errors prior to program execution and also provides us with
a way to report problems to the user to handle the exceptions.

def ParseCommandLine():

The majority of the process of using argparse is knowing how to setup the parser.
If you set the parser up correctly it will do all the hard work for you. I start by
creating a new parser named “parser” and simply give it a description. Next, |
add a new argument in this case —v or verbose. The option is —v and the resulting
variable that is used is verbose. The help message associated with the argument
is used by the help system to inform the user on how to use pfish. The —h option is
built-in and requires no definition.

parser = argparse.ArgumentParser('Python file system hashing ..
p-fish")

parser.add_argument('-v'
be displayed', action='store_true')

The next section defines a mutually exclusive group of arguments for selecting the
specific hash type the user would like to generate. If you wanted to add in another
option, for example sha384, you would simply add another argument to the group
and follow the same format. Since I specified under the add_mutually exclusi-
ve_group the option required=True, argparse will make sure that the user
has only specified one argument and at least one.

#setupagroupwheretheselectionismutuallyexclusived##andrequired.

group = parser.add_mutually_exclusive_group(required=True)

group.add_argument('--md5',help ='specifies MD5 algorithm’,
action='store_true")

,'--verbose'help="'allows progress messages to

68 CHAPTER 3 Our First Python Forensics App

group.add_argument('--sha256', help ='specifies SHA256
algorithm', action='store_true')

group.add_argument('--shab12', help ='specifies SHA512
algorithm', action='store_true")

Next I need to specify the starting point of our walk, and where the report should be
created. This works the same as the previous setup, except I have added the type
option. This requires argparse to validate the type I have specified. In the case of
the —d option, I want to make sure that the rootPath exists and is readable. For
the reportPath, it must exist and be writable. Since argparse does not have built-
in functions to validate a directory, I created the functions ValidateDirectory()
and ValidateDirectoryWritable(). They are almost identical and they use
Standard Library operating system functions to validate the directories as defined.

parser.add_argument('-d', '--rootPath’, type=
ValidateDirectory, required=True, help="specify the root
path for hashing)"

parser.add_argument('-r', '--reportPath’, type=
ValidateDirectoryWritable, required=True, help="specify the
path for reports and Togs will bewritten)"

ffcreate a global object to hold the validated arguments,
f#4 thesewill be available then toall the Functions
within# the _pfish.py module

global gl_args
global gl_hashType

Now the parser can be invoked. I want to store the resulting arguments (once val-
idated) in a global variable so they can be accessible by the functions within the
_pfish module. This would be a great opportunity to create a class to handle this
which would avoid the use of the global variables. This is done in Chapter 4.

gl_args =parser.parse_args()

If the parser was successful (in other words argparse validated the command line
parameters), [want to determine which hashing algorithm the user selected. I do
that by examining each value associated with the hash types. If the user selected
sha256 for example, the g1_args.sha256 would be True and mdS and sha512
would be false. Therefore, by using a simple iflelif language routine I can deter-
mine which was selected.

ifgl_args.md5:
gl_hashType ='MD5'
elif gl_args.sha256:
gl_hashType ='SHA256'
elif gl_args.shabl?2:
gl_hashType ='SHA512'
else:
gl_hashType = "Unknown"

Code Walk-Through 69

logging.error('Unknown Hash Type Specified")

DisplayMessage("Command 1ine processed: Successfully)"
return

ValiditingDirectoryWritable

As mentioned above, I needed to create functions to validate the directories provided
by the users for both the report and starting or root path of the Walk. I accomplish this
by leveraging the Python Standard Library module os. I leverage both the os.path.
isdir and os.access methods associated with this module.

def ValidateDirectoryWritable(theDir):

I first check to see if in fact the directory string that the user provided exists. If the
test fails then I raise an error within argparse and provide the message “Direc-
tory does not exist.” This message would be provided to the user if the test fails.

#Validate the path is a directory
if not os.path.isdir(theDir):
raise argparse.ArgumentTypeError('‘Directory does not
exist'")
Next I validate that write privilege is authorized to the directory and once again if
the test fails I raise an exception and provide a message.

#Validate the path iswritable
if os.access(theDir, os.W_0K):
return theDir
else:
raiseargparse.ArgumentTypeError('‘Directoryisnotwritable')

Now that I have completed the implementation of the ParseCommandLine func-
tion, let us examine a few examples of how the function rejects improper command
line arguments. In Figure 3.5, I created four improperly formed command lines:

(1) T mistyped the root directory as TEST_DIR instead of simply TESTDIR
(2) T mistyped the —sha512 parameter as —sha521

(3) I specified two hash types —sha512 and —md5

(4) Finally, I did not specify any hash type

As you can see in each case, ParseCommandLine rejected the command.

In order to get the user back on track they simply have to utilize the —h or help
option as shown in Figure 3.6 to obtain the proper command line argument
instructions.

WalkPath

Now let us walk through the Wa1lkPath function that will traverse the directory struc-
ture, and for each file will call the HashFi1e function. I think you will be pleasantly
surprised how simple this is.

70

CHAPTER 3 Our First Python Forensics App

(mmcaw | e
c:\p-f15h>ﬁython pfish.py --sha512 -d "c:\\p-TiSh\\TEST_DIR\\" -r "c:\\p-fish\\" -
usage: Python file system hashing .. p-fish [-h] [-v
(--md5S [--sha256 | --shaS12) -d
ROOTPATH -r REPORTPATH
Python file system hashing .. p-fish: error: argument -d/--rootPath: Directory does not exist
c:\p-fish>
C:\p-fish>python pfish.py --shas21 -d “c: \\D-f1sh\\TESTDIR\\“ -r "c:\\p-fish\\" -
usage: Python file system hashing .. p-fish [-h] v]
(--mdS | --sha256 | --sha512) -d
ROOTPATH -r REPORTPATH
\Python file system hashing .. p-fish: error: one of the arguments --md5 --sha255 --shaSlZ is required
C:\p-fish>
C:\p-fish>python pfish.py --sha5l2 --md5 -d "c:\\p-Fish\\TESTDIR\\" -r "c:\\p-fish\\" -
usage: Python file system hashing .. p-fish [-h] [-v]
(--md5 | --sha256 | --sha512) -d
ROOTPATH -r REPORTPATH
Python file system hashing .. p-fish: error: argument --md5: not allowed with argument --shas12

C:\p-fish>
C:\p-fish>python pfish.py -d "c: \\P Fish\\TESTDIR\\" -r "c:\\p-Fish\\" -
usage: Python file system hashing .. p-fish [-h] [-v]
(--md5 | --sha256 | --sha512) -d
ROOTPATH -r REPORTPATH
lpython file system hashing .. p-fish: error: one of the arguments --mds --sha256 --shasiz is requ1red

C:\p-fish>_

‘ I

FIGURE 3.5

Demonstration of ParseCommandLine.

Lﬂmmmysumz\;mm P — — — =t
c:\p—f1sh>ﬁython pfish.py -h

usage: Python file system hashing .. p-fish [-h] [-v]

(--md5 | --sha256 | --sha512) -d
ROOTPATH -r REPORTPATH

optional aqguments:

-h, --help show this help message and exit
-v, --verbose allows progress messa?es to be displayed
--md§ specifies MD5 algorithm
--shaz56 specifies SHA256 algorithm
--shaS12 specifies SHA512 algorithm
-d ROOTPATH, --rootPath ROOTPATH
specify the root path for hashing
-r REPORTPATH, --reportPath REPORTPATH
specify the path for reports and logs will be written
C:\p-fish>_
‘ m
FIGURE 3.6

pfish -h command.

def WalkPath():

1 first initialize the variable processCount in order to count the number of suc-
cessfully processed files and I post a message to the log file to document the root
path value.

processCount =0
errorCount =0

log.info('Root Path: '+ gl_args.rootPath)

Figure 3.6
Figure 3.5

Code Walk-Through

Next I initialize the CSVWriter with the reportPath provided on the command
line by the user. I also provide the hashType selected by the user so it can be
included in the Header line of the CSV file. I will cover the CSVWriter class later
in this chapter.

oCVS = _CSVWriter(gl_args.reportPath+'fileSystemReport.csv',
gl_hashType)

#Create a Toop that process all the files starting
##at the rootPath, all sub-directorieswill also be
processed

Next I create a loop using the os .walk method and the rootpath specified by the
user. This will create a list of file names that is processed in the next loop. This is
done for each directory found within the path.

for root, dirs, files inos.walk(gl_args.rootPath):

J for each file obtain the filename and call the
HashFile Function

The next loop processes each file in the list of files and calls the function HashFile
with the file name joined with the path, along with the simple file name for use by
HashFile. The call also passes HashFile with access to the CVS writer so that
the results of the hashing operations can be written to the CVS file.

for filein files:
fname = os.path.join(root, file)
result =HashFile(fname, file, oCVS)

if successful then increment ProcessCount
The process and error counts are incremented accordingly

if resultis True:

processCount +=1
#ifnot successful, the increment the ErrorCount
else:

errorCount +=1

Once all the directories and files have been processed the CVSWriter is closed
and the function returns to the main program with the number of successfully pro-
cessed files.

oCVS.writerClose()
return(processCount)

HashFile

Below is the code for the HashFi1e function, it is clearly the longest for this program,

but also quite simple and straightforward. Let us walk through the process.

def HashFile(theFile, simpleName, o_result):

71

72 CHAPTER 3 Our First Python Forensics App

For each file several items require validation before we attempt to hash the file.
(1) Does the path exist

(2) Is the path a link instead of an actual file

(3) Is the file real (making sure it is not orphaned)

For each of these tests there is a corresponding log error that is posted to the log
file if failure occurs. If the file is bypassed the program will simply return to
WalkFile and process the next file.

#Verify that the path isvalid
if os.path.exists(theFile):
#Verify that the path isnot a symbolic Tink
if not os.path.islink(theFile):
#Verify that the fileis real
if os.path.isfile(theFile):

The next part is a little tricky. Even through our best efforts to determine the existence
of the file, there may be cases where the file cannot be opened or read. This could be
caused by permission issues, the file is locked or possibly corrupted. Therefore, I uti-
lize the try methods while attempting to open and then read from the files. Note that
I'm careful to open the file as read-only the “rb” option. Once again if an error
occurs a report is generated and logged and the program moves on to the next file.

try:
J#fAttempt to open the file
f =open(theFile, 'rb")
except I0Error:
#Hi f open fails report the error
log.warning('Open Failed: '+ theFile)

return
else:
try:
Attempt to read the file
rd=f.read()

except I0Error:
#if read fails, then close the file and
report error
f.close()
log.warning('Read Failed: '+ theFile)
return

else:
ffsuccess the file is open and we can
Jfread fromit
#lets query the file stats

Once the file has been successfully opened and verified that reading from the file
is allowed, I extract the attributes associated with the file. These include owner,

group, size, MAC times, and mode. I will include these in the record that is posted
to the CSV file.

Code Walk-Through 73

theFileStats = os.stat(theFile)
(mode, ino, dev, nlink, uid, gid, size,
atime, mtime, ctime) =os.stat(theFile)

#Display progress to the user
DisplayMessage("Processing File: " + theFile)

convert the file size toa string
fileSize =str(size)

Jf convert the MAC Times to strings

modifiedTime = time.ctime(mtime)
accessTime =time.ctime(atime)
createdTime = time.ctime(ctime)

convert the owner, group and file mode

ownerID =str(uid)
groupID =str(gid)
fileMode = bin(mode)

Now that the file attributes have been collected the actual hashing of the file
occurs. I need to hash the file as specified by the user (i.e., which one-way hashing
algorithm should be utilized). I'm using the Python Standard Library module
hash1ib as we experimented with in Chapter 2.

fiprocess the file hashes

ifgl_args.mdb:

f#fCalcuation the MD5

hash =hashlib.md5()

hash.update(rd)

hexMD5 = hash.hexdigest()

hashValue = hexMD5.upper()
elifgl_args.sha2b6:

#iCalculate the SHA256

hash=hashlib.sha256()

hash.update(rd)

hexSHA256 = hash.hexdigest()

hashValue = hexSHA256.upper()
elifgl_args.shabl2:

#iCalculate the SHA512

hash=hashlib.sha512()

hash.update(rd)

hexSHA512 = hash.hexdigest()

hashValue = hexSHA512.upper()
else:

log.error('Hash not Selected")
#File processing completed
#Close the Active File

74 CHAPTER 3 Our First Python Forensics App

Now that processing of the file is complete the file must be closed. Next I use the
CSV class to write out the record to the report file and return successfully to the
caller in this case WalkPath.

f.close()
#write one row to the output file

o_result.writeCSVRow(simpleName,
theFile, fileSize, modifiedTime,
accessTime, createdTime, hashValue,
ownerlID, groupID, mode)

return True

This section posts the warning messages to the log file relating to problems
encountered processing the file.

else:
Tog.warning('['+ repr(simpleName) +', Skipped NOT a File'+']")
return False
else:
Tog.warning('['+ repr(simpleName) +', Skipped Link
NOT a File'+'1")
return False
else:
Tog.warning('[' + repr(simpleName) +', Path does NOT exist'+']")
return False

CSVWriter

The final code walk-through section I will cover in this chapter is the CSVWriter. AsI
mentioned earlier, I created this code as a class instead of a function to make this
more useful and to introduce you to the concept of classes in Python. The class only
has three methods, the constructor or init, writeCSVRow, and writerClose. Let us
examine each one.

class _CSVWriter:

The constructor or init method accomplishes three basic initializations:

(1) Opens the output csvFile

(2) Initializes the csv.writer

(3) Writes the header row with the names of each column

If any failure occurs during the initialization an exception is thrown and a log
entry is generated.

def __init__(self, fileName, hashType):
try:
fcreateawriter object andwrite the header row
self.csvFile =open(fileName, 'wb")

Code Walk-Through 75

self.writer =csv.writer(self.csvFile,
delimiter=",", quoting=csv.QUOTE_ALL)
self.writer.writerow(('File', 'Path', 'Size',
'Modified Time', 'Access Time', 'Created Time',
hashType, 'Owner', 'Group', 'Mode"))
except:
log.error('CSV File Failure")

The second method writeCSVRow receives a recordfrom HashFile upon success-
ful completion of each file hash. The method then uses the csv writer to actually
place the record in the report file.

def writeCSVRow(self, fileName, filePath, fileSize, mTime,
aTime, cTime, hashVal, own, grp, mod):

self.writer.writerow((fileName, filePath,
fileSize, mTime, aTime, cTime, hashVal, own,
grp, mod))

Finally, the writeClose method, as you expect, simply closes the csvFile.

def writerClose(self):
self.csvFile.close()

Full code listing pfish.py

#

#p-fish: PythonFile SystemHash Program
Author: C. Hosmer

#Jduly 2013

#Version1.0

1

import logging # Python Standard Library Logger

import time ## Python Standard Library time functions
import sys # Python Library system specific parameters
import _pfish # _pfish Support Function Module

if _name__=="_main__":

PFISH_VERSION ='1.0"

Turn on Logging
logging.basicConfig(filename='pFishlLog.log,level=1o0gging.DEBUG,
format='%2(asctime)s %Z(message)s")

Process the Command Line Arguments
_pfish.ParseCommandLine()

Jf Record the Starting Time

76 CHAPTER 3 Our First Python Forensics App

startTime =time.time()

Record the Welcome Message

logging.info(")
logging.info('Welcometop-fishversion+PFISH_VERSION+"...NewScan
Started")

logging.info(")

_pfish.DisplayMessage('Welcome to p-fish...version'+
PFISH_VERSION)

Record some information regarding the system
logging.info('System: +sys.platform)
logging.info('Version: '+ sys.version)

Traverse the file systemdirectories and hash the files
filesProcessed =_pfish.WalkPath()

J#f Record the end time and calculate the duration

endTime =time.time()

duration =endTime - startTime

logging.info('Files Processed: '+ str(filesProcessed))
logging.info('ETapsed Time: '+ str(duration) +'seconds')
logging.info(")

logging.info('Program Terminated Normally")
lTogging.info(")

_pfish.DisplayMessage("ProgramEnd")

Full code listing _pfish.py

it

pfish support functions, where all the real work gets done

1

#Display Message() ParseCommandLine() WalkPath()

#FHashFile() class _CVSWriter

#ValidateDirectory() ValidateDirectoryWritable()

1

import os #iPython Standard Library - Miscellaneous
operating systeminterfaces

import stat #Python Standard Library - functions for
interpreting os results

import time #Python Standard Library - Time access and
conversions functions

import hashlib J#Python Standard Library - Secure hashes and
message digests

import argparse #Python Standard Library - Parser for command-
line options, arguments

import csv #Python Standard Library - reader and writer for

csv files

Code Walk-Through 77

import logging J#Python Standard Library - Togging facility
log =1ogging.getlogger('main._pfish")

#

Name: ParseCommand() Function

1

Jf Desc: Process and Validate the command 1ine arguments

i use Python Standard Library module argparse

#

Input: none

#

J# Actions:

i Uses the standard Tibrary argparse to process the
command Tine

i establishes a global variable gl_args where any of the
functions can

i obtain argument information

1

def ParseCommandLine():

parser =argparse.ArgumentParser('Python file systemhashing ..
p-fish")

parser.add_argument('-v', —verbose', help='allows progress messages
to bedisplayed', action='store_true")

setup a group where the selection is mutually exclusive and
required.

group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--md5', help ="'specifiesMD5 algorithm',
action='store_true")

group.add_argument('--sha256', help ="specifies SHA256
algorithm', action='store_true')
group.add_argument('--shabl2', help="specifies SHAL1?
algorithm', action='store_true")

parser.add_argument('-d', '--rootPath', type=
ValidateDirectory, required=True, help="specify the root
path for hashing")

parser.add_argument('-r', '--reportPath’', type=
ValidateDirectoryWritable, required=True, help="specify the
path for reports and Togs will bewritten")

ffcreateaglobal objecttoholdthevalidatedarguments, thesewillbe
available then
#toall the Functions within the _pfish.py module

global gl_args
global gl_hashType

gl_args =parser.parse_args()

78 CHAPTER 3 Our First Python Forensics App

ifgl_args.mdb:
gl_hashType ='MD5'
elif gl_args.sha256:
gl_hashType ='SHA256"
elif gl_args.shab12:
gl_hashType ='SHA512"
else:
gl_hashType = "Unknown"
logging.error('Unknown Hash Type Specified")

DisplayMessage("Command 1ine processed: Successfully")

return

End ParseCommandLine

1

Name: WalkPath() Function

i

Desc: Walk the path specified on the command Tine

i use Python Standard Library module os and sys

i

Input: none, uses command Tine arguments

1

Actions:

it Uses the standard 1ibrary modules os and sys

i to traverse the directory structure startinga root

i path specified by the user. For each file discovered,
WalkPath

i will call the Function HashFile() to performthe file
hashing

1

def WalkPath():

processCount =0
errorCount =0

oCVS =_CSVWriter(gl_args.reportPath+fileSystemReport.csv',
gl_hashType)

Create a 1oop that process all the files starting
#at the rootPath, all sub-directorieswill also be
f#f processed

log.info('Root Path: "+ gl_args.rootPath)
for root, dirs, files inos.walk(gl_args.rootPath):

J#foreachfileobtainthe filenameandcall theHashFileFunction
for filein files:
fname = os.path.join(root, file)

Code Walk-Through 79

result =HashFile(fname, file, oCVS)

#if hashingwas successful then increment the ProcessCount
if resultis True:
processCount +=1
#if not successful, the increment the ErrorCount
else:
ErrorCount +=1

oCVS.writerClose()

return(processCount)

#fEnd WalkPath

#

Name: HashFile Function

i

Desc: Processes a single filewhich includes performing a hash of the
file

i and theextractionof metadata regarding the fileprocessed

it use Python Standard Library modules hashlib, os, and sys

1

Input: theFile =the full path of the file

it simpleName = just the filename itself

1

Actions:

1 Attempts to hash the file and extract metadata

it Call GenerateReport for successful hashed files

#

def HashFile(theFile, simpleName, o_result):

#Verify that the path isvalid
if os.path.exists(theFile):

#Verify that the path isnot a symbolic Tink
if not os.path.islink(theFile):

f#Verify that the file is real
if os.path.isfile(theFile):

try:
#fAttempt to open the file
f =open(theFile, 'rb")
except I0Error:
#if open fails report the error
log.warning('Open Failed: "+ theFile)
return
else:
try:
J# Attempt to read the file

80 CHAPTER 3 Our First Python Forensics App

rd =f.read()

except I0Error:
#1if read fails, thenclose the file and
report error
f.close()
log.warning('Read Failed: "'+ theFile)
return

ffsuccess the file is open and we can read fromit
#lets query the file stats

theFileStats =os.stat(theFile)
(mode, ino, dev, nlink, uid, gid, size, atime,
mtime, ctime) = os.stat(theFile)

#Print the simple file name
DisplayMessage("Processing File: " + theFile)

#print the size of the file in Bytes
fileSize =str(size)

#print MAC Times

modifiedTime = time.ctime(mtime)
accessTime =time.ctime(atime)
createdTime =time.ctime(ctime)

ownerID=str(uid)
groupID=str(gid)
fileMode = bin(mode)

ffprocess the file hashes

ifgl_args.md5:
#Calcuation and Print the MD5
hash =hashlib.md5()
hash.update(rd)
hexMD5 = hash.hexdigest()
hashValue = hexMD5.upper()
elifgl_args.sha2b6:
hash=hashlib.sha256()
hash.update(rd)
hexSHA256 = hash.hexdigest()
hashValue = hexSHA256.upper()
elifgl_args.shabl?:
#Calculate and Print the SHA512
hash=hashlib.sha512()
hash.update(rd)
hexSHA512 = hash.hexdigest()
hashValue = hexSHA512.upper()
else:
log.error('Hash not Selected")

Code Walk-Through 81

#File processing completed

#Close the Active File

print " "
f.close()

#write one row to the output file

o_result.writeCSVRow(simpleName, theFile,
fileSize, modifiedTime, accessTime, createdTime,
hashValue, ownerID, groupID, mode)
return True
else:

log.warning('["+ repr(simpleName) +', Skipped NOT a

File'+'1")

return False

log.warning('["+ repr(simpleName) +"', Skipped Link NOT a
File'+']")
return False
else:
lTog.warning('['+ repr(simpleName) +', Path does NOT
exist'+']")
return False

End HashFile Function

1

Name: ValidateDirectory Function

1

Desc: Function thatwill validate a directory path as

i existing and readable. Used for argument validationonly

1t

Input: adirectory path string

1

Actions:

i ifvalidwill return the Directory String

1

i# if invaliditwill raise an ArgumentTypeError within
argparse

i whichwill in turn be reported by argparse to the user

1t

def ValidateDirectory(theDir):

#Validate the path is adirectory
if not os.path.isdir(theDir):
raise argparse.ArgumentTypeError('Directory does not exist")

#Validate the path is readable
if os.access(theDir, os.R_0K):
return theDir
else:

82 CHAPTER 3 Our First Python Forensics App

raiseargparse.ArgumentTypeError(‘Directory is not readable")

##End ValidateDirectory

1

Name: ValidateDirectoryWritable Function

1

Desc: Function that will validate a directory path as

i existingandwritable. Used for argument validationonly

1

Input: adirectory path string

1

Actions:

i ifvalidwill return the Directory String

1

it ifinvaliditwill raise an ArgumentTypeError within
argparse

i whichwill in turn be reported by argparse to the user

1

def ValidateDirectoryWritable(theDir):

#Validate the path is a directory
if not os.path.isdir(theDir):
raise argparse.ArgumentTypeError('Directory does not exist')

#Validate the path iswritable
if os.access(theDir, os.W_0K):
return theDir
else:
raiseargparse.ArgumentTypeError('‘Directory isnotwritable')

##fEnd ValidateDirectoryWritable

i

1

Name: DisplayMessage() Function

i

##Desc: Displays themessage if the verbose command 1ine option is present

1

Input: message type string

1

#F Actions:

i Uses the standard 1ibrary print function todisplay the
message

1

def DisplayMessage(msg):

if gl_args.verbose:
print(msg)

Results Presentation 83
return
##End DisplayMessage
#
#Class: _CSVWriter
#
Desc: Handles all methods related to comma separated value operations
1
Methods constructor: Initializes the CSV File
i writeCVSRow: Writes a single row to the csv file
i writerClose: Closes the CSV File

class _CSVWriter:

def __init__(self, fileName, hashType):

try:
J#fcreate awriter object and thenwrite the header row
self.csvFile =open(fileName, 'wb")
self.writer =csv.writer(self.csvFile, delimiter=",",
quoting=csv.QUOTE_ALL)
self.writer.writerow((‘"File', 'Path', 'Size', 'Modified Time',
'Access Time', 'Created Time', hashType, 'Owner', 'Group’, 'Mode"))

except:
log.error('CSV File Failure")

def writeCSVRow(self, fileName, filePath, fileSize, mTime, aTime,
cTime, hashVal, own, grp, mod):

self.writer.writerow((fileName, filePath, fileSize, mTime,
aTime, cTime, hashVal, own, grp, mod))

def writerClose(self):
self.csvFile.close()

RESULTS PRESENTATION

Now that the walk-through has been completed and I have gone through a deep dive
into the code, let us take a look at the results. In Figure 3.7, I executed the program
with the following options:

C\p-fish > Python pfish.py --md5 -d “c:\\p-fish\TESTDIR\\” -r “c\\p-fish\\" —v

The —v or verbose option was selected and the program displayed information
regarding every file processed was selected as expected.

In Figure 3.8, I examine the c:\p-fish directory and discover that two files were
created there, which are the two resulting files for the pfish.py.

1. fileSystemReport.csv
2. pFishLog.log

-
84

CHAPTER 3 Our First Python Forensics App

ﬁcammnmysxemsz\cmm =@ =
' -d ROOTPATH, --rootPath ROOTPATH -
specify the root path for hashing
-r REPORTPATH, ——repUrtPatl’_] REPORTPATH .) L
specify the path for reports and logs will be written 1
C:\p-fish>python pfish.py --md5 -d_"C:\\p-Tish\\TESTDIR\\" -r "c:\\p-fish\\" -v
Command 1ine processed: Successfully
Wecome to p-fish ... version 1.0
Processing File: c:\\p-fish\\TESTDIR\hpwmd121.dat
Processing File: c:\\p-fish\\TESTDIR\hpwpri103.dat
Processing File: c:\\p-fish\\TESTDIR\hpwpri104.dat
Processing File: c:\\p-fish\\TESTDIR\hpwpri1l0.dat
Processing File: c:\\p-fish\\TESTDIR\hpwprill.dat
Processing File: c:\\p-Tish\\TESTDIR\Before and After\124.]PG
Processing File: c:\\p-fish\\TESTDIR\Before and After\210.JPG
Processing File: c:\\p-fish\\TESTDIR\Before and After\291.]PG
Processing File: c:\\p-fish\\TESTDIR\Before and After\292.1PG
Processing File: c:\\p-fish\\TESTDIR\Before and After\293.1PG
‘ i '
Test run of pfish.py.
& . » Computer » HP(C:) » p-fish » ~ | 430 Search p-fish P
I
' File Edit View Tools Help
Organize v [§]Open v Print Bumn Newfolder =~ A ®
R & Name 5 Datesnodhied T s
[Recently Changed TESTDIR File folder
Public 2 _pfish Python File 13KB
B Desktop B pfish Compiled Python .. 6KB
& Downloads 0 | fileSystemReport 8/4/2013 9:45 PM Microgoft Excel C.. 18 KB
| Recent Places 2 pfish Type: Microsoft Excel Comma Separated Values File [File 2KB
& SkyDrive & pFishLog Size: 174 KB ument 1KB
$ Dropbox E Date modified: 8/4/2013 9:45 PM
4 Libraries
Y Homegroup
18 Computer
& WP (C)
ca Recovery ()
fileSystemReport Date modified: B/4/2013 9:45 PM Date created: 8/4/2013 9:45 PM
u Microcoft Excel Comma Separated Values File Size: 174 KB

Result directory after pfish execution.

By choosing to leverage the Python csv module to create the report file Windows
already recognizes it as a file that Microsoft Excel can view. Opening the file we
see the results in Figure 3.9, a nicely formatted column report that can now
manipulate with Excel (sort columns, search for specific values, arrange in date
order, and examine each of the results). You notice that the hash value is in a
column named MD)S that is labeled as such because I passed the appropriate head-
ing value during the initialization of the csv.

Figure 3.7
Figure 3.8

BHS -

BEE rove | msET PAGELAYOUT FORMULAS DATA REVIEW VIEW ADDUNS Team Chester Hosmar =

i : : - [y N
% Cut Courier New A ==E 9 Bwepet General . ["-.—I B [o= Ex l—,,T—| 3 AutoSum %‘Y F1
Pasie B CoPY - : % C dm { Formatas Cob | Waet Deete Fommat | B A8 Find &
aste 3 . AL ===lee B % 2 e onditional Formatas Cel nsert Delete Forma o in
I Pramaraine | BT U i D-A- === &35 EMerge&Center $-% > WA Foemitings Tabld~ Shles> e s . & Clear~ Eifes Bt s
Clipboard [Font & Alignment & Number 5 Styles Cells Editing ~
Cc13 b I fe 1055648 bod
A B c D E F G H [=]
1 File Fath Size Modifisd Time Access Time Craated 105 Owmer Grl
2 |hpwmd12l.dat c:\\p-£1sh\\TESTDIR\hpwmdl21 . dat 575 Wed Jul 28 17:28:00 20108un Aug 04 139 2013 Sun Aug 2013 45Z0F7F320931506CEA4FE72783F5278 [
3 hpwprlod.dac c:\\p-£1sh\\TZSTDIR\Bpwprl03 . dat 462 Tue Feb 16 20105un 2ug 04 :39 2013 Sun Aug 2013 ASLT40DDZF4FSSALBOG4T46421B2B294 o
4 |hpwpzlod.dat ©:\\p-£1sh\\TESTDIR\hpwprl04 . dat 807 Wed Jul 28 2010Sun Aug 04 :39 2013 Sun Aug 2013 40Z20D43D15121048946C5263D343RD7 [
5 hpwpzil0.das Ci\\p-£1sh\\TESTOIRA\EpwpE110 . dat 220 Tue Feb 16 2010 Sun Aug 04 39 2018 Sun Aug 2013 BCSBS7ESDE01DE342DALF49864ELBTTE o
6 hpwprill.dac ©:\\p-£1sh\\TZSTDIR\Bpwpslll dat 189 Wed Jul 28 2010 Sun Aug 04 139 2013 Sun Aug 2013 1BFDFOCO40CEAOCTLIZ771FL71DIBALZ o
7 |124.3pG6 e:\\p—-£ish\\' TDIR\Before and After\124.(€58876 Sun Apr 04 2010Sun Aug 04 3% 2013 Sun Aug 2013 924B32568E95323D04D: 2ZB370S0A27 a
8 |210.906 c:\\p-£ish\\TESTDIR\Before and After\z10.. 1360820 Wed Rug 18 2 20105un Rug 04 :39 2013 Sun Aug 2013 171114DB94DSBEF4ECB4E127B1F52622 [
9 |zs1.JpG c:\\p-fish\\TESTDIR\Before and After\251.. 1636535 Tue Oct 26 2010Sun Aug 04 :33 2013 Sun Aug 2013 DZAFBEBC1DI83EE5621ACTE4157C304% 0
10 |292. 386 c:\\p-£ish\\TZSTDIR\Before and After\29Z.. 2458849 Tue Oct 26 20105un Rug 04 :39 2013 Sun Aug 2013 F1SECFEDDFEFD2048D536A9082DIECEE [
11 |293.986 ©i\\p-£ish\\TESTDIR\Before and After\233.(1526724 Tue Ocv 26 2010 Sun Aug 04 33 2013 Sun Aug 2013 DDFSOF35COD435277Z6TCEISDACEIRTA o
12 apprissal-i.docx c:\\p-fish\\TESTDIR\Before and After\Bppri 1057774 Sun Apr 03 20118un Zug 04 238 2013 Sun Aug 2013 D4B0OFEZ1301FDIFEF17CCCASTZDARSA o
13 apprisssl.docx c:\ip-Zish\\TESTDIR\Before and Aftec\Appsi 1055842 Sum Apr 03 20115un Aug 04 133 2013 Sun Aug 2013 =S1ZZ04AAECTFO7ZBEDSBATBE4399386 o
14 |pscIoool.Jepe e:\\p-fish\\' TDIR\Before and After\DSCI(171453& Thu Nev 13 200BSun Rug 04 39 2013 Sun Aug 2013 17DEZ20S7DFASE4BZCS52275EBECZABRALR a
15 |psczo003. Jpe CI\\p-fish\\TESIDIR\Before and After\DSCI(1662235 Thu Nev 13 2008 Sun Rug 04 40 2013 Sun Aug 2013 4RR0ZE53B79D365224D6FATCITE5GEEE o
16 |psc000s. 396 ci\Ap-£ishiy and Aftar\DSCIC 1834364 Thu Nov 13 2008 Sun Rug 04 40 2013 Sun Aug 2013 1B1DSBCAOSCETB06SAR18384019275A5 o
17 DSCI0N010.JPG eI\\p-Iish\\TESTDIR\Before and After\DSCI(186614€ Thu Nov 13 Z008Sun Rug 04 140 2013 Sun Aug 2013 83E5CB51D898FDEBAEF6RA83234D1DD1E o
18 |psczooss. ape Si\\p-£ish\\TZSTDIR\Zefors and After\DSCIC 1354320 Thu Nov 13 2008 Sun Rug 04 140 2013 Sun Aug 2013 0CCE4432452B1C3B45C33CI1BCETS03D o
19 |DSCI0N040.JPG e \\p-£ish\\TESTDIR\Before and After\DSCIC 1858942 Thu Neov 13 2008Sun Aug 04 140 2013 Sun Aug 2013 04C089DBA8534CB87ACECIDDEFISFFEBB 0
20 |pscroosn. 6 S:\\p-Sismiy and Afrer\DSCIC 1643477 Thu Nov 12 2008 Sun Rug 04 40 2013 Sun Aug 2013 3A94CE25420FF9REFCTS30AITOCEROZ o
21 |DSCI0107.7%6 ei\\p-Eish\N and After\DSCI{ 1878915 Thu Nev 13 2008 Sun Aug 04 140 2013 Sun Aug 2013 F3EE547E754F458553E0E74550283CAR 0
22 |pscro113.3v¢ i \\p-£iah\Y and Afrer\DSCIC 1207935 Thu Nov 18 2008 Sun Aug 04 41 2012 Sun Aug 2013 2A028ACH9DDA43DE721R7047RFELESSE 0
23 |x_imix.png ©:\\p-£1sh\\TESTDIR\Mayan Glyphs\x_imix.pr 1295 Sat Feb 26 10:42:0& Z011Sun Aug 04 41 2013 Sun Aug 2013 BEL1C3AGAZGEIF04CEDO463EE56A37T4 [
24 Day -01 imix_m.png c:\\p-£ish\\TESTDIR\Mayan Clyphs\Days\Day 1780 Sat Feb 26 10:42:59 2011Sun Aug 04 141 2013 Sun Aug 2013 4E8591952FC728A219D98603C1B46975 [}
25 |Day -02 ik _m.png c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1679 Sat Feb 26 10:44:45 2011Sun Rug 04 41 2013 Sun Aug 2013 DDZZ7C54811EDBEETE75EBF3776EBE03 0
26 Day -02 skbal m.pn c:\\p-£ish\\TZSTDIR\Maysn Glyphs\Days\Day 1830 Sst Feb 26 10:45:45 2011Sun Bug 04 41 2012 Sun Aug 2013 SESSTSRILRTEITDZFAZCADA4SEECET93 o
27 |Day -04 kan_m.png c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1820 Sat Feb 26 10:46:01 2011Sun Rug 04 41 2013 Sun Aug 2013 2DCDS0AGAOCTTSS0DAIELEF7€92D5E80 [
28 Day -0% chicehan_m e:\\p-£ish\\TESTDIR\Mayan Clyphs\Daya\Day 1939 Sat Feb 2€ 10:46:20 2011fun Aug 04 141 2012 Sun Aug 2013 F103B23DCOFO4BOFESECEIE4B022FODE o
29 |Day -06 cimi m.pmg c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1937 Sat Feb 26 10:47:56 2011Sun Rug 04 141 2013 Sun Aug 2013 DS5642ASASCZ075721BF40SEAG0FSTSCL o
30 |Day —-07 manik_m.pn e:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1818 Sat Feb 26 10:48:13 2011Sun Aug 04 141 2012 | Sun Aug 2013 9292BDAS21CD7A20DS78285DES0EESER a
31 |pay -08 lamst_m.pn c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1302 Sat Feb 26 10:48:25 20115un Rug 04 :41 2013 Sun Aug 2013 436531118332123F3389DI4B425487EF [
32 Day -09 ml\:c_m,pn e:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1763 Sat Feb 26 10:48:40 2011Sun RAug 04 142 2013 Sun Aug 2013 4736CCSCBE5B370CA1BF03703D5316E2 0
33 |Day -10 occ_m.pag c:\\p-fish\\TESTDIR\Mayan Glyphs\Days\Day 1856 Sat Feb 26 10:43:03 2011Sun Rug 04 :42 2013 Sun Aug 2013 £183C275F39737B67CE1829B68ARASEE [
34 [Day -11 chuen_m.pn c:\\p-Sish\\TESTDIR\Maysn Glypha\Days\Day 1797 Sev Feb 26 10:50:30 20115un Aug 04 42 2013 Sun Aug 2013 F3DDEASBDA7S0E310219743217018426 o
35 Day -12 eb_m.png c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1905 Sat Feb 26 10:50:33 2011Sun Aug 04 42 2013 Sun Rug 2013 AS493586401873D929505789AZ6E9DER o
36 Day 1% ben m.png ©:\\p-Zish\\TZSTDIR\Mayan Glyphs\Days\Day 1757 Sat Feb 26 10:50:43 20115un Aug 04 4z 2013 Sun Aug 2013 064DIASCZ51BG36776F7DADESGCISTAS o
37 |Day -1¢ ix_m.png c:\\p-£ish\\TESTDIR\Mayen Glyphs\Days\Day 1787 Sat Feb 26 10:50:57 20115un Rug 04 42 2013 Sun Aug 2013 2BATBES2(£420222C12435 [
38 |pay -15 men_m.png c:\\p-fish\\TESTDIR\Mayan Glyphs\Days\Day 1957 Sat Feb 26 10:51:07 20115un Rug 04 42 2015 Sun Aug 2013 3BIZ4476FCISTOLIA4TTIEAZ0D94FEDT o
39 |Day -1 cib_m.png c:\\p-fish\\TESTDIR\Mayan Glyphs\Days\Day 1831 Sat Feb 26 10:51:17 2011Sun Bug 04 17:23:42 2013 Sun Aug 2013 3256AFDDO239AZAEZB1670AD4B6DC04E [
40 |Day -17 caban_m.pn c:\\p-£ish\\TESTDIR\Mayan Glyphs\Days\Day 1756 Sat Feb 26 10:51:29 2011Sun Aug 04 17:23:42 2018 Sun Aug 2015 S0FEDAZEE: 5 12602 o |+
fileSystemReport [©) 4] v
iii] || =————s*

FIGURE 3.9
Examining the Result File with Microsoft Excel.

uoljeIuasald Synsay

S8

Figure 3.9

86 CHAPTER 3 Our First Python Forensics App

3 pishlog - Notepad EICI]

2013-08-04 21:45:11,042 .

2013-08-04 21:45:11,042 welcome to p-fish version 1.0 ... New Scan Started
2013-08-04 21:45:11,059 X

2013-08-04 21:45:11,059 System: win32

2013-08-04 21:45:11,059 version: 2.7.5 (default, May 15 2013, 22:43:36) [MSC v.1500 32 bit (Intel)]
2013-08-04 21:45:11,059 Root Path: c:\\p-Tish\\TESTDIR\

2013-08-04 21:45:12,042 Files Processed: 82

2013-08-04 21:45:12,042 Elapsed Time: 0.929000072479 seconds

2013-08-04 21:45:12,042 P

2013-08-04 21:45:12,042 Program Terminated Normally

2013-08-04 21:45:12,042

FIGURE 3.10
Contents of the pFishLog file.

The generated pFishLog.log file results are depicted in Figure 3.10. As expected
we find the welcome message, the details regarding the Windows environment,
the root path that was specified by the user, the number of files processed,
and the elapsed time of just under 1 s. In this example no errors were encountered
and the program terminated normally.

Moving to a Linux platform for execution only requires us to copy two Python
Files.

1. pfish.py
2. _pfish.py

Execution under Linux (Ubuntu version 12.04 LTS in this example) works without
changing any Python code and produces the following results shown in
Figures 3.11-3.13.

You notice that the pFishLog file under Linux has a number of warnings; this is
due to lack of read access to many of the files within the /etc directory at the user
privilege level I was running and due to some of the files being locked because they
were in use.

CHAPTER REVIEW

In this chapter I created our first useable Python forensics application. The pfish.py
program executes on both Windows and Linux platforms and through some ingenu-
ity I only used Python Standard Library modules to accomplish this along with our
own code. I also scratched the surface with argparse allowing us to not only parse
the command line but also validate command line parameters before they were used
by the application.

I also enabled the Python logger and reported events and errors to the logging
system to provide a forensic record of our actions. I provided the user with the capa-
bility of selecting among the most popular one-way hashing algorithms and the pro-
gram extracted key attributes of each file that was processed. I also leveraged the cvs
module to create a nicely formatted output file that can be opened and processed by
standard applications on both Windows and Linux systems. Finally, I implemented
our first class in Python with many more to come.

Figure 3.10

chet@PythonForensics: ~/Desktop

chet@PythonForensics:~/DesktopS clear

chet@rythonForensics:~/Desktop$ python pfish.py --sha2s56 -d Jetc/ -r ~/Desktop/ -v
Command line processed: Successfully

Wecome to p-fish ... version 1.0

Processing File: fetc/host.conf

Processing File: /etc/kernel-img.conf

Processing File: fetc/apg.conf

Processing File: Jetc/wgetrc

Processing File: /etc/updatedb.conf

Processing File: fetc/crontab

Processing File: /etc/ld.so.cache

Processing File: /etc/gai.conf

Processing File: Jetc/blkid.conf

Processing File: Jetc/legal

Processing File: Jetc/profile

Processing File: /[etc/insserv.conf

Processing File: Jetc/shells

Processing File: Jetc/colord.conf

Processing File: Jfetc/sysctl.conf

Processing File: /etc/netscsid.conf

Processing File: Jfetc/fstab

Processing File: /fetc/usb _modeswitch.conf

Processing File: /etc/pnm2ppa.cenf

FIGURE 3.11

Linux Command Line Execution.

MaInay Jardey)n

L8

Figure 3.11

/ "
E-sEe@FHreavEion-a - @ e
@ Liberation Sans +| |10 - A 4 A E E E Jow fd o
D3 - foo B = [FriJul1209:26:112013 (
[A [B [c E F | G |
G Pan Size Modified Time Access Time Created Time SHAZS6 owner
2 |bost.cont retcihgstcont 92 Thu Apr 19 05:1514 2012 Sun Aug 4 22.12:31 2013 Fri Jul 12 09:0853 2013 _02ABE65R457F B580EF 212BR09A2AA5E 7181947 A3E ATA2F DIREAT ABEADICI76D [i
Wl kemel-ima.cont tfetclkemel-img.conf 91 un Aug 4 22:19:13 2013 Fri Jul 12 09:26:11 2013 9DBCBS6DDCDEEABCIG0054D4AB19C2F DB 1ADS1 26F TF2A0F 8396AD2DGEB3FSGE D 0
4 |apg.conf letclapg.conf 12 Fri Jun 22 09:12:07 2007 un Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 C5273B0A131979BFA94AAG8758218B53819E3184100777B233CEBBB6033A215D 0
5 |wgetrc retchvgetie 2436 Fri Feb 10 20:25:30 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 648222A57F161ED7C51FATF 39F0BAB0S608DBE1607CEIT376B0CDFAIIFATI203 [}
6 Jupdatedb.cont atedh.cont 326 Wed Aug 17 09:155/ 2011 Sun Aug_4 22:19:13 2013 i Jul 12 U9:08:53 2013 UB12CH649EEECE52EE2/3D01BCYAY /03B93422A0180190E 60D /FBDEBDEAACTO, 0
7 lcrontab latclcrontab 722 Mon Apr 2 04:28:252012 Sun Aug 4 22:12:32 2013 Fri Jul 12 09:08:53 2013 0E5C204385821E158031C83F37212BFSAAEE 778517628 TB51BD6ADI73EBDF 54 0
8 |d.so.cache fetc/id.so.cache 61993 Fri Jul 12 10:57:54 2013 Sun Aug 4 22:12:31 2013 Fri Jul 12 10:57:54 2013 8299E13790B8E923311724F02397756773500F 17767 TEIF1349228A2629E0ABS 0
9 |gai.conf retcigal.cont 3343 Thu Apr 10 10:10:10 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 096C601054334DDFT0DCEEE1C10850BFAOEADER 206302823381 7B830DS3BBEAE 0
10_|blkid.conf retcikid.cont 321 Fii Mar 30 00.49:23 2012 Sun Aug 4 22.19:13 2013 Fii Jul 12 09.08.53 2013 B9470BATBBFF692901C43AD392DE036F91821FDSFBBE4BTDATEILIS3DAZIBECT 0
11 legal letcliegal 267 Thu Apr 19 05:15:14 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 9FA4AD4D7C2A346540C64CAC3619E 389DBAIA116F 99A0FBBCCTSASEBF2851262 0
12 |profile lfetc/profile 665 Wed Feb 13 17:07:50 2013 Sun Aug 4 22:13:47 2013 Fri Jul 12 09:08:53 2013 89748D3346F8DACBTECIBTSEAAQ204F4504AG972C6D2FCI501072FITESIABF2ZD 0
13 |insserv.conf 839 Mon Apr 9 19:21:28 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 0649D36A47AACOEOTBDOFFCDI6E TEC26596C1C6335A457A9T052ADDTEITEALBA 0
14 letcishells 72 Wed Feb 13 17:07:35 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 DDBEBDE0D260D772114734225CE0BE0EFISF3CFFABO031AE2B6AAEDATILCAES2 0
retcicolord. cont 699 Tue OCt 23 18:21:42 2012 Sun Aug 4 22:12:35 2013 Fri Jul 12 09:08:53 2013 3EDS0EF6837283D72C9EF2D610D30C0684D4BA3B67CBEAFGD204CB25E 1TSELAE 0
tetclaysctl.cont 2083 Mon Dec 506:45:352011 Sun Aug 4 22:12:31 2013 Fri Jul 12 09:08:53 2013 39C941BBD3761EBICOAOR371CABES523670067E407536C338FA09DCT110ABFT0 0
2084 Thu Nov 2314:33.10 2006 Sun Aug 4 22.19:13 2013 Fri Jul 12 09.08:53 2013 FBB4CIL71ES92A5BCO286E24C2727DCF98E3E T DISFOSTADABLIA12BIBBE2FEED o
864 Fri Jul 12 09:08:46 2013 Sun Aug 4 22:12:35 2013 Fri Jul 12 09:08:46 2013 3FAF726B34D17308C74E05FBDADAID32AAA22TAE A5TRATIS5F 1 DBEEF 7T6CAQIRT 0
19 |usb_modeswitch.conf /etc/usb_modeswitch.cont 572 Wed Mar 711:06:182012 _ Sun Aug 4 22:18:13 2013 Fri Jul 12 09:08:-53 2013 C60303BDAS0F T BAA327731DEEC2EFG0D16D393F35EIC1 1DOE2IF AL312434D51E 0
20 _|pnm2ppa.conf letc/pnm2ppa.conf 7649 Wed Feb 13 17:10:50 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 2ECC4EBB1364896BD3D08DC49562022706788BFA40588B75736F65DFDAISFOGE 0
21 |moduics fetc/modules 198 Fri Jul 12 09:25:18 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:25:18 2013 _6CDBOSECCO1BACEABABCCESL1A200C6BE6188437140AA0D1840282812DB80858, [}
22 |uct.cont retcluct.cont 1260 Mon May 2 08:19:32 2011 Sun Aug 4 22:19:13 2013 i Jul 12 U9:08:53 2013 4B83C11BAFSUSBEEDBG1 2883 F856421409CAY26168BDF 2028 /34008915023 0
23 i cont ity-contest.conf 350 Fri Jul 12 09:25:27 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:25:27 2013 039F85604A077EEA73981548DB8BBCB2BEATO4ATAA0CT89282B 14FD1CCLAFSE 0
24 |hdparm.conf /etc/ndparm.cont 4728 Wed May 2 04:45:42 2012 Sun Aug 4 22:12:31 2013 Fri Jul 12 09:08:53 2013 FAZBIESD4A4SFB6103069058644CE3AB49DIDBIDFDTABLSCFTFSETLICBIFCESC 0
25 |briapi.key retc/brapi ey 33 Wed Feb 13 17:10:15 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 00:08:53 2013 825B4E41E5CAATDCS602A0BADESFO25F 3423401 7F521A025360DDOCACAL7DBEA 0
26 _lenvironment retclenvironment 79 Wed Feb 13 17:07:34 2013 Sun Aug 4 22:12:34 2013 Fri Jul 12 09.08:53 2013 2C7AIDFSAS4CADIE 1285093D738C35442A80F 73ABF57BE23408E60AIBB589B 1A [
27 ificates.conf /etcicace cont 6961 Wed Feb 13 17:09:41 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 CSBE3F9144F9610121CC296A6FEFBC17CATFAI3DAI2SESSCE50BF6BC5B2699A1 0
28 [bash_comy lete/bash_completi 58753 Fri Mar 30 20:10:19 2012 Sun Aug 4 22:14:39 2013 Fri Jul 12 09:08:53 2013 1674CCBB3B11A005AB1962CBBE420A882FC666534CBAFFBSDCEFSE217TDIE2ESS 0
29 |securer retcisecuretty. 3902 Sun Apr B22:40:08 2012 Sun Aug 4 22:12:35 2013 Fri Jul 12 09:08:53 2013 763CA3DF966B08B2A2CF 1DB743A9F0DI61SD0ECATFDIEAFG34A51604B80E157C 0
30 e letcime e87 Mon Feb 13 13:33:04 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 93845C797D0S6A12AADDS395F CIAEGEB13AOFSCDASEDEEFALECTOFDA0EEEBIFY 0
31 |adduser.conf letcragduser conf 2981 Wed Feb 13 17:07:34 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 S9E9F341BAT3A2C65C2DCSE722313C32C 1 B6486DECDBB 13D535B8651BE46CT23 0
32 |iogrotate cant letc/iogrotate cont 509 Tue Oct 412119312011 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 _99R07CCE79121CFDCE2199848F FFAACORAE AJAF69206CR4DD3331DREF42523DF 0
33 |mt reteimt 268 Fri Mar 30 21:06:58 2012 Sun Aug 4 22.19:13 2013 Fri Jul 12 09.08:53 2013 _0BDDBZ2A1DFE24588 DF623D6869FID0BLTFEEGGFS17366A67AA770DBBET140D2 i
34 |nanarc letc) 8453 Fri Dec_3 14:40:16 2010 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 _697C5B76B0A012E2C582024EDCCO18267D5EB214A221A0BA060BE 466927B 764F 0
35 |hostname letcihostname 16 Fri Jul 12 09:12:55 2013 Sun Aug 4 22:12:32 2013 Fri Jul 12 09:12-55 2013 79C9B72CCA419937257E DSECGBS06CT CT 2457 EE0639DBEGAIEFAS2F2174A4FBOA 0
36 |aditime fetcladitime 10 Fri Jul 12 09:14:14 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:14:14 2013 2A733BC5398DCC0E20FF23F1163DDEFIASEBAB6F6324A0D3C0BSET08CI1 1ASS (i
37 |services letclservices 18281 Mon Feb 13 13:33:04 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 5013388830014A1E77165A4D17FB5SEB21E652AF B 70A948DB847B6B5CFCE 72854 0
38 |nosts.geny retcmosts.aeny 880 Wed Feb 13 17:09:54 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 UAG7FASEZ3UBBCBEFI00AL0C0ZAT 1208014E4600BB 12/ CASF1EIBFUFAGI4E2L 0
39 |mailcap.order retc/mailcap.order 449 Mon Nov 15 03:07:32 2010 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 852FA1BABAEVEQ6176848E0CASEIB7BB620416D4EFEABLCEABEFOBIDECC18374 [}
40 Jinputic retclipputre 1721 Tue Nov 22 10:46:41 2011 Sun Aug 4 22.14:39 2013 Fii Jul 12 09.08:53 2013 D23EBA72CDT2037B1106873C6E 7C11A101BCTBAGSCB25FIEET157B792C528F09 0
41 |trace conf letciitrace cont 15752 Sat Jul 25 11:13:02 2009 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08-53 2013 9189EF035E0A4BED357885DA0FSFC314A17R TC559CAFDE0F45082AA24AC18EAD i
42 N fetcl 4 2969 Thu Mar 15 09:21:13 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 FETETGD4162E80E0BCBC24BCH38CS6AEIZCOTABODBTOOCBFOASTEOIDIELMSFIE 0
43 |hosts fetcihosts 230 Fri Jul 12 09:12:55 2013 Sun Aug 4 22:12:31 2013 Fri Jul 12 09:12:55 2013 | B841DB 7C5683E 3C1FFDC62550CFB439ADCSCAC16A4B4F C581DB302C0507EF 15 0
44 |pam.cont retc/pam.cont s52 Wed Feb 820:43:102012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 8AA7F3472ECBAA24A572D6FFDIT48CE 3DA223FBAIB2545008EAAAE T68B6406C4 0
45 |magic.mime lerc/magic. mime 11 Tue Nov 1 06:40:46 2011 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 58219ECABFE0GDB4640B4E86341FEB3099CB078146CIEEET3EC55152819DF 247 0
46 |manpath.config Jfetc/manpath.config 5173 Fri Dec 28 11:24:04 2012 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 | 3050834AB200A8CFSTAE2523330F6DABTE4867FCAF3E12E6CA2787TD650A0FEBE 0
47 |sb-base-logging.sh \sb-base-logging.sh 3279 Thu Aug 11 08:59.53 2011 Sun Aug 4 22.12.31 2013 Fri Jul 12 09.08:53 2013 _80B2A941F9B10D15454CDDDEET: 8ES1 55F58320DE12A1F2AD 0
48 |hosis allow tetcihosts. allow 580 Wed Feh 13 17:09:54 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08-53 2013 _98358BANS7CART165E0621 EF18620E C59D178A1599CCRIBCF 54076E 76EORRTAA i
49 |anacrontab et 395 Sun Jun 20 04:11:02 2010 Sun Aug 4 22:12:32 2013 Fri Jul 12 09:08:53 2013 7EB994BFBOFG0295E917813701DA03BS9B8EEEE2132FA 1958CB00527BDBDEG2T 0
50 |passwd letc/passwd 1662 Fri Jul 12 09:14:19 2013 Sun Aug 4 22:12:31 2013 Fri Jul 12 09:14:19 2013 CFE52C65F87FFBAAD265B0BDB4262485BEFCFEEGCDA3332F6AB3F2CCTEN2FBCY 0
51 |osrelease retclos telease 141 Fri Jan 25 06:31:20 2013 Sun Aug 4 22:19:13 2013 Fri Jul 12 09:08:53 2013 _348ADCTICIE 1307917830 600DSBAICI2BIED1DIE5T SCALABAL4EDO o -
[T 57 S Sheet) G g m B
Sheet 1/1 Default so | B sum=0 o—e——@ 100%

FIGURE 3.12

Linux Execution Results pfish Result File.

88

ddy soIsuaio4 UoUMhd 1sii4 INQ € YALAVHI

Figure 3.12

Additional Resources 89

pFishLog.log (~/Desktop) - gedit

R P open - B sae 8 undo

pFishLog.log %
2013-08-04 22:19:13,028 Welcome to p-tish version 1.8 ... New Scan Started
2013-08-04 22:19:13,029
2013-88-04 22:19:13,629 System: linux2
2013-08-04 22:19:13,029 Version: 2.7.3 (default, Aug 1 2012, 05:16:07)
[6CC 4.6.3]
2013-08-84 22:19:13,029 Root Path: fetc/
2013-98-04 22:19:13,031 ['blkid.tab', Path does NOT exist]
2013-88-04 22:19:13,068 Open Failed: fetc/.pwd.lock
2013-88-84 22:19:13,076 Open Failed: fetc/mtab.fuselock
2013-88-84 22:19:13,088 Open Failed: Jetc/sudoers
2013-88-84 22: ,0890 ['vtrgb', skipped Link HOT a File]
2013-08-04 22:19:13,091 Open Failed: jetc/fuse.conf
2013-08-04 22:19:13,094 Open Falled: Jetc/shadow
2013-98-84 22:19:13,095 Open Falled: fetc/gshadow

2013-88-84 22:19:13,114 Open Failed: /etc/passwd-

2013-08-04 22:19:13,115 Open Failed: fetc/shadow-

2013-08-04 :119:13,122 Open Falled: jetc/group-

2013-08-04 22:19:13,122 Open Failed: /etc/gshadow

2013-88-84 22:19:13,123 ['motd’, Skipped Link NOT a File]
2013-08-84 22:19:13,124 Open Failed: Jetc/at.deny

2013-98-04 22:19:13,129 ['resolv.conf', skipped Link NOT a File]
2013-88-84 22:1 ,196 ['S70dns-clean', Skipped Link NOT a File
2013-08-04 22:19:13,196 ['K20acpi-support’', Skipped Link NOT a File]

W

PlainText * Tabwidth: 8 = Lni,cCol1 INS

FIGURE 3.13
Linux Execution Results pFishLog File.

SUMMARY QUESTIONS

1. If you wanted to add additional one-way hashing algorithms, which functions
would you need to modify? Also, by using just the Python Standard Library what
other one-way hashing algorithms are readily available.

2. If you wanted to eliminate the need of the two global variables how could you
easily accomplish this by using classes? What function would you convert to a
class and what methods would you need to create?

3. What other events or elements do you think should be logged? How would you go
about doing that?

4. What additional columns would you like to see in the report and how would you
obtain the additional information?

5. What additional information (such as Investigator name or case number) should
be included in the log. How would you obtain that information?

LOOKING AHEAD

In Chapter 4, I will be continuing with the cookbook section by tackling searching
and indexing of forensic data.

Additional Resources

Hosmer C. Using SmartCards and digital signatures to preserve electronic evidence. In: SPIE
proceedings, vol. 3576. Forensic Technologies for Crime Scene and the Laboratory 1. The
paper was initially presented at the investigation and forensic science technologies sym-
posium; 1998. Boston, MA, http://proceedings.spiedigitallibrary.org/proceeding.aspx?
articleid=974141 [01.11.1998].

Kim G. The design and implementation of tripwire: a file system integrity checker. Purdue
ePubs computer science technical reports, 1993. http://docs.lib.purdue.edu/cstech/1084/.

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=974141
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=974141
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=974141
http://docs.lib.purdue.edu/cstech/1084/
Figure 3.13

This page intentionally left blank

